

AUT Journal of Civil Engineering

AUT J. Civil Eng., 1(2) (2017) 145-152 DOI: 10.22060/ceej.2017.12358.5184

Buckling Analysis of Functionally Graded Plates Based on Two-Variable Refined Plate Theory Using the Bubble Finite Strip Method

Omid Kianian, Saeid Sarrami-Foroushani*, Mojtaba Azhari

Department of Civil Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran

ABSTRACT: Functionally graded materials (FGMs) have been widely used in many structural applications over the past decades. The rapid growth of the FGMs is due to their remarkable mechanical and thermal properties. The mechanical buckling analysis of functionally graded ceramic-metal rectangular plates is considered in this paper. The two-variable refined plate theory (RPT), in conjunction with the bubble finite strip method, is employed for the first time to evaluate the mechanical buckling loads of rectangular FGM plates. The theory, which has a strong similarity with the classical plate theory (CPT) in many aspects, accounts for a quadratic variation of transverse shear strains across the thickness of the plate and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using the shear correction factor. In comparison with the ordinary finite strip method, the convergence of the bubble finite strip method is very rapid due to using bubble shape functions. The mechanical properties of the FGM plate are assumed to vary according to a power law distribution of the volume fraction of constituents. The accuracy and efficiency of the present method are confirmed by comparing the present results with those available in the literature. Furthermore, the effects of power-law index, plate thickness, aspect ratio, loading types and various boundary conditions on the critical buckling load of the functionally graded rectangular plates are investigated.

Review History:

Received: 4 January 2017 Revised: 1 March 2017 Accepted: 5 August 2017 Available Online: 1 September 2017

Keywords:

Functionally graded plate Refined plate theory Buckling Finite strip method Bubble function

1-Introduction

A large number of plate theories have been developed to analyze plate structures. The classical plate theory (CPT) is the most popular theory which neglects the transverse shear deformation effects. This theory provides rational results for the thin plate [1], however, it underestimates the deflections and overestimates the natural frequencies as well as buckling loads of moderately thick and thick plates. To overcome these defects, the shear deformation plate theories such as firstorder shear deformation theory (FSDT) [2-5] and higherorder shear deformation theories (HSDT) [6-11] as well as the refined plate theory (RPT) [12] are proposed. In the RPT, it is assumed that the in-plane and transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. Contrary to the FSDT which needs shear correction factor, the transverse shear strains across the thickness of the plate are quadratic in the RPT. Consequently, the zero traction boundary conditions on the top and bottom surfaces of the plate is satisfied. This is the most interesting feature of the RPT, while it uses fewer unknowns. This theory is successfully developed and used to analyze functionally graded plates [13, 14].

In this study, the mechanical buckling analysis of functionally graded ceramic-metal rectangular plates is considered. The two-variable refined plate theory, in conjunction with the bubble finite strip method, is employed in the current formulation. The bubble functions are used to increase the convergence of the finite strip method.

Corresponding author, E-mail: sarrami@cc.iut.ac.ir

2- Mechanical properties of FG rectangular plate

Consider a rectangular functionally graded plate of total thickness h, side length a in x-direction and b in y-direction as shown in Figure 1. A coordinate system (x, y, z) is established on the middle plane of the plate. The plate is made of isotropic material and the material properties are assumed to vary through the thickness according to the power law distribution [15]:

$$P(z) = (P_{c} - P_{m})V_{c} + P_{m}$$
(1)

$$V_{c} = \left(\frac{1}{2} + \frac{z}{h}\right)^{n}; (n \ge 0)$$

$$\tag{2}$$

where P_m and P_c are the properties of the metal and ceramic, respectively. V_c is the volume fraction of the ceramic and *n* is the power law index. The Poisson's ratio, *V*, is assumed to be a constant for convenience.

Fig. 1. Functionally graded plate and its dimensions.

v

3- Displacement field

Based on the assumptions of RPT [12, 16], the displacement field is defined as:

$$u(x, y, z) = -(z - z_0) \frac{\partial w_b}{\partial x} + F(z - z_0) \frac{\partial w_s}{\partial x}$$
(3)

$$v(x, y, z) = -(z - z_0)\frac{\partial w_b}{\partial y} + F(z - z_0)\frac{\partial w_s}{\partial y}$$
(4)

$$w(x, y, z) = w_{b}(x, y) + w_{s}(x, y)$$
(5)

where $F(z) = z \left[\frac{1}{4} - \frac{5}{3} \left(\frac{z}{h} \right)^2 \right]$, and w_b are w_s the bending and

shear components of transverse displacement, respectively and z_0 is the position of the neutral surface which is defined as [16]:

$$z_{0} = \frac{\int_{-h/2}^{h/2} E(z) z dz}{\int_{-h/2}^{h/2} E(z) dz}$$
(6)

in which E(z) is the modulus of elasticity of FG plate and follows the power law distribution as introduced in Equation 1.

