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Two Dimensional Stress and Displacement Wave Propagation Under Shock Loading 
in Saturated Porous Materials with Two Dimensional Functionally Graded Materails 
Using MLPG Method
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ABSTRACT: The meshless local Petrov-Galerkin (MLPG) method is employed for dynamic analysis 
of fully saturated porous materials under shock loading considering two directional functionally grading 
patterns in constitutive mechanical properties. To approximate the trial functions in the radial point 
interpolation method (RPIM), the radial basis functions (RBFs) are utilized. The mechanical properties 
are simulated using a non-linear grading model with the radial and axial exponent. The 2D propagation 
of displacement and stresses are tracked through radial and axial direction in a two dimensional domain 
for various grading patterns at different time instants. By employing the presented meshless technique, 
the effects of various grading patterns on maximum values of stresses and displacements are studied 
in detail. The variation in the value of radial exponent has a significant effect on the dynamic behavior 
of radial displacement and radial stress comparing to the variation in the value of axial exponent. The 
MLPG method has a high capability to track the stress and displacement wave fronts at every arbitrary 
time instant in 2D domain.
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1- Introduction
The earliest theory to consider the porosity of materials was 
developed by Terzaghi [1]. Based on the work of Terzaghi, 
a general theory of saturated anisotropic porous material 
was presented by Biot in 1941 [2]. In materials engineering, 
environmental geomechanics, biomechanics, soil structure 
interaction and geomechanics porous materials play an 
important role [3, 4]. Schanz and Cheng presented a transient 
wave propagation of a finite one-dimensional anisotropic 
poroelastic column with different types of boundary conditions 
[5]. A state of the art overview of the analytical solutions and 
numerical methods in the theory of poroelastodynamics may 
be found in Schanz’s review paper [4].
The meshless method was well implied to many structural 
problems in recent decades. In this method, the scattered 
nodes with regular or irregular distributions are used to 
discrete the field functions in local sub-domains [6]. Because 
of using the nodes rather than the elements, the application of 
the meshless method in some problems for porous materials 
yields more accurate results. 
A cylindrical borehole drilled in a porous material and 
stability of borehole is one of the major problems in many 
branches of engineering such as petroleum geology and 
wastewater treatment. The mechanical parameters of the 
excavation disturbed zone (EDZ) are normally reduced 
from its original value before excavation. This variation is 
modeled with the functionally graded material (FGMs).

Kwon et al. and Lai et al. showed that the inflow in the EDZ 
is larger than that of the undisturbed zone [7, 8]. Poroelastic 
solution for borehole and cylinder with the linear variation of 
the shear modulus and permeability coefficient in the EDZ is 
presented by Kaewjuea [9]. Sladek et al. presented a dynamic 
behavior of FGMs using a meshless local Petrov-Galerkin 
(MLPG) method [10]. Moussavinezhad et al. developed the 
MLPG method for two dimensional dynamic stress analyses 
in 2D-FG cylinders [11]. Chen et al. applied the meshless 
local natural neighbor interpolation method to solve linear 
dynamic problems of FGMs in continuously heterogeneous 
and linear viscoelastic media [12]. The MLPG method was 
developed for axisymmetric problems in continuously non-
homogeneous saturated porous media by Sladek et al. [13]. 
They also investigated the effect of materials with variable 
stiffness and permeability on displacements stresses and pore 
pressure in porous media in another paper [14]. The effects of 
uncertainty in mechanical properties on thermo-elastic wave 
propagation in FGMs were investigated by Hosseini and 
Shahabian [15, 16]. They also studied the stochastic dynamic 
response, the reliability analysis and safety evaluation of 
a functionally graded thick hollow cylinder, considering 
uncertain material properties subjected to shock loading [17, 
18]. 
In this paper, an MLPG method with heaviside step function 
as the weight function is employed to investigate the effects 
of the material gradation on displacements and stresses wave 
propagation in the porous medium around the borehole. For 

Corresponding author, E-mail: shahabf@um.ac.ir



H. Kazemi et al., AUT J. Civil Eng., 1(2) (2017) 167-176, DOI: 10.22060/ceej.2017.12762.5262

168

this purpose, two dimensional exponential grading patterns 
for the shear modulus, coupling parameters between the 
solid and fluid and permeability are considered in the EDZ. 
To interpolate the fields’ variables in terms of its nodal 
values, the radial point interpolation method (RPIM) with 
radial basis function (RBF) is used. The effects of various 
grading patterns on the dynamic behaviors of displacements 
and stresses are obtained and discussed in detail.  The MLPG 
method showed that it is a very effective method with a high 
accuracy for stress and displacement propagation analysis 
of saturated porous materials with one and two directional 
grading patterns.

