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ABSTRACT:  Smartphones are equipped with sensors such as accelerometers, gyroscope and GPS in 
one cost-effective device with an acceptable level of accuracy. There have been some research studies 
carried out in terms of using smartphones to measure the pavement roughness. However, a little attention 
has been paid to investigate the validity of the measured pavement roughness by smartphones via other 
subjective methods such as the user opinion. This paper aims at calculating the pavement roughness 
data with a smartphone using its embedded sensors and investigating its correlation with a user opinion 
about the ride quality. In addition, the applicability of using smartphones to assess the pavement surface 
distresses is examined. Furthermore, to validate the smartphone sensor outputs objectively, the Road 
Surface Profiler is applied. Finally, a good roughness model is developed which demonstrates an 
acceptable level of correlation between the pavement roughness measured by smartphones and the ride 
quality rated by users.
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1- Introduction
According to ASTM standard E867, the pavement roughness 
can be defined as “the deviation of a surface from a true planar 
surface with characteristic dimensions that affect the vehicle 
dynamics and ride quality” [1]. Pavement roughness is a 
criterion to describe the road condition and ride quality which 
is usually measured by an index such as the International 
Roughness Index (IRI). Pavement roughness is of the 
significant importance for both travelers and city officials. 
Travelers concern about comfort ride and their vehicle 
operating costs. Hence, city officials utilize the pavement 
roughness as an essential indicator to conduct an optimum 
pavement maintenance planning which significantly saves 
the life cycle cost of roads and prolongs the service life. 
Two major methods are used to collect the pavement 
roughness data: manual and automated (or semi-automated). 
Generally, manual data collection is labour-intensive, unsafe, 
time-consuming, and costly. However, automated data 
collection is precise, fast, safe and repeatable. Automated 
data collection devices such as laser scanners and profilers 
are very expensive to purchase, operate and maintain. It is 
rarely feasible for the city officials in developing countries 
to conduct data collection using such a device and frequently 
monitor the entire road network condition. Alternative devices 
for pavement roughness data collection are smartphones.
Regarding the advancements achieved by researchers in 
the smartphone industry, several inexpensive sensors are 
embedded in smartphones such as 3-axis accelerometers, a 
gyroscope and a GPS. These sensors are commonly deployed 

in different smartphone applications such as games and 
navigations; however, they can be applied in engineering 
fields of study such as transportation engineering.

2- Literature Review and Background
Pavement distress detection is one of the applications of 
smartphones in pavement management. Researchers have 
proposed different algorithms to detect different types of 
potholes [2, 8-11]. Eriksson et al. deployed smartphones to 
investigate road anomalies [8]. They introduced a system 
which was called “pothole patrol”. Seven running taxis 
hired were equipped with smartphones to monitor the 
surface condition of roads to detect potholes through the 
sharp vertical vibration of vehicles [8]. Mednis et al. (2011) 
defined “Z-THRESH” determining a threshold for the z-axis 
accelerometer data. The values outside the threshold were 
defined as various types of potholes. They also developed 
a new algorithm to detect the anomalies called “G-ZERO” 
indicating a threshold in which all three axis accelerometer 
data have a value close to zero gravity [9]. Aksamit and 
Szmechta (2011) evaluated the road quality by processing 
signals from accelerometers of smartphones mounted on four 
different locations in a car [12]. Seraj et al. (2014) utilized 
Support Vector Machine (SVM) to discern and classify road 
anomalies. As a result, they devised a real-time multi-class 
road anomaly detector which was able to spot approximately 
90 percent of severe anomalies [13]. Tai et al. (2010) applied 
smartphones with a 3-axis accelerometer when riding a 
motorcycle to detect road anomalies and evaluate the road 
quality with a high precision of 78.5% [14]. 
Pavement roughness, moreover, has been studied using Corresponding author, E-mail: agolroo@aut.ac.ir
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smartphones embedded sensors. The “SmartRoadSense” 
system introduced by Alessandroni et al. (2014) aimed to 
monitor road surfaces via smartphones. They developed a 
model in this study to calculate an index for the pavement 
roughness from the captured data via the system [15]. 
Finally, they color-coded pavement sections on a map to 
prioritize the pavement rehabilitation [15]. Douangphachanh 
and Oneyama (2013, 2014) estimated road conditions by 
utilizing VIMS component as a reference for calculating 
a pavement roughness index. They collected the data by 
the AndroSensor application installed on smartphones to 
determine pavement profiles and compute IRI [16, 17]. Islam 
et. al. (2014) numerically double-integrated acceleration 
data and processed them via computer software, Proval 
[18, 19]. The study was conducted in three different sites 
to gather pavement profile and acceleration data with both 
an inertial profiler and a smartphone mounted on a vehicle 
[19]. The outputs revealed that the smartphone devices were 
able to measure IRI with an acceptable accuracy compared 
with an inertial profiler [19]. Zeng et al. (2015) calculated 
the pavement roughness based on a normalized acceleration 
index. Data gathering was accomplished by utilizing two 
tablets mounted on a vehicle. The tablet sensors captured 
acceleration data in three dimensions, GPS coordinates and 
vehicle speeds [20]. They declared that the proposed index 
could correctly detect deficient pavement segments at a high 
precision of  80 to 93 percent [20]. Hanson et al. (2014) 
attempted to correlate the pavement roughness captured by 
smartphones and a conventional profiler. They employed 
eleven different segments on one kilometer stretch of a 
secondary highway in New Brunswick, Canada and came up 
with the conclusion that there was a good correlation between 
the output of the profiler and the smartphone [21].
Panel rating has been applied to investigate the ride quality of 
pavement [22]. It is the best subjective method to collect the 
travelers’ opinion about ride quality which can be effectively 
applied to validate the objective measurement of pavement 
roughness. The subjective validation of pavement roughness 
measured by smartphones has been received enough 
attention. In other words, no one has investigated whether the 
smartphone roughness outputs would represent the real sense 
of users from the ride quality. This paper is to fill this gap 
and investigate the correlation between roughness measures 
acquired by smartphones and ride quality rated by a panel. 