4- Stability equation

After calculating the strain energy and the potential energy of the external forces, Hamilton's principle is used to derive the equations of motion appropriate to the displacement field and the constitutive equation. According to the RPT, the governing equations of the buckling analysis of FG plate can be written as [16, 17]:

$$D_{b}\nabla^{2}\nabla^{2}w_{b} + D_{bs}\nabla^{2}\nabla^{2}w_{s} = n_{x}\left(\frac{\partial^{2}w_{b}}{\partial x^{2}} + \frac{\partial^{2}w_{s}}{\partial x^{2}}\right) + n_{y}\left(\frac{\partial^{2}w_{b}}{\partial y^{2}} + \frac{\partial^{2}w_{s}}{\partial y^{2}}\right)$$
(7a)

$$D_{bs}\nabla^{2}\nabla^{2}w_{b} + \left(D_{s}\nabla^{2}\nabla^{2} - \frac{C(1-\nu)}{2}\nabla^{2}\right)w_{s} = n_{x}\left(\frac{\partial^{2}w_{b}}{\partial x^{2}} + \frac{\partial^{2}w_{s}}{\partial x^{2}}\right) + n_{y}\left(\frac{\partial^{2}w_{b}}{\partial y^{2}} + \frac{\partial^{2}w_{s}}{\partial y^{2}}\right)$$
(7b)

in which D_{b} , D_{bs} , D_{s} and C are defined as follows:

$$D_{b} = \int_{-h/2}^{h/2} H \times (z - z_{0}) dz$$
 (8a)

$$D_{bs} = \int_{-h/2}^{h/2} H \times F(z) \times (z - z_0) dz$$
 (8b)

$$D_{s} = \int_{-h/2}^{h/2} H \times F(z) \times (F(z) - d) dz$$
(8c)

$$C = \int_{-h/2}^{h/2} H \times F^2(z) dz$$
(8d)

where
$$H = \frac{E(z)}{1-v^2}$$
 and $d = \int_{-h/2}^{h/2} \frac{E(z)F(z)}{E(z)} dz$.

5- Solution by refined finite strip method

The bubble finite strip method (BFSM) is employed here to investigate the buckling behavior of FG rectangular plates with different boundary conditions. Figure 2a shows a single strip of length bs and width as in the rectangular coordinate system (x, y, z) with two nodal lines of i and j. The strip nodal degrees of freedom are shown in Figure 2b.

Fig. 2. a) The strip and b) Nodal degrees of freedom

The bending and shear deflections of the strip are defined, respectively as:

$$w_{b}(x,y) = \sum_{q=1}^{r} \mathbf{N}_{q}^{b} \delta_{q}^{b}$$
(9a)

$$w_{s}(x,y) = \sum_{q=1}^{r} \mathbf{N}_{q}^{s} \delta_{q}^{s}$$
(9b)

in which r is the number of harmonic modes and

$$\mathbf{N}_{q}^{b} = \mathbf{N}_{q}^{s} = [1 - 3\xi^{2} + 2\xi^{3} \quad a_{s}(\xi - 2\xi^{2} + \xi^{3}) \\ \xi^{2}(\xi - 1)^{2} \quad 3\xi^{2} - 2\xi^{3} \quad a_{s}(-\xi^{2} + \xi^{3})]Y_{q}(y)$$
(10)

where $\xi = x/a_s$ and $Y_q(y)$ is the q^{th} mode of a trigonometric function which are given in [17]. $Y_q(y)$ is chosen such that it satisfies the boundary conditions in one direction. δ_q^{b} and δ_q^{s} which are the displacement vectors related to mode q, are given by:

$$\delta_q^b = \left\{ w_i^b \quad \theta_i^b \quad w_{bub}^b \quad w_j^b \quad \theta_j^b \right\}_q^T$$
(11a)

$$\delta_q^s = \left\{ w_i^s \quad \theta_i^s \quad w_{bub}^s \quad w_j^s \quad \theta_j^s \right\}_q^T \tag{11b}$$

in which $(w_i^b)_q$, $(w_j^b)_q$, $(\theta_i^b)_q$ and $(\theta_j^b)_q$ are bending degrees of freedom of each nodal line, whereas $(w_i^s)_q$, $(w_j^s)_q$, $(\theta_i^s)_q$ and $(\theta_j^s)_q$ are the shear degrees of freedom and $\theta = \partial w / \partial x$. $(w_{bub}^{bb})_q$ and $(w_{bub}^{sb})_q$ are the degrees of freedom corresponding to the third shape function in Equation 10 which is called bubble function. These bubble displacements belong to the middle line between the two nodal lines *i* and *j*. Assuming the bending and shear deflections of the nanoplate as expressed in Equations 9a and b, the method of weighted residuals is then applied to the Equations 7a and 7b which should be solved simultaneously. In the absence of the lateral load, the buckling equations of a plate could be written as:

$$(\mathbf{K} - \mathbf{K}_{G})\delta = \mathbf{0} \tag{12}$$

in which δ is the eigenvector; **K** is the stiffness matrix of the plate and **K**_G is the stability matrix. The stiffness matrix of a strip corresponding to m^{th} and n^{th} modes, $(\mathbf{K})_{mn}^{e}$, which is a 10×10 matrix is defined as:

$$(\mathbf{K})_{mn}^{e} = \begin{bmatrix} \int_{0}^{b} \int_{0}^{a} (\mathbf{B}_{m}^{b})^{T} \mathbf{D}_{b} (\mathbf{B}_{n}^{b}) dx dy & \int_{0}^{b} \int_{0}^{a} (\mathbf{B}_{m}^{b})^{T} \mathbf{D}_{bs} (\mathbf{B}_{n}^{b}) dx dy \\ \int_{0}^{b} \int_{0}^{a} (\mathbf{B}_{m}^{b})^{T} \mathbf{D}_{bs} (\mathbf{B}_{n}^{b}) dx dy & \int_{0}^{b} \int_{0}^{a} (\mathbf{B}_{m}^{s})^{T} \mathbf{D}_{s} (\mathbf{B}_{n}^{s}) dx dy \end{bmatrix}$$
(13)

