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ABSTRACT: This paper proposes a combined model for landslide susceptibility, hazard and risk 
assessment based on a spatial prediction method and the fuzzy sets theory using geographical information 
systems (GIS). To evaluate landslide susceptibility and hazard in the study area in the northwest of Iran, 
the first step was the construction of a database, which includes three different data groups namely 
conditioning and triggering factors and the landslide inventory data. A landslide susceptibility model 
was constructed by using favorability function method and conditioning data including lithology, land 
use/land cover, elevation, slope aspect, slope gradient, slope curvature, distance to fault lines, distance to 
drainage network, distance to roads and distance to settlement. The selected landslides were of moderate 
to high intensity, which had occurred or reactivated at least once over the last 55 years. Landslide 
susceptibility map (LSM) transformed into landslide hazard map (LHM) by using the regional seismic 
and precipitation data, which are the two main factors in triggering landslides. Desirably, the accuracy 
of susceptibility and hazard models were determined 84.9% and 84.8%, respectively, by using the 
receiver operating characteristic (ROC) curve method. Layers of the landslide hazard potential (LHP) 
and resource damage potential (RDP), which characterized by landslide hazard levels and land use/
land cover map of the area, were integrated based on the fuzzy algebraic product operator in order to 
determine the risk level due to landslides. Lastly yet most importantly, the results of the study integrated 
in the risk prevention and land use planning.
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1- Introduction
  Landslides are globally widespread phenomena that 
frequently lead to loss of human life and property, as well as 
causing serious damage to natural resources [1-3]. Experts 
believe that about one quarter of the natural disasters in the 
world seems to be directly or indirectly related to landslides 
[4]. In Iran, landslides occur mostly along the two mountain 
ranges of Alborz and Zagros [5]; the annual direct loss caused 
by landslide has been estimated at 17 million dollars (in 
current value) [6]. The region in the south of Ardabil province 
in western part of Alborz mountain range and in the northwest 
of Iran has witnessed the occurrence of new landslides or 
re-activation of old ones annually [7]. Landslides cause 
significant damages to natural ecosystems and human-built-
infrastructures in the south of Ardabil province. 
   Prior to this study done the region received very little 
attention by researchers. There were only a few landslide 
investigations to be found in earlier literature, but nothing 
of a comprehensive picture of any part of the region [8, 9]. 
In subsequent studies carried out in parts of the region, the 
causative factors in the landslide occurrence of the area is 
investigated and LSM was prepared using qualitative and 
quantitative methods. However, the fitness and accuracy of 
models have not been evaluated [10-13]. Presentation of 

any plan in order to mitigate losses and damage primarily 
requires landslide hazard and risk assessment in a region that 
is susceptible to landslides [14]. Landslide susceptibility, 
hazard and risk evaluation have become an essential tool in 
risk management as an integral part of land use planning and 
managing in disaster prone areas [15, 16].
     Over the past 30 years, many papers related to the landslide 
susceptibility assessment (LSA) have been published [17, 
18]. However, landslide hazard and risk evaluation are not 
a frequent topic in recent landslide literature [19, 20]. This 
might be due to the inherent difficulty of determining the 
landslide risk, lack of initiative and general models for risk 
assessment and multi-disciplinary nature of landslides risk 
analysis. Landslide risk can generally defined as “possible 
loss of life and property imposed by landslides that may 
occur to humans and their valuable objects” [21]. Landslides 
risk evaluation done in both basin scale [22-24] and site 
scale [25, 26]. The methods used to landslide risk assessment 
(LRA) can typically be labeled as being either a qualitative 
[27, 28] or quantitative procedures [29-31]. Apart from these 
two methods, semi-quantitative methods of LRA suggested 
based on fuzzy set theory as well [32]. A semi-quantitative 
landslide-risk assessment method, which would provide an 
evaluation of future landslide risks in a mountainous area 
in NW-Iran, was presented in this study. First step in every 
methods used in landslide hazard and risk assessment should Corresponding author, E-mail: r.talaei@areeo.ac.ir
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be the landslide susceptibility evaluation, which can be used to 
develop hazard map. Different methods used so far to evaluate 
the landslide susceptibility or hazard [33-37]. Although the 
algorithms for LSA, LHA and LRA are able to be defined 
entirely, they involve highly complex processes during 
the application stage [38-44]. Uncertainties in calculation 
of landslide susceptibility probability, transformation of 
landslide susceptibility rate to hazard prediction map and 
determination of vulnerability for resources at risk constitute 
the main limitations for landslide hazard and risk studies 
[45, 46]. In addition, the study area is a data-scarce region, 
and development of methods for landslide hazard and risk 
evaluation have always been a challenge in the region. 
However, there are very limitations in this study; the aim 
of the paper is to propose a combined model for landslide 
susceptibility, hazard and risk assessment, which makes 
it possible to zoom in on the high-risk areas. The present 
landslide susceptibility study is a unique endeavor in the region 
where favorability function analysis has been used for LSA 
and has been validate using receiver operating characteristic 
(ROC) curve analysis. High quality data and determination 
of suitable factors for landslide analysis of the region have 
crucial importance. Due to the difficulty in obtaining data 
sets and landslide inventory maps, the development of a 
combined new model for landslide susceptibility, hazard and 
risk assessment, including the use of statistical models and 
Fuzzy Set theory, have always been impeded in study region. 
   The main objectives of this study were: 1) to develop a 
landslide susceptibility assessment model for prediction 
zones prone to landsliding using favorability function, 2) to 
assess landslide hazard at the regional scale for the landslides 
with moderate and high intensity, which have occurred or 
reactivated at least once over the past 55 years in the region 
and 3) to semi-quantitative analysis of landslide risk for 
hazard scenario, assessing direct costs. For this purpose, 
landslide inventory map has been prepared in order to provide 
the data layer that is related to spatial and temporal landslide 
data. The probabilistic susceptibility model constructed by 
using the favorability function method and conditioning data. 
The susceptibility map transformed into landslide hazard 
model using triggering factors. The landslide susceptibility 
and hazard analysis results were validated using statistical 
methods: Receiver Operating Characteristics (ROC) method. 
Finally, the risk zonation map of landslide was prepared by 
using fuzzy algebraic product operator, based on two LHP 
and RDP maps. 