3- Objective and Scope
The main aim of this study is to examine the correlation 
between pavement roughness measured by smartphones 
mounted on a vehicle and user opinions obtained through the 
mean of panel rating on the ride quality of pavement. The 
scope of this study is to calculate the pavement roughness in 
urban transportation networks on asphalt pavements.

4- Research Methodology
The research study was conducted through different processes, 
including data collection, pavement indices measurements 
and investigation of validation and correlation of the indices. 
Figure 1 schematically depicts the study approach.
From the other perspective, this study can be divided into 
three modules. The first module was to design an experiment. 
For this purpose, a pilot study was carried out to capture 
some sample data to detect the drawbacks and issues that 

would happen in the experiment. Then, in the second module, 
pavement condition was measured using smartphones and 
panel rating. Finally, in the third module, the roughness 
obtained through smartphones was validated by a Road 
Surface Profiler (RSP) and the correlation between the 
roughness computed via the smartphones and the panel was 
investigated. Figure 2 illustrates the research methodology of 
the study.

4- 1- Module 1: Pilot study
The pilot data collection was conducted through panel 
rating and smartphones. The experiment was initiated by 
designing guidelines for smartphones data collection and 
panel rating. The guideline for smartphone data collection 
was encompassed by the method of mounting smartphones 
on vehicle dashboards, running the smartphone application 
and transferring data to the station. The other guideline was 
developed for the panel. It described the method of pavement 
surface defect assessment i.e., it contained definitions of 
asphalt pavement distress types along with their various 
categories of severity and density. The guideline also 
categorized user opinions about the ride quality levels into 
five groups: very good, good, moderate, poor, and very poor. 
For instance, “good” expresses a condition that a driver feels 
comfortable and does not feel any jump when the car moves 
along the roads although the driver has a sensation of a bit 
vibration. 
Participants were divided into different groups/vehicles. 
Each group included three members: a driver, a surveyor and 
a rater. The driver drove the car in a predetermined segment 
at the speed of 20 to 50 kph. The surveyor sat in the front 
seat of the car and was responsible for both surveying the 
pavement condition and running a smartphone application. 
The smartphone was mounted on the car dashboard as shown 
in Figure 3 to record GPS and accelerometer data. The rater 
who sat on the rear seat of the car rated the ride quality. 
Moreover, a smartphone was mounted to the car windshield 
(Figure 3) to capture video of the segment to validate the 
rating of surveyors and raters. 
The data were captured from a segment divided into five 
sections (approximately one kilometer) located in an arterial 
street in the urban transportation network of Tehran, Iran 
by a team of more than 40 participants. Three replications 
were carried out. Afterwards, the collected pilot data were 

Fig. 1. Schematic study approach
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successfully processed. After data processing, some minor 
shortcomings were detected such as (1) missing accelerometer 
data in some sections because of a surveyor’s mistake to run 
the smartphone application (2) missing videos due to the 
shortage of smartphones memory. The shortcomings were 
both systematic errors happened due to the human mistakes. 
To prevent these errors to occur again in the main data 
collection, the comprehensive explanation sessions were held 
for the participants.