where

$$\mathbf{B}_{q}^{b} = \begin{bmatrix} -\frac{1}{a_{x}^{2}}(-6+12\xi)Y_{q} & -\frac{1}{a_{y}}(-4+6\xi)Y_{q} & -\frac{1}{a_{x}^{2}}(2\xi^{2}-12\xi+2Y_{q} & -\frac{1}{a_{x}^{2}}(6-12\xi)Y_{q} & -\frac{1}{a_{y}}(-2+6\xi)Y_{q} \\ -(1-3\xi^{2}+2\xi^{2})Y_{q}^{*} & -a_{x}(\xi-2\xi^{2}+\xi^{2})Y_{q}^{*} & -\xi^{2}(\xi-1)^{2}Y_{q}^{*} & -(3\xi^{2}-2\xi^{2})Y_{q}^{*} & -a_{x}(\xi-2\xi^{2}+\xi^{2})Y_{q}^{*} \\ -\frac{2}{a_{x}}(-6\xi+6\xi^{2})Y_{q}^{*} & -2(1-4\xi+3\xi^{2})Y_{q}^{*} & -\frac{2}{a_{x}}(4\xi^{2}+2\xi-6\xi^{2})Y_{q}^{*} & -\frac{2}{a_{x}}(6\xi-6\xi^{2})Y_{q}^{*} & -2(-2\xi+3\xi^{2})Y_{q}^{*} \\ -\frac{1}{a_{x}^{2}}(-6+12\xi)Y_{q} & -\frac{1}{a_{x}}(-4+6\xi)Y_{q} & -\frac{1}{a_{x}^{2}}(2\xi^{2}-12\xi+2)Y_{q} & -\frac{1}{a_{x}^{2}}(6\xi-6\xi^{2})Y_{q}^{*} & -2(-2\xi+3\xi^{2})Y_{q}^{*} \\ -(1-3\xi^{2}+2\xi^{2})Y_{q}^{*} & -a_{x}(\xi-2\xi^{2}+\xi^{2})Y_{q}^{*} & -\xi^{2}(\xi-1)^{2}Y_{q}^{*} & -(3\xi^{2}-2\xi^{2})Y_{q}^{*} & -a_{x}(-\xi^{2}+\xi^{2})Y_{q}^{*} \\ -\frac{1}{a_{x}^{2}}(-6\xi+6\xi^{2})Y_{q}^{*} & -2(1-4\xi+3\xi^{2})Y_{q}^{*} & -\frac{2}{a_{x}}(4\xi^{2}+2\xi-6\xi^{2})Y_{q}^{*} & -\frac{2}{a_{x}}(6\xi-6\xi^{2})Y_{q}^{*} & -2(-2\xi+3\xi^{2})Y_{q}^{*} \\ -\frac{1}{a_{x}^{2}}(-6\xi+6\xi^{2})Y_{q}^{*} & -a_{x}(\xi-2\xi^{2}+\xi^{2})Y_{q}^{*} & -\xi^{2}(\xi-1)^{2}Y_{q}^{*} & -(3\xi^{2}-2\xi^{2})Y_{q}^{*} & -a_{x}(-\xi^{2}+\xi^{2})Y_{q}^{*} \\ -\frac{1}{a_{x}^{2}}(-6\xi+6\xi^{2})Y_{q}^{*} & -2(1-4\xi+3\xi^{2})Y_{q}^{*} & -\xi^{2}(\xi-1)^{2}Y_{q}^{*} & -\frac{2}{a_{x}}(6\xi-6\xi^{2})Y_{q}^{*} & -2(-2\xi+3\xi^{2})Y_{q}^{*} \\ -(1-3\xi^{2}+2\xi^{2})Y_{q}^{*} & -a_{x}(\xi-2\xi^{2}+\xi^{2})Y_{q}^{*} & -\xi^{2}(\xi-1)^{2}Y_{q}^{*} & -2(\xi^{2}-\xi^{2})Y_{q}^{*} & -2(-2\xi+3\xi^{2})Y_{q}^{*} \\ -(1-3\xi^{2}+2\xi^{2})Y_{q}^{*} & -a_{x}(\xi-2\xi^{2}+\xi^{2})Y_{q}^{*} & -\xi^{2}(\xi-1)^{2}Y_{q}^{*} & -2(\xi^{2}-\xi^{2})Y_{q}^{*} & -2(\xi^{2}-\xi^{2})Y_{q}^{*} & -2(\xi^{2}-\xi^{2})Y_{q}^{*} & -2(\xi^{2}-\xi^{2})Y_{q}^{*} \\ -(1-3\xi^{2}+2\xi^{2})Y_{q}^{*} & -a_{x}(\xi-2\xi^{2}+\xi^{2})Y_{q}^{*} & -\xi^{2}(\xi-1)^{2}Y_{q}^{*} & -2(\xi^{2}-\xi^{2})Y_{q}^{*} & -2(\xi^{2}-\xi^{2})Y_{q}^{*} & -2(\xi^{2}-\xi^{2})Y_{q}^{*} & -2(\xi^{2}-\xi^{2})Y_{q}^{*} \\ -(1-3\xi^{2}+\xi^{2})Y_{q}^{*} & -a_{x}(\xi-2\xi^{2}+\xi^{2})Y_{q}^{*} & -\xi^{2}(\xi^{2}-\xi^{2})Y_{q}^{*} & -2(\xi^{2}-\xi^{2})Y_{q}^{*} & -2(\xi^{2}-\xi^{2})Y_{q}^{*} & -2(\xi^{2}-\xi^{2})Y_{q}^{*} & -2(\xi^{2}-\xi^{2})Y_{q}^{*} \\ -(1-3\xi^{2}$$