2- Study Area
     The study area is located in northwest of Iran and southern 
part of the Ardebil province (Figure 1). It covers an area of 
1645.84 km2. This area is one of the most exposed region 
to mass movements; while more than over 9.52% of area 
is potentially unstable [7, 13]. The study area subjected to 
many factors favoring the occurrence of landslides. About 
175 landslides were mapped in the region covering 156 
km2. Landslides of the region classified as translational and 
rotational slides and combinations of the two, and landslide 
zones. Currently 103 cases of the landslides (58.9%) are 
active at the region. Interestingly, at least 60% of the studied 
landslides showed signs of activities over the last 55 years. 
Figure 2 shows parts of the study area affected by the 
landslides.

3- Methodology
  The research methodology implemented into six phases: 
landslide inventory and data preparation, analysis of landslide 
causative factors, landslide susceptibility modelling, 
the data integration and preparation of landslide hazard 
map, the accuracy assessment of the models and landslide 
risk assessment. The methodological approaches shown 
schematically in Figure 3.
 
3- 1- Landslide inventory and input data preparation 
         Landslide inventory map is a preliminary step towards 
landslide susceptibility, hazard and risk assessment [47-49]. 
The present study began with the preparation of a detailed 
and reliable landslide inventory map based on interpretation 
of aerial photographs (scales: 1:20000 (1970), 1:40000 
(2005) and 1:55000 (1957), by National Cartographic Center 
and National Geography Organization of Iran), field surveys, 
historical documents, and archived data for 1995 through 
2016 years. The landslide inventory map was used to produce 

Figure 1. Location of the study area and spatial distribution of 
landslides [7]

(a) (b)

(c) (d)

Figure 2. Field view of four landslides with in the study area 
[Author]: a) rotational landslides; b) translational-rotational 

combination; c) translational slide; d) earth flow
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the dependent variable, which was coded as “1” or “0” to 
indicate the presence and absence of landslide, respectively. 
Spatial database preparation is the important point for the 
landslide probability estimation [50]. The identification and 
mapping of a pertinent set of factors related to landslide 
involve previous information of their main causes [51]. 
Causative factors of landslides in the past can be considered 
as the most important factors in landslide occurrence in the 
future [52], so in the next phase of the study, thematic data 
layers pertinent to conditioning and triggering factors were 
prepared (Figure 4). 

3- 2-  Conditioning factors
    During the research, databases were prepared for geological 
map and field observations. The geological mapping data and 
landslide inventory data have been stored in Arc-GIS geo-
database format and the results of field studies in MS-Excel 
and Spss-22 tables. After collecting geological data such as 
lithology and geological structure from field observation, a 
geology map was prepared at 1:25000 scale. This map contains 
detailed information about the study area itself including the 
spacial relationship that exists between rocks and structures. 
Lithology or rock type and geological structures are the two 
most important factors in landslide occurrences due to their 

impact on rocks and soil resistance and permeability [50, 53, 
54]. The lithology and fault maps were obtained and compiled 
from the 1:25000-scale geological map. Generally, there are 
thirteen group of rock types. The classification of lithology is 
shown in Figure 4a. In addition, proximity to faults is known 
to be an effective factor in landslide occurrence. Major 
and minor fault lines have an indirect impact on landslide 
occurrence through increased permeability as the result of 
rock crushing and expansion of alteration zones. In the study 
area, the closer to the fault with a weak plane, the larger is 
the number of landslides. Fault line buffer map is prepared 
from the geological map (Figure 4b). The land cover/land use 
map was produced in detail because it has been recognized 
as one of important independent variables to be used in the 
landslide risk analysis [41]. Land use/land cover map used 
in this study was derived from topographic maps (1:25000 
and 1:50000 scales, by National Cartographic Center and 
National Geography Organization of Iran) and satellite 
images of Landsat ETM+-2002 using a hybrid classification 
scheme. This map was revised and completed based on the 
observations made during the field works. The boundaries 
of 16 different types of land use/land cover were digitized 
(Figure 4c). 