2- Local boundary integral equations
A saturated porous medium is a medium made up of a skeleton 
particle and fluid particle. As  can be seen in Figure 1, the 
skeleton particle consists both of a solid part and occluded 
porosity [19].

The porosity φ is the ratio of the interconnected pores Vf to 
the total volume V. It is assumed that leading to V = Vf + Vs 
with   VS the volume of the skeleton particle.

fV
V

ϕ = (1)

In the present paper, the governing equation for porous 
materials is written based on the solid displacement us and 
the fluid displacement uf. In the literature, this form is called  
u-u formulation [4].
For an axisymmetric problem in the cylindrical coordinate 
system, the axis of symmetry is identical with the z-axis. In 
this problem the non-zero strains are given as [13]:
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A comma after a quantity is used for partial derivations of the 
quantity and the dot shows the partial derivatives of variables 
with respect to the time. The stresses in the cylindrical 
coordinate system are given as [13]:
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where K denotes the bulk modulus, G is shear modulus; Q 
and R are coupling parameters between the solid and fluid 
and δij is the Kronecker delta function.
The governing equations for porous media based on the 
balance of momentum for total stresses and for the fluid with 
vanishing body forces in the cylindrical coordinate system 
are given as [14]:
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Assuming summation for repeated subscript b∈{r , z}.Where 
φ , ρs , ρf , κ , τ denote the porosity, solid mass densities, fluid 
mass densities, the permeability and time, respectively. The 
symbol ρA denotes the apparent mass density that describes 
the dynamic interaction between the fluid and the skeleton 
[4].
By using the weight function Wi in local subdomains ΩQ, 
the local weak-form of Equations 7 to 9 can be obtained as 
follows.
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Fig. 1. The porous medium seen as the superposition of two 
continuous media [19]
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In axisymmetric problems, the 3D local subdomain can be 
converted to the 2D domain by using the Equation 13-16.

2Qd r d qπΩ = Ω (13)
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By applying the Gauss divergence theorem to the last 
equations, derivation of stresses will be converted to the 
derivation of weight function. Since the heaviside step 
function is used as the weight function in this paper, the 
derivation of weight functions vanishes in the following 
equations.
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where Γq is the boundary of the local subdomain Ωq. This 
boundary generally can be composed of three parts Γqi, Γqu,  
Γqt  (Figure 2). Γqi is the internal boundary which is located 
entirely in the problem domain. Γqu and Γqt are the boundaries 
which are located on the boundary of problem domain with 
essential and natural boundary conditions, respectively       
(Γq= Γqi ∪ Γqu ∪ Γqt). Thus, Equations 17 to 20 can be rewritten 
as follows:
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Equations 21 to 24 can be summarized in the following 
matrix form:

(25)

By using the stress-strain and strain-displacement, one can 
write the stresses with respect to the displacement. The mass 
and damping matrices are defined as:
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The partial differential Equation 25 can be solved using the 
Newmark finite difference method in the time domain.

3- Discretization method
The radial point interpolation method (RPIM) is employed 
to construct the shape functions. In this method, an arbitrary 
function u(x) in local support domain of point xQ can be 
approximated with respect to its nodal values located in 
support domain, using the radial basis function [R(r)]. To 
this end, the approximated function uh(x) can be written as 
follows.

[ ] { }( ) ( ) ( )Th
Qu x R r a x= (28)

where, {a(xQ)} is the coefficient vector. There are some 
radial basis functions commonly used in the articles such as 
multiquadric, Gaussian, exponential and logarithmic [20]. 
In this paper, the radial basis function (RBF) is used in the 
following function.