 $\begin{bmatrix} -\frac{1}{a_s} (-6\xi + 6\xi^2) Y_q & -(1-4\xi + 3\xi^2) Y_q & -\frac{1}{a_s} (4\xi^3 + 2\xi - 6\xi^2) Y_q & -\frac{1}{a_s} (6\xi - 6\xi^2) Y_q & -(-2\xi + 3\xi^2) Y_q \end{bmatrix}_{s,s}$

In these equations, Y'_q and Y''_q represent the first and second derivatives of Y_q with respect to y, respectively; also

$$\mathbf{D}_{b} = D_{b} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix}, \mathbf{D}_{bs} = D_{bs} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix}$$
(16)

and

$$\mathbf{D}_{s} = \begin{bmatrix} D_{s} & vD_{s} & 0 & 0 & 0 \\ vD_{s} & D_{s} & 0 & 0 & 0 \\ 0 & 0 & \frac{(1-v)D_{s}}{2} & 0 & 0 \\ 0 & 0 & 0 & \frac{(1-v)C}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{(1-v)C}{2} \end{bmatrix}$$
(17)

 $(\mathbf{K}_{G}^{L})^{e}_{mn}$ is also defined as:

$$\left(\mathbf{K}_{G}^{L}\right)_{mn}^{e} = \begin{bmatrix} \int_{0}^{b} \mathbf{B}_{Gm}^{T} \mathbf{S}_{L} \mathbf{B}_{Gn} \, dx \, dy & \int_{0}^{b} \int_{0}^{a} \mathbf{B}_{Gm}^{T} \mathbf{S}_{L} \mathbf{B}_{Gn} \, dx \, dy \\ \int_{0}^{b} \int_{0}^{a} \mathbf{B}_{Gm}^{T} \mathbf{S}_{L} \mathbf{B}_{Gn} \, dx \, dy & \int_{0}^{b} \int_{0}^{a} \mathbf{B}_{Gm}^{T} \mathbf{S}_{L} \mathbf{B}_{Gn} \, dx \, dy \end{bmatrix}_{10\times10}$$
(18)

where

$$\mathbf{B}_{Gq}^{T} = \begin{bmatrix} \frac{1}{a_{s}} (-6\xi + 6\xi^{2})Y_{q} & (1-3\xi^{2} + 2\xi^{3})Y_{q}' \\ (1-4\xi + 3\xi^{2})Y_{q} & a_{s} (\xi - 2\xi^{2} + \xi^{3})Y_{q}' \\ \frac{1}{a_{s}} (4\xi^{3} + 2\xi - 6\xi^{2})Y_{q} & \xi^{2} (\xi - 1)^{2}Y_{q}' \\ \frac{1}{a_{s}} (6\xi - 6\xi^{2})Y_{q} & (3\xi^{2} - 2\xi^{3})Y_{q}' \\ (-2\xi + 3\xi^{2})Y_{q} & a_{s} (-\xi^{2} + \xi^{3})Y_{q}' \end{bmatrix}$$
(19)

and

$$\mathbf{S}_{L} = \begin{bmatrix} N_{xx} & 0\\ 0 & N_{yy} \end{bmatrix}$$
(20)

It should be noted that $N_{xx} = \sigma_x h$ and $N_{yy} = \sigma_y h$. σ_x and σ_y are stresses parallel to x-direction and y-direction, respectively. Having the finite strip formulation, a computer program is developed in the MATLAB environment to study the buckling of FGM plates. To obtain the total stiffness and stability matrices in Equation 12, the plate is first divided into a proper number of strips. Then, the stiffness and stability matrices of each strip are computed using Equations 13 and 18. The matrices are finally assembled using the equilibrium and compatibility equations along the nodal lines. The boundary conditions are then applied and finally the eigenvalue problem in Equation 12 is solved by vanishing the determinant of the coefficient matrix as:

$$\mathbf{K} - \mathbf{K}_G = 0 \tag{21}$$

Equation 21 is solved to obtain the critical buckling stress of the FGM plate.

6- Results and discussion

In order to validate the accuracy and efficiency of the present formulation, several examples are presented and discussed. Table 1 shows the material properties of the FG plate.

	la	bl	e 1	• [V	a	te	ri	al	р	ro	pp	er	ti	es	
--	----	----	-----	-----	---	---	----	----	----	---	----	----	----	----	----	--

Material	E_{m}	E_{c}	v
Al / Al_2O_3	70 GPa	380 GPa	0.3

The comparison of non-dimensional critical buckling load, $N=N_{cr}a^2/E_mh^3$, for a simply supported FG plate subjected to uniaxial compression along the *x*-axis, biaxial compression and biaxial compression (along *x*-axis) and tension (along *y*-axis) are presented in Table 2-4, respectively. Different width to thickness ratios, a/h, aspect ratios, b/a, and power law index, *n*, are considered in the results. It can be seen that the non-dimensional critical buckling loads obtained based on the present study are in an excellent agreement with those reported by Thai and Choi [18].