Figure 3. Flow chart showing source data and the methods used to landside susceptibility, hazard and risk assessment [Author]
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Figure 4. Landslide conditioning factor maps used for landslide susceptibility analysis [Author]: a) lithology; b) distance to fault 
lines; c) land-use/land cover; d) distance to roads; e) distance to settlement; f) distance to drainage network; g) slope aspect; h) slope 

gradient; i) elevation; j) slope curvature

(a) (b)

(c) (d)

(e)

(h)

(f)

(g)

(i) (j)



R. Talaei, AUT J. Civil Eng., 2(1) (2018) 11-28, DOI: 10.22060/ajce.2018.14235.5465

15

   Landslides may occur on the road and on the side of 
the slopes affected by roads. Landslide risk decreases as 
distance increases away from the road networks. Excavation, 
trenching, and other changes in slope due to road construction 
are usually sites of anthropologically induced slope instability 
[53, 55]. 
  Similar to the effect of road construction, the excavation 
of slopes, mainly for house building, is an important 
destabilizing factor for the study area slopes. For this reason, 
the buffer areas are created on the path of the road as well as 
in villages and the cities to ascertain the effect of the roads 
and residential areas on the landslide occurrence (Figures 4d 
and e). Distance from drainage is another buffer raster, which 
introduces the influence of network of rivers (Figure 4f). 
   Slope angle and aspect have a great influence on the 
susceptibility of a slope to landsliding by controlling the 
amount and direction of runoff flow, vegetation density, 
soil temperature and moisture concentration [50, 53, 56]. 
A Digital Elevation Model (DEM) of the study area was 
prepared based on digital elevation contours with intervals 
of 20 m. Thematic data layers such as slope angle, slope 
aspect, elevation and slope curvature directly derived from 
the DEM. In this study, slope aspect was divided into nine 
classes: North (N), Northwest (NW), West (W), Southwest 
(SW), South (S), Southeast (SE), East (E), Northeast (NE) 
and Flat (Figure 4g). The elevations in the area range between 
850 and 3324 m, and the slope angles range between 0° and 
73° (Figure 4h). Relief data layer divided into fifteen classes 
of 200 m elevation (Figure 4i). The morphology represented 
by the slope curvature. The study area divided into three 
curvature groups: flat (straight (0)), concave (-1) and convex 
(+1) (Figure 4j). 

3- 3- Triggering factors
         In addition to the conditional factors, two triggering factors 
were also taken into account: seismicity and precipitation. 
Landslide triggering factors were used to transform the 
LSM to LHM [44, 46, 57, 58]. To this aim, precipitation 
and seismicity factors are examined (Figure 5). The rainfall 
effects on landslides occurrence of the region have been 
considered as the annual long-term mean precipitation map 
(based on historical rainfall data for area during the time 
period of 1986-2015). To determine the mean annual rainfall 
map-layer, the Equation 1 was used and the isohyet map at 
1:25000 scale was prepared (Figure 5a) [59].

Mean annual rainfall = 471.162- (X × 4.81) + (Y × 
0.002) + (Z × 0.063)         (1)

    In this equation, X=longitude )degree(; Y=latitude )degree( 
and Z=elevation )meter above sea level). 
  Although the indirect impacts of minor and major faults 
on landslide occurrence are mainly through crushing and 
increased permeability of the surrounding rocks, penetration 
of hydrothermal liquid and expansion of the alteration zones; 
their direct impacts through seismic activity in the region 
should not be ignored or underestimated [60]. Seismic hazard 
describes natural phenomena caused by an earthquake that 
have the potential to cause harm such as induced landslide 
[61]. Landslides recorded in North and North-West of Iran 
following the Roodbar earthquake in 1990 is perhaps the best 
indicative of the effect of this phenomenon in occurrence of 