2 2( ) ( )q
i iR r r c= + (29)

where, c and q are the constant positive values which are 
experimentally determined to be 0.5 and 1.03, respectively 
[6]. ri is the distance between the sampling point x and xi.By 
applying Equation 28 to all nodes located in the support 
domain, the coefficient vector will be calculated.
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in which n is the number of nodes located in the support 
domain. The coefficient vector {a(xQ)} can be derived from 
Equation 30.
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By inserting  Equation 32 into Equation 28, the approximation 
function in terms of nodal value is further simplified to:
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4- Verification
In the first example, a finite length cylinder with the fully-
saturated porous material, which was used by Sladek et al. is 
considered to verify the presented method and results [14]. 
The radius of the cylinder and its height is  considered one 
meter. The lateral sides and the bottom surface of the cylinder 
are impermeable and restrained in the normal direction. At 
the top surface, the stress with the following time variation 
is prescribed.
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where, P0= -104 Pa.
The degrees of freedom for this case are the displacement of 
solid and fluid which are denoted by us and uf, respectively 
[14]. Due to symmetric conditions and using cylindrical 
coordinate, the problem is converted to the 1-d problem 
which can be analytically solved. The analytical solution 
for 1-d poroelastic column in the Laplace transform domain 
is presented by Schanz and Cheng [5]. In this problem, the 
domain is made of a special case of the porous material called 
Berea sandstone material. The poroelastic constants of such 
material are defined as [21]:
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Fig. 2. The boundary of local subdomain in the MLPG method 
[6]
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To verify the accuracy of the presented method, the time history 
of vertical displacement on the top surface is compared to the 
analytical results in Figure 3. A good agreement between the 
presented method and analytical result is achieved.

5- Results and discussion
In a real porous, the material properties are inhomogeneous. In 
the next example to investigate the effect of inhomogeneous 
on dynamic response, a cylindrical borehole drilled in a 
porous is considered in Figure 4. In this Figure, ri  is  the inner 
radius, ro is the outer radius and L is the length of the borehole 
which are considered to be 1, 2 and 1 meter, respectively.

The mechanical parameters of the excavation disturbed 
zone are normally reduced from its original value before 
excavation. One can model this variation with the functionally 
graded material (FGMs). For this purpose, two dimensional 
exponential grading patterns are considered in the excavation 
disturbed zone. In this paper the shear modulus, coupling 
parameters between the solid and fluid and permeability are 
varied functionally in radial and axial directions which are 
modeled by nonlinear exponential functions as follows:
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where G0, Q0, κ0 denote the original values before excavation 
which are considered to be  the same in Equation 35. The 
parameters Nr and Nz are non-negative constants representing 
the gradation of disturbance due to the drilling process 
in radial and axial direction, respectively. By using these 
functions, the material properties of porous lead to the 
original values before excavation at large distance from the 
borehole. As  can be seen in Figure 4, for this axisymmetric 
problem, it is sufficient to analyze only a symmetric part. 
Normal displacement of outer boundaries is restricted and 
impermeable boundary conditions are assumed on outer 
boundaries and borehole surface is drained. The assumed 
porous borehole cylinder is considered to be under shock 
radial loading on a third of the height at the inner radius, 
which can be defined as follows:

0 0.001s and / 3
( , )

0 0.001s / 3
P t for t z L

p z t
for t or z L

≤ ≤
=  > >

(39)

where, P0= 1 GPa/s. Figure 5 shows time histories of radial 
displacement at node 1 ( z = 0 m and r = 1 m in Figure 4) for 
various values Nr and Nz, in which both values are considered 
to be the same. The maximum values of radial displacement 
at same node for different values Nr and Nz are calculated 
and shown in Table 1. It is concluded when the axial and 
radial exponents are increased, the period of free vibration 
is increased up to 14% and the maximum values of radial 
displacement are increased up to 58%. The value of radial 
exponent (Nr) has more effect on the dynamic behavior of 
radial displacement comparing to the axial exponent (Nz). 
By considering the shock radial loading, this result seems 
reasonable. In Figure 6 the effect of radial exponent and axial 
exponent are compared at the same node. In this figure, the 
rate of increase in maximum radial displacement for different 
values of exponent than homogenous porous material is 
shown.

The 2D wave propagation of radial displacement at different 
time instants in 2D domain is shown in Figure 7. The wave 
fronts of radial displacement can be tracked for various 
values of 2D volume exponents. As can be seen in these 
figures, the grading pattern has a significant effect on wave 
propagation so that by increasing the value of the exponent, 
the wave propagation speed is decreased but the values of 
radial displacement contours are increased.
The maximum values of radial stress at the center of the 

Fig. 3. The vertical displacement time history on the top 
surface for Berea sandstone compared to analytical results.