Table 5 shows non-dimensional buckling load, N, for square FG plate under uniaxial compression with different boundary conditions and several widths to thickness ratios, a/h. Different values of power law index, n, are also taken. In Table 5, S, C, F, and G simply refer to clamped, free and guided supports, respectively.

All the results presented in Tables 2-5 indicate that the proposed BFSM is a powerful method to solve the buckling of FGM plates with any boundary conditions and different

a/h	a/h	Method	n									
u/0	u/n	Miciliou	0	0.5	1	2	5	10	20	100	inf	
0.5	5	RPT[18]	6.7203	4.4235	3.4164	2.6451	2.1484	1.9213	1.7115	1.3737		
		Present	6.7204	4.4235	3.4164	2.6451	2.1484	1.9213	1.7115	1.3737	1.2379	
	10	RPT[18]	7.4053	4.8206	3.7111	2.8897	2.4165	2.1896	1.9387	1.5251		
		Present	7.4054	4.8207	3.7111	2.8897	2.4165	2.1896	1.9387	1.5250	1.3641	
	20	RPT[18]	7.5993	4.9315	3.793	2.9582	2.4944	2.269	2.0054	1.5683		
		Present	7.5994	4.9315	3.7931	2.9582	2.4944	2.2690	2.0054	1.5683	1.3998	
	50	RPT[18]	7.6555	4.9634	3.8166	2.9779	2.5172	2.2923	2.025	1.5809		
		Present	7.6556	4.9635	3.8167	2.9779	2.5172	2.2923	2.0250	1.5809	1.4102	
	100	RPT[18]	7.6635	4.968	3.82	2.9808	2.5205	2.2957	2.0278	1.5827		
		Present	7.6637	4.9681	3.8201	2.9808	2.5205	2.2957	2.0278	1.5827	1.4117	
1	5	RPT[18]	16.0211	10.6254	8.2245	6.3432	5.0531	4.4807	4.007	3.2586		
		Present	16.0211	10.6254	8.2245	6.3432	5.0531	4.4807	4.0070	3.2586	2.9512	
	10	RPT[18]	18.5785	12.1229	9.3391	7.2631	6.0353	5.4528	4.8346	3.8198		
		Present	18.5786	12.1230	9.3391	7.2631	6.0353	5.4528	4.8346	3.8198	3.4223	
	20	RPT[18]	19.3528	12.5668	9.6675	7.5371	6.3448	5.7668	5.0988	3.9923		
		Present	19.3529	12.5668	9.6675	7.5371	6.3448	5.7668	5.0988	3.9923	3.5650	
	50	RPT[18]	19.5814	12.697	9.7636	7.6177	6.4373	5.8614	5.1782	4.0434		
		Present	19.5815	12.6971	9.7637	7.6177	6.4373	5.8614	5.1781	4.0434	3.6071	
	100	RPT[18]	19.6145	12.7158	9.7775	7.6293	6.4507	5.8752	5.1897	4.0508		
		Present	19.6146	12.7159	9.7776	7.6293	6.4507	5.8752	5.1897	4.0508	3.6132	
1.5	5	RPT[18]	28.1996	19.251	15.0344	11.4234	8.4727	7.2952	6.6106	5.6325		
		Present	28.2030	19.2535	15.0363	11.4248	8.4736	7.2960	6.6112	5.6331	5.1952	
	10	RPT[18]	40.7476	26.9091	20.8024	16.0793	12.9501	11.5379	10.2958	8.3112		
		Present	40.7548	26.9139	20.8062	16.0821	12.9522	11.5398	10.2975	8.3126	7.5074	
	20	RPT[18]	45.893	29.905	23.0286	17.9221	14.9472	13.5273	11.9843	9.4447		
		Present	45.9021	29.9109	23.0332	17.9257	14.9501	13.5299	11.9867	9.4466	8.4556	
	50	RPT[18]	47.5786	30.8691	23.7414	18.5177	15.6238	14.2156	12.5629	9.8207		
		Present	47.5885	30.8754	23.7463	18.5215	15.6270	14.2185	12.5654	9.8227	8.7663	
	100	RPT[18]	47.8297	31.0119	23.8469	18.6061	15.7256	14.3198	12.6502	9.8769		
		Present	47.8397	31.0184	23.8518	18.6100	15.7288	14.3228	12.6528	9.8789	8.8125	

Table 2. Non-dimensional critical buckling load of simply supported FG plate under uniaxial compression along the x-axis

loading types. In comparison with the FEM, fewer degrees of freedom is required in the FSM. Moreover, using the bubble functions leads the method to utilize even fewer degrees of freedom than the ordinary FSM. It can be observed from the results that compared to other solution methods proposed in the literature, the BFSM is a more powerful, simple, economical and efficient method to solve the buckling problem of FG

Figure 3 indicates the effects of aspect ratio, b/a, on nondimensional critical buckling load of simply supported FG plate subjected to uniaxial compression along *y*-axis. It can be observed that by increasing the aspect ratio, the nondimensional buckling load decreases.

The effects of power-law index, n, on the buckling load of a simply supported square plate (a=b=10h) under various loading conditions are shown in Figure 4. Three loading conditions are uniaxial compression, biaxial compression (C & C), and biaxial tension and compression (T & C). It can be seen that the non-dimensional buckling load increases by

Fig. 3. Effects of aspect ratio, b/a, on the non-dimensional critical buckling load of simply supported FG plate subjected to uniaxial compression along y-axis.