4- 2- Module 2: roughness measurement
Having accomplished the pilot study and held the explanation 
sessions, the final data collection was carried out in September 
2015 on the same segment replicated five times by the trained 
participants. The raw data were applied to measure three 
meaningful indices which represent the pavement condition. 
These indices are described below.

4- 2- 1- Pavement Condition Indices
Indices applied herein included Ride Quality Index (RQI), 
Root Mean Square (RMS) and Pavement Distress Index 
(PDI). The first index was RQI describing users’ opinion 
about the pavement roughness while they were riding over 
roads. The RQI varies between 0 to 5 in which 0 represents 
the very poor condition, while 5 expresses the very good 
condition [23]. As described before, a guideline including 
verbal and numerical ratings of pavement was prepared to 
train the raters. They rated the riding quality of the pavement 
based on this guideline. Table 1 shows the verbal and 
numerical description of different condition levels.

The second index was RMS deployed to assess vertical 
acceleration of vehicles. The vertical acceleration was 
measured via a smartphone application which employed the 
accelerometer sensor embedded in the smartphones. The 
application recorded and stored acceleration data every 500 
ms. Equation 1 was employed to calculate RMS [20].

( )2
,

1

1 
N

z i
i

RMS a g
N =

= −∑ (1)

RMS = Root Mean Square of acceleration data
N = the total number of acceleration records for each section
az,i =   the ith vertical acceleration record (in the z direction)

Fig. 2. Research Methodology

Fig. 3.  Smartphones attached over the dashboard and on the 
car windshield

Verbal Rating Numerical Rating
Very good 4.1-5.0

Good 3.1-4.0
Fair 2.1-3.0
Poor 1.1-2.0

Very poor 0.0-1.0

Table 1. Ride Quality Index.
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g = gravity
The third index was PDI defined as the weighted summation 
of severity and density of six selected pavement distresses 
(shown in Table 2). The distresses and the associated weights 
were determined based on an expert knowledge. These 
pavement distresses have the most significant impact on the 
roughness and surface defects of asphalt pavement. To obtain 
a single quantitative index for the pavement distresses on each 
section, Equation 2, which is a simple weighted summation 
of the product of severity and density of different distresses, 
was utilized [25]. 

( )      
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i
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PDI = Pavement Distress Index
i = distress type
Wi = weighting factor for each distress (Table 2)
si = severity of distress (High = 3, Moderate = 2, Low=1)
di = density of distress (in meter or square meter)

4- 2- 2- Data processing
The data preparation was carried out through checking for a 
few criteria: completeness, consistency, outliers, systematic 
errors, precision and repeatability. After a thorough review 
of the collected data, it was concluded that the data were 
complete and consistent. However, there were a few outliers 
in the data detected (Figure 4(a)) using the boxplot method 
and eliminated (Figure 4(b)). Having a few outliers seems 
logical in terms of using a sensitive sensor such as an 
accelerometer or panel rating. For instance, as shown in 
Figure 4(a) in the panel rating, there are few outliers related 
to sections 3 and 4. After a close investigation and discussion 
with the corresponding raters, it appeared that they made 
some mistakes so that the associated data were removed. 
Figure 4(b) shows the captured data after data preparation 
which does not have any outlier.
Furthermore, the subjective rating is susceptible to suffer 
from systematic errors such as leniency and severity error 
and central tendency effect [24, 25]. Leniency and severity 
errors are defined as the deviation of each rater’s rating from 
the grand mean which is defined as the average of all rater’s 
rating (Table 3). “Delta R” in Table 3 shows the difference 
between grand mean and the average of raters’ ratings i.e., 
error e.g., the mean value of rater 1 is 3.71; therefore, its 
“Delta R” is equal to 0.41 (3.71-3.3= 0.41).  If a rater rated 
a section too high or too low from the grand mean, leniency 
error and severity error would happen, respectively. The last 
column, “Rank” priorities the raters based on the highest 
difference from grand mean e.g., rater 10 has the first rank 
due to his highest difference from the grand mean i.e., this 
rater assessed the segment in the worst case comparing to the 

grand mean. As shown in Table 3, the magnitude of leniency 
and severity of the errors were negligible i.e., all errors are 
within two standard deviations of raters.
Central Tendency Effect is defined as the tendency of a rater 
to rate most cases on average rather than using high or low 
values. The range of raters’ rating was used as an indicator of 
this effect. The ride quality range for a rater is equal to his/
her maximum rate minus minimum rate. This range should 
be high regarding the fact that the pavement segment was of 
different condition levels from very good to very poor. As 
shown in Table 4, the ranges of rating are adequately high. 
Therefore, no adjustments were required i.e., all ranges are 
within one standard deviation of ratings.
To assess the precision of raters, their rating on a single 
section should be almost identical. It means the standard 
deviation of rating should be low, while that of sections 
should be high. That is, sections should cover a wide range 
of pavement condition i.e., a high variance, while the raters 
should rate the same sections approximately as the same 
meaning a low variance. Analysis of variance (ANOVA) is 
a statistical tool which is applied to determine whether  the 
mean of three or more sets of samples are equal at a specific 
level of significance. To investigate the variances, Analysis of 