Fig. 4. A cylindrical borehole with the fully saturated porous 
material under shock loading.

ur(m)
Nr

0 0.3 0.6

Nz

0 3.788e-5 4.564e-5 5.432e-5
0.3 4.061e-5 4.847e-5 5.735e-5
0.6 4.315e-5 5.116e-5 6.017e-5

Table 1. The maximum of radial displacement at node 1 (z = 0 
m and r = 1 m in Figure 4) in various factors of fgm
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domain (z = 0.5 m and r = 1.5 m in Figure 4) for different 
values Nr and Nz are calculated and shown in Table 2. It 
is concluded when the radial exponent is increased, the 
maximum values of radial stress are increased up to 12%. The 
variation in the value of axial exponent (Nz) has a negligible 
effect on the dynamic behavior of radial stress.

Fig. 5. The radial displacement time histories at node 1 (z = 0 m 
and r = 1 m in Figure 4) for various 2D-FGM

Fig. 6. The rate of increasing in  maximum radial displacement 
for different values of exponent than homogenous porous 

material

σrr(m)
Nr

0 0.3 0.6

Nz

0 4.33e+5 4.61e+5 4.88e+5
0.3 4.34e+5 4.62e+5 4.89e+5
0.6 4.35e+5 4.63e+5 4.89e+5

Table 2. The maximum of radial stress at the center of domain 
(z = 0.5 m and r = 1.5 m in Figure 4) in various factor of fgm

A) t = 0.0002 sec

A) t = 0.0003 sec

A) t = 0.0004 sec

B) t = 0.0002 sec

B) t = 0.0003 sec
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The values of radial displacement of two different nodes in 
various factors of FGM at two times are calculated in Table 
3. Accordingly, when the radial and axial exponents are 
increased, the percentage of difference of radial displacement 
between the two points is increased. It should be noted that 
the difference in displacement will decrease, as time passes 
and the wave front reaches all the points of the domain.

Figure 8 depicts the distributions of radial stress in the 
homogenous porous material along r direction at the various 
time instants for z = 0. It is evident that the stress wave 
propagates with finite speed through r direction. The velocity 
of stress wave propagation is dependent on the assumed 
mechanical properties of the porous field. In this figure, 
the radial stress wave front can be tracked at various time 
instants. Also, the wave fronts of radial stress can be observed 
in three dimensional graphs for homogenous porous material 
at different time instants in Figure 9.

6- Conclusions
A meshless technique based on the MLPG method with 
heaviside step function as the weight function is employed 
to investigate the effects of the material gradation on 
displacements and stresses wave propagation in the porous 
medium around the borehole, which is subjected to the shock 
loading. For this purpose, two dimensional exponential 
grading patterns for the shear modulus, coupling parameters 
between the solid and fluid and permeability are considered 
in the excavation disturbed zone. To interpolate the fields’ 
variables in terms of its nodal values, the radial point 
interpolation method (RPIM) with radial basis function 
(RBF) is used. The main results of the presented research can 
be summarized as follows:
• The MLPG method shows that it is a very effective 

method with a high accuracy for stress and displacement 

B) t = 0.0004 sec

C) t = 0.0002 sec

C) t = 0.0003 sec

C) t = 0.0004 sec
Fig. 7. The radial displacement time histories at node 1 for 

various 2D-FGM two dimensional radial displacement wave 
propagation for A) Nr = 0, Nz = 0, B) Nr = 0.3, Nz = 0.3,

C) Nr = 0.6, Nz = 0.6 at various times

ur ( m ) Nz= Nr
z = 0.5
r = 1

z = 0.5
r = 1.5

The percentage of  
difference of radial 

displacement

t=0.0003
0 2.85e-6 5.13e-7 82

0.3 3.40e-6 4.18e-7 87
0.6 3.93e-6 3.25e-7 92

t=0.0005
0 7.67e-6 2.85e-6 62

0.3 9.22e-6 2.88e-6 68
0.6 1.08e-5 2.90e-6 73

Table 3. The percentage of difference of radial displacement at 
two points in various factors of fgm in two different time

Fig. 8. The distributions of radial stress along radial direction 
at the various time instants
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propagation analysis of saturated porous materials with 
one and two directional grading patterns.

• The effects of various grading patterns on the dynamic 
behaviors of displacements and stresses are obtained and 
discussed in detail. 

• The variation in the value of radial exponent (Nr) has more 
effect on the dynamic behavior of radial displacement 
and radial stress compared  to the variation in the value 
of axial exponent (Nz). 

• By increasing the value of the exponent, the wave 
propagation speed is decreased but the values of radial 
displacement contours are increased.

• The stresses and displacements wave fronts are tracked 
in two dimensional domains for various grading patterns 
at different periods of time.
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