. //	. /1	Madaal					n				
a/D	a/n	Method	0	0.5	1	2	5	10	20	100	inf
0.5	5	RPT[18]	5.3762	3.5388	2.7331	2.1161	1.7187	1.537	1.3692	1.099	
		Present	5.3763	3.5388	2.7331	2.1161	1.7187	1.5370	1.3692	1.0989	0.9903
	10	RPT[18]	5.9243	3.8565	2.9689	2.3117	1.9332	1.7517	1.551	1.22	
		Present	5.9243	3.8565	2.9689	2.3117	1.9332	1.7517	1.5510	1.2200	1.0913
	20	RPT[18]	6.0794	3.9452	3.0344	2.3665	1.9955	1.8152	1.6044	1.2547	
		Present	6.0795	3.9452	3.0344	2.3665	1.9955	1.8152	1.6043	1.2546	1.1199
	50	RPT[18]	6.1244	3.9708	3.0533	2.3823	2.0137	1.8338	1.62	1.2647	
		Present	6.1244	3.9708	3.0533	2.3823	2.0137	1.8338	1.6200	1.2647	1.1281
	100	RPT[18]	6.1308	3.9744	3.056	2.3846	2.0164	1.8365	1.6222	1.2662	
		Present	6.1309	3.9745	3.0560	2.3846	2.0164	1.8365	1.6222	1.2662	1.1293
1	5	RPT[18]	8.0105	5.3127	4.1122	3.1716	2.5265	2.2403	2.0035	1.6293	
		Present	8.0105	5.3127	4.1122	3.1716	2.5265	2.2403	2.0035	1.6293	1.4756
	10	RPT[18]	9.2893	6.0615	4.6696	3.6315	3.0177	2.7264	2.4173	1.9099	
		Present	9.2893	6.0615	4.6695	3.6315	3.0176	2.7264	2.4173	1.9099	1.7111
	20	RPT[18]	9.6764	6.2834	4.8337	3.7686	3.1724	2.8834	2.5494	1.9961	
		Present	9.6764	6.2834	4.8337	3.7685	3.1724	2.8834	2.5494	1.9961	1.7825
	50	RPT[18]	9.7907	6.3485	4.8818	3.8088	3.2186	2.9307	2.5891	2.0217	
		Present	9.7907	6.3485	4.8818	3.8088	3.2186	2.9307	2.5890	2.0217	1.8035
	100	RPT[18]	9.8073	6.3579	4.8888	3.8147	3.2254	2.9376	2.5948	2.0254	
		Present	9.8073	6.3579	4.8888	3.8146	3.2253	2.9376	2.5948	2.0254	1.8066
1.5	5	RPT[18]	11.682	7.8299	6.0799	4.6637	3.6176	3.1718	2.841	2.36	
		Present	11.682	7.8298	6.0799	4.6637	3.6175	3.1718	2.8510	2.3599	2.1519
	10	RPT[18]	14.6084	9.5685	7.3793	5.7279	4.7124	4.2384	3.7657	2.9959	
		Present	14.6084	9.5685	7.3793	5.7278	4.7124	4.2384	3.7657	2.9959	2.6910
	20	RPT[18]	15.5887	10.1332	7.7977	6.0761	5.1006	4.63	4.0961	3.2135	
		Present	15.5887	10.1332	7.7976	6.0761	5.1006	4.6299	4.0961	3.2134	2.8716
	50	RPT[18]	15.8876	10.3036	7.9236	6.1815	5.2212	4.7531	4.1995	3.2803	
		Present	15.8876	10.3036	7.9236	6.1815	5.2212	4.7531	4.1994	3.2802	2.9266
	100	RPT[18]	15.9312	10.3284	7.9419	6.1969	5.2389	4.7712	4.2147	3.29	
		Present	15.9312	10.3284	7.9419	6.1968	5.2389	4.7712	4.2146	3.2900	2.9347

Table 3. Non-dimensional critical buckling load of simply supported FG plate under biaxial compression

Fig. 4. The effect of power-law index, *n*, on the buckling load of simply supported square plate (*a=b=10h*) under various loading conditions.

decreasing the power law index under any type of loading. The convergence of the bubble finite strip method (BFSM) in comparison with the ordinary finite strip method (OFSM) is shown in Figure 5. BFSM converges very rapidly due to using the bubble functions. It can be seen that the results obtained from the BFSM with two strips are equal to those obtained from the OFSM using six strips. Therefore, it could be concluded that the degrees of freedom remarkably reduces due to using the bubble functions.

Figure 6 indicates the output sample of the developed computer program in the MATLAB environment for FG plate analysis in an especial case that a/h = 5, power low index, n = 0, and the number of strips equals to 3. The plate is square and simply supported.