Distress type Wi

Longitude crack 2
Transverse crack 2
Alligator crack 3

pothole 3
patching 1

corrugation 1.5

Table 2. Selected distresses and weights.

Fig. 4. Fig. 4. Box plot for ride quality panel rating; (a) Panel 
rating by sections with outliers (b) Panel rating by sections 

after removing outliers.
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Variance (ANOVA) test was conducted on sections and raters 
at 5% level of confidence. Table 5 shows that the differences 
in the mean value among raters are not significant (level of 
significance (sig) >0.05), while those of the section condition 
are significant (level of significance (sig) <0.05) as expected. 
Therefore, raters did rate the sections, which are significantly 
different from each other in terms of pavement condition, at 
a sufficient precision.
In order to check the repeatability of the indices proposed 
herein measured by smartphones and the panel (RMS 
and RQI, respectively), their standard deviation (SD) and 
coefficient of variation (CV) were measured as presented in 
Table 6. The SDs are sufficiently low and CVs are almost all 
less than 8% except one which is 12.8% that is low enough 
(less than 20%). The figures express that on a single section, 
although five replications were conducted, the standard 

deviation and coefficient of variation of collected data on 
the section are low enough to present the repeatability of the 
experiment.
Figure 5 shows RMS corresponding to each section for five 
replicates (runs). This figure illuminates that the replicates for 
each section are almost identical. To prove this fact, a two-
way analysis of variance (ANOVA) was conducted showing 
that there was not a significant difference between different 
runs at 95% level of confidence. The ANOVA test supports 
the fact that there are no significant differences between 
replicates using smartphone expressing the data collection 
reparability.
Figure 6 illuminates acceleration data of a route with 
different pavement conditions. As illustrated in this graph, 
the variation of car acceleration is low while the car passed 
a smooth pavement (between seconds 10 to 70). However, 
it fluctuated more on the rough pavement (between seconds 
120 to 200).

4- 3- Module 3: Validation and Correlation
Having calculated the pavement roughness using the above-
mentioned indices, the next step was to validate the roughness 
measured via smartphones (i.e., RMS) with the ground truth 
i.e., accurate measurements carried out using a standard 
device. The ground truth was attained through the application 
of the Road Surface Profiler (RSP) which indicated the 
International Roughness Index (IRI) of pavement. For 
this purpose, the roughness of pavement sections was 
simultaneously measured using RSP and smartphones with 
three to five replications. The measurements are shown in 
Figure 7a and b. The trend of the data illuminated in Figure 
7(a) makes the engineering sense i.e., the more the RMS 
meaning vertical vibration, the more the IRI. It is observed that 
there is a good correlation between RMS and IRI with a good 
coefficient of determination of 0.757 and a high correlation 
coefficient of 0.870 (Figure 7(b)). This figure illustrates the 
close distance between RMS and RSP measurements.

Ride Quality Rating
Rater 

Number Mean Standard 
Deviation Delta R Rank

1 3.71 0.135 0.41 5
2 3.23 0.094 -0.07 8
3 2.98 0.184 -0.32 6
4 2.43 0.061 -0.87 2
5 2.66 0.146 -0.64 4
6 2.43 0.504 -0.87 2
7 3.71 0.135 0.41 5
8 3.23 0.094 -0.07 8
9 3.43 0.17 0.13 7
10 4.5 0.418 1.2 1
11 3.95 0.218 0.65 3

Mean 3.3 0.652 0 ---

Table 3. Deviation from the mean of ride quality rating.

Rater 1 2 3 4 5 6 7 8 9 10 11
Ride quality range 2.25 1.38 1.75 0.81 1.75 2.63 2.25 1.38 2.5 2.5 2.5

Table 4. Different ranges used by each rater.

Source
Ride quality ratings

SS df MS F sig
Between sections 8.282 4 2.071 6.650 .000

Between raters 7.473 10 0.747 1.975 0.063
Total 22.604 50 NA NA NA

Note: SS = sum of square; df = degree of freedom; MS = mean of square; NA = not applicable; F = calculated F value; and sig = level of significance

Table 5. ANOVA test for ride quality ratings.