//	/1		n										
a/b		Method	0	0.5	1	2	5	10	20	100	inf		
0.5	5	RPT[18]	8.9604	5.898	4.5551	3.5268	2.8646	2.5617	2.282	1.8316			
		Present	8.9605	5.8981	4.5552	3.5268	2.8646	2.5617	2.2820	1.8316	1.6506		
	10	RPT[18]	9.8738	6.4275	4.9481	3.8529	3.2219	2.9195	2.585	2.0334			
		Present	9.8739	6.4276	4.9482	3.8529	3.2220	2.9195	2.5850	2.0334	1.8188		
	20	RPT[18]	10.132	6.5753	5.0574	3.9442	3.3259	3.0253	2.6739	2.0911			
		Present	10.132	6.5754	5.0574	3.9442	3.3259	3.0253	2.6739	2.0911	1.8665		
	50	RPT[18]	10.207	6.6179	5.0888	3.9706	3.3562	3.0564	2.7	2.1079			
		Present	10.207	6.6180	5.0889	3.9706	3.3563	3.0564	2.7000	2.1079	1.8803		
	100	RPT[18]	10.218	6.6241	5.0934	3.9744	3.3606	3.0609	2.7037	2.1103			
		Present	10.218	6.6241	5.0934	3.9744	3.3606	3.0609	2.7037	2.1103	1.8823		
1	5	RPT[18]	26.2058	17.7704	13.8486	10.5589	7.959	6.897	6.232	5.2556			
		Present	26.2111	17.7742	13.8516	10.5611	7.9605	6.8982	6.2332	5.2566	4.8283		
	10	RPT[18]	35.8416	23.592	18.2206	14.1073	11.4583	10.2468	9.1281	7.3263			
		Present	35.8518	23.5988	18.2258	14.1113	11.4614	10.2496	9.1306	7.3284	6.6042		
	20	RPT[18]	39.4951	25.71	19.7925	15.4115	12.8878	11.6779	10.34	8.1336			
		Present	39.5074	25.7181	19.7987	15.4163	12.8917	11.6814	10.3431	8.1361	7.2776		
	50	RPT[18]	40.6574	26.374	20.2833	15.8219	13.3554	12.1543	10.7401	8.3931			
		Present	40.6705	26.3825	20.2898	15.8269	13.3596	12.1581	10.7435	8.3957	7.4919		
	100	RPT[18]	40.8291	26.4717	20.3554	15.8823	13.425	12.2256	10.7998	8.4315			
		Present	40.8423	26.4802	20.3620	15.8874	13.4293	12.2295	10.8033	8.4342	7.5235		
1.5	5	RPT[18]	29.0249	20.1105	15.7823	11.9009	8.525	7.2422	6.6008	5.7477			
		Present	30.3731	20.3576	15.8078	12.1256	9.4057	8.24681	7.4127	6.1359	5.5950		
	10	RPT[18]	37.9819	24.8781	19.1863	14.8925	12.2523	11.0199	9.7909	7.7894			
		Present	37.9820	24.8782	19.1863	14.8925	12.2523	11.0198	9.7909	7.7894	6.9966		
	20	RPT[18]	40.5307	26.3463	20.274	15.798	13.2616	12.0379	10.65	8.3551			
		Present	40.5308	26.3463	20.2740	15.798	13.2616	12.0379	10.6500	8.3550	7.4662		
	50	RPT[18]	41.3076	26.7894	20.6013	16.0719	13.5752	12.358	10.9186	8.5287			
		Present	41.3077	26.7894	20.6013	16.0719	13.5752	12.3580	10.9186	8.5287	7.6093		
	100	RPT[18]	41.4211	26.8539	20.6489	16.1118	13.6212	12.4052	10.9581	8.5541			
		Present	41.4212	26.8539	20.6490	16.1118	13.6212	12.4052	10.9581	8.5541	7.6302		

 Table 4. Non-dimensional critical buckling load of simply supported FG plate under biaxial compression (along x-axis) and tension (along y-axis)

 Pate Analysis
 Image: Strate Control of State
 Image: Strate Control of State
 Image: Strate Control of State

 Material Boosting - Them Microard Boosting - Them Microard Boosting - Them Microard Boosting - Them Microard - Them M

Fig. 6. Output sample of computer program for FG plate analysis

Fig. 5. Convergence rate of BFSM in comparison with OFSM.

- /1-			Boundary Conditions											
<i>a/n</i>	n	SSSS	SCSC	SSSC	SCSG	SCSF	CCCC	CCCS	CFCF	SFSF	CGCG			
5	0	16.0211	22.2749	17.9172	18.7989	9.7060	28.3686	24.8541	13.9770	8.6839	23.4881			
	0.5	10.6254	15.0734	11.9885	12.6381	6.4308	19.6424	16.9902	9.3700	5.7252	16.0147			
	1	8.2245	11.7394	9.3042	9.8219	4.9762	15.4114	13.2733	7.2763	4.4237	12.5019			
	5	5.0531	6.78362	5.5617	5.7867	3.0661	8.3398	7.4445	4.3265	2.7675	7.0710			
10	0	18.5786	29.6189	22.0175	23.7899	11.1606	43.4076	35.7661	17.4838	9.6567	33.5882			
	0.5	12.1230	19.4544	14.4051	15.5811	7.2789	28.6964	23.5875	11.4514	6.2883	22.1671			
	1	9.3391	15.0156	11.1057	12.0159	5.6066	22.1907	18.2270	8.8313	4.8414	17.1333			
	5	6.0353	9.5051	7.1170	7.6739	3.6288	13.7633	11.3912	5.6403	3.1490	10.6869			
20	0	19.3529	32.1606	23.3183	25.3402	11.5878	49.0863	39.8323	18.6505	9.9296	37.6682			
	0.5	12.5668	20.9209	15.1524	16.4695	7.5234	31.9868	25.9391	12.1232	6.4442	24.5406			
	1	9.6675	16.1024	11.6589	12.6730	5.7874	24.6319	19.9710	9.3290	4.9566	18.8966			
	5	6.3448	10.5082	7.6346	8.2935	3.8001	15.9858	12.9884	6.1026	3.2588	12.2729			
50	0	19.5815	32.9443	23.7082	25.7960	11.7127	50.8880	41.1029	19.0054	10.0084	38.9972			
	0.5	12.6971	21.3680	15.3747	16.7290	7.5946	33.0159	26.6644	12.3255	6.4890	25.3005			
	1	9.7637	16.4328	11.8231	12.8647	5.8400	25.3925	20.5069	9.4784	4.9898	19.4584			
	5	6.4373	10.8242	7.7922	8.4780	3.8506	16.7107	13.5003	6.2459	3.2907	12.8066			

 Table 5. Non-dimensional uniaxial buckling load of square FG plate with different boundary conditions and width to thickness ratios, a/h, and various power-law index, n.

7- Conclusion

In this study, the two-variable refined plate theory, in conjunction with the bubble finite strip method is employed for the first time to study the buckling of functionally graded rectangular plates. To decouple governing equations, the equations are written based on neutral surface. In comparison with other shear deformation plate theories, the two-variable refined plate theory uses a lower number of unknowns and therefore decreases the degrees of freedom of the system. Moreover, using the bubble functions in the interpolation of the displacement field increases the efficiency and convergence of the finite strip method. In conclusion, the proposed method is a simple, efficient, accurate and economical method to analyze the buckling of FG rectangular plates.

References

- H.T. Thai, S.E. Kim, A review of theories for the modeling and analysis of functionally graded plates and shells, *Composite Structures*, 128 (2015) 70-86.
- [2] E. Reissner, The effect of transverse shear deformation on the bending of elastic plates, *J. appl. Mech.*, (1945) 69-77.
- [3] R.D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, *J. appl. Mech.*, 18 (1951) 31-38.
- [4] B. Shariat, M. Eslami, Buckling of functionally graded plates under in plane compressive loading based on the first order plate theory, in: *Proceeding of the Fifth International Conference on Composite Science and Technology*. Sharjah, UAE, 2005.
- [5] M. Mohammadi, A. Saidi, E. Jomehzadeh, A novel analytical approach for the buckling analysis of moderately thick functionally graded rectangular plates with two simply-supported opposite edges, Proceedings

of the Institution of Mechanical Engineers, Part C: *Journal of Mechanical Engineering Science*, 224(9) (2010) 1831-1841.

- [6] J. Reddy, D. Robbins, Theories and computational models for composite laminates, *Applied mechanics reviews*, 47(6) (1994) 147-169.
- [7] B.S. Shariat, M. Eslami, Buckling of thick functionally graded plates under mechanical and thermal loads, *Composite Structures*, 78(3) (2007) 433-439.
- [8] M. Najafizadeh, H. Heydari, Higher-Order Theory For Bucklng of Functionally Graded Circular Plates, AIAA journal, 45(6) (2007) 1153-1160.
- [9] M. Bodaghi, A. Saidi, Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory, *Applied Mathematical Modelling*, 34(11) (2010) 3659-3673.
- [10] M. Najafizadeh, H. Heydari, An exact solution for buckling of functionally graded circular plates based on higher order shear deformation plate theory under uniform radial compression, *International Journal of Mechanical Sciences*, 50(3) (2008) 603-612.
- [11] T. Kant, A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches, *Composite Structures*, 23(4) (1993) 293-312.
- [12] R.P. Shimpi, Refined plate theory and its variants, *AIAA journal*, 40(1) (2002) 137-146.
- [13] M.S. Ahmed Houari, S. Benyoucef, I. Mechab, A. Tounsi, E.A. Adda Bedia, Two-variable refined plate theory for thermoelastic bending analysis of functionally graded sandwich plates, *Journal of Thermal Stresses*, 34(4) (2011) 315-334.

- [14] S. Mirzaei, M. Azhari, H.A.R. Bondarabady, On the use of finite strip method for buckling analysis of moderately thick plate by refined plate theory and using new types of functions, *Latin American Journal of Solids and Structures*, 12(3) (2015) 561-582.
- [15] K. Swaminathan, D. Sangeetha, Thermal analysis of FGM plates–A critical review of various modeling techniques and solution methods, *Composite Structures*, 160 (2017) 43-60.
- [16] D.-G. Zhang, Y.-H. Zhou, A theoretical analysis of

FGM thin plates based on physical neutral surface, *Computational Materials Science*, 44(2) (2008) 716-720.

- [17] S. Sarrami-Foroushani, M. Azhari, Nonlocal buckling and vibration analysis of thick rectangular nanoplates using finite strip method based on refined plate theory, *Acta Mechanica*, 227(3) (2016) 721-742.
- [18] H.-T. Thai, D.-H. Choi, An efficient and simple refined theory for buckling analysis of functionally graded plates, *Applied Mathematical Modelling*, 36(3) (2012) 1008-1022.

Please cite this article using:

Omid Kianian, Saeid Sarrami-Foroushani, Mojtaba Azhari, Buckling Analysis of Functionally Graded Plates Based

on Two-Variable Refined Plate Theory Using the Bubble Finite Strip Method, AUTJ. Civil Eng., 1(2) (2017) 145-152

DOI: 10.22060/ceej.2017.12358.5184