Section number Average RQI SD CV Average RMS (m/s2) SD (m/s2) CV
1 3.6 0.233 8.5% 0.60 0.051 6.5%
2 2.8 0.095 5.6% 0.91 0.051 3.5%
3 2.4 0.110 7.8% 0.94 0.073 4.6%
4 1.6 0.254 7.9% 1.15 0.091 12.8%
5 3.0 0.118 7.9% 0.84 0.067 4.0%

Table 6. Repeatability of roughness data
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Moreover, having calculated an equilibrium (Equation 3) 
between RMS and a conventional index such as IRI would help 
to measure the roughness through application of RMS which 
can be computed using a smartphone that is inexpensive, easy 
to implement and widely accessible to estimate IRI instead of 
employing RSP which is of a high cost (in terms of capital 
cost, operation and maintenance). For instance, if the RMS 
for a pavement section measured via a smartphone is equal 
to 0.1, the IRI is approximated using Equation 3 which is 
equal to 2.1 mm/m (4.19×0.1 + 1.73 = 2.1). Equation 3 was 
extracted from the result of equilibrium between RMS and 
IRI as shown in Figure 7(a))

  4.19  1 .73IRI RMS= + (3)

IRI = International Roughness Index 
RMS  = Root Mean Square of acceleration data

4- 3- 1- Correlation between RMS and PDI
The correlation investigation was conducted between RMS 

and PDI. It was to examine whether RMS has a significant 
correlation with PDI. In other words, it is to investigate 
that if the pavement roughness (RMS) is correlated with 
the pavement surface distress (PDI). The captured data 
were plotted i.e., RMS versus PDI (Figure 8(a)). The linear 
regression illustrates that PDI could not be an adequate 
predictor of the RMS (R2=0.5). This result makes engineering 
sense regarding the fact that the measured distresses are 
not totally related to the road roughness leading to the 
vertical acceleration of the vehicle. That is, there might be 
a road section with several distresses (such as transverse and 
longitudinal cracking and patching) but be relatively smooth. 
On the contrary, a road section may be rough without several 
pavement surface distresses. Furthermore, the pavement 
roughness is measured under wheel paths not the whole area 
in a lane. There could be a pavement section with surface 
defects on areas between the wheel paths (not under the wheel 
path). In this case, RMS would be low, while PDI could be 
high. Therefore, it makes logical and engineering sense that 
RMS and PDI are not highly correlated.

Fig. 5. RMS over five different runs for each section

Fig. 6. Sample of accelerometer outputs for a route with different pavement conditions
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4- 3- 2- Correlation Between RMS and RQI
Finally, the correlation between RMS and RQI was studied. 
This is to investigate whether the roughness measured by 
smartphones can represent the real sense of convenience from 
the user point of view called the ride quality (expressed by 
RQI). The acquired data (RMS versus RQI) were plotted in 
Figure 8(b). As shown in this figure, RMS is highly related 
to RQI with a high coefficient of determination of 0.805. The 
trend of data and associated linear equation seems logical i.e., 
the more the RMS, the less the RQI. 
This is an important achievement of this study which validates 
the objective roughness measurements via smartphones with 
subjective ride quality obtained by the panel rating. In other 
words, the roughness index (RMS) calculated by smartphones 
has significant compatibility with the user opinion about the 
ride quality. That is, RMS can be applied as an indicator  
showing the real sense of comfort or discomfort for road 
users.

To sum up, it is concluded that smartphones can be deployed 
to estimate the pavement roughness at an adequate level of 
precision and accuracy. The smartphone measurements are 
not only highly correlated with IRI, but also they represent 
significant correlation with the ride quality expressed by 
travelers. The latter correlation has not been investigated to 
date; however, the travelers’ opinion about the ride quality 
plays the main role in evaluating the pavement roughness of 
a road. Meaning that the outcomes obtained from smartphone 
accelerometer sensor can rigorously present the real pavement 
roughness with regard to the travelers’ sense of comfort.

5- Conclusion
The core of the pavement management systems is pavement 
data collection. Sophisticated vehicles facilitated by an 
array of sensors have been widely utilized to automatically 
capture the pavement roughness data. These vehicles are too 
expensive to purchase, operate, and maintain. A sustainable 

(a)

(b)
Fig. 7. (a) Relationship between roughness (IRI) and vertical 

acceleration (RMS) (b) correlation between IRI and RMS
Fig. 8. Relationship between pavement roughness; (a) 

Pavement condition (b) User’s opinions.
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