landslides in the study area [62, 63]. To simplify the induction 
of earthquake in landslide process, shear force is considered 
along a discontinuous rupture surface as the only unstable 
factor. For a quasi-static analysis, this force is assumed to be 
arisen from Peak Ground Acceleration (PGA) [64]. In order 
to represent hazard through a hazard map, it is necessary to 
reduce the hazard curve to a single value for each position. 
This is typically done by choosing the intensity value having 
a 10% chance of exceedance in 50 years [20, 65]. Taking into 
account the activity of landslides in the study area during 
the last 55 years, a scenario of future landslide occurrence 
has been adopted for the next 55 years, which compares to 
that verified in the past. Seismic hazard is quantified by two 
parameters: a level of hazard and its recurrence interval or 
frequency: for example, an earthquake with a recurrence 
interval of 500 years, and peak ground acceleration (PGA) 
with a return period of 475 years. 
   Seismic risk, on the other hand, describes a probability 
of occurrence of a specific level of seismic hazard or loss 
over a certain time (e.g., 50 years), and is quantified by 
three parameters: probability, a level of hazard or loss, and 
exposure time. For example, a 5 percent probability that an 
earthquake could be expected in 50 years in an area and a 10 
percent probability that PGA could be exceeded in 50 years 
at a site are both seismic risk [66]. In order to evaluate the 
impact of the earthquake in landslide occurrence, a PGA map 
was reproduced corresponding to a return period of 475 years 
for 10% probability of exceedance over a 50-year return 
period. Based on the produced PGA map, the values obtained 
for study area range between 0.49 and 0.58 (g). The resulting 
map is shown in Figure 5b. 
    All data layers were transformed in raster format with pixel 
size of 50m×50m, therefore the area grid was 708456 rows 
by 12 columns with a total of 8501472 cells. This resolution 
was used for all subsequent processing and analysis for each 
landslide factor and the susceptibility, hazard and risk model. 
In implementing susceptibility model, 75% of the landslide 
pixels have been randomly selected to estimate the occurrence 
probabilities for future landslides and the 25% remaining 
pixels were retained for assessment of model accuracy by 
using ROC curve [42, 67, 68].

(a) (b)
Figure 5. Landslide triggering conditioning factor maps 

[Author]: a) annual long-term average precipitation density 
map and b) Peak Ground Acceleration (PGA) map of study 

area for a return period of 475 years

3- 4- Susceptibility assessment
   A prediction model based on the likelihood ratio as the 
favorability function model were used to determine areas 
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likely to be affected by future landslides. To express this idea 
point c has been considered with m pixel values (c1,…, ci) in 
the region [69, 70]. The study area was divided into two non-
overlapping sub-areas: the portion including landslides M 
and the remaining areas without landslides M ̅. Considering 
that a pixel is from M and M ̅, the related multivariate 
frequency distribution can be depicted as f{c1,…,cm/M} and 
f{c1,…,cm/M ̅}, respectively. The likelihood function, which 
is the ratio of two frequency distribution, can be defined at 
point c as [69, 71]:

λ(c1,…,cm)=(f{c1,…,cm/M})/(f{c1,…,cm/M ̅}) (2)

    At pixel c the categorical and continuous data layers are 
separated and the first k layers and the remaining h layers 
represent categorical data layers and continuous data layers, 
respectively. The following formula f{x1,…,xk, y1,…,yh 
/M} and f{x1,…,xk, y1,…,yh /M ̅} denotes the multivariate 
frequency distribution functions and the k values, x1,…,xk 
, and h values y1,…..,yh represent categorical data layers 
and continuous data layers, respectively. Then, the form of 
likelihood ratio functions denoted in Equation 2 will be as 
follow:

λ(x1,…,xk,y1,…,yh)=(f{x1,…,xk,y1,…,yh/M})/
(f{x1,…,xk,y1,…,yh/M ̅}) (3)

   By considering an individual categorical layer with the 
distribution of occurrences of landslides, each of univariate 
likelihood ratio functions can be estimated:

λ ̌(x:xi )=(number of landslide pixels in xi  category 
of the ith layer )/(number of non- landslide pixels in 
xi  category of the ith layer)

(4)

   linear combination of independent variables [51, 72]. A 
In this study, discriminant analysis is used to estimate the 
likelihood ratio function for continuous data layers λ(y1,…, 
yh) for a pixel with h pixel values (y1,…, yh). The simplest 
way to achieve this is through a discriminant function is a 
latent variable which is created as a linear combination of 
discriminating (independent) variables, such that;

D=a+b1x1+...+bpxp                                                     (5)

  where the b1  through bp are discriminant coefficients, the 
xp are discriminating variables (predictors or conditioning 
factors), and a is a constant. In order to assess functionality 
of control in producing meaningful differences among 
target groups, the eigenvalues and Wilks’ lambda tables are 
provided by discriminate analysis procedure to test how well 
the discriminant model fit the data as a whole. The values 
λ(x1,…,xk, y1,…, yh) were calculated at each pixels employing 
the obtained functions:

λ ̆(x1,…,xk,y1,…,yh )=λ ̆(x1,…,xk ).λ ̆(y1,…,yh ) (6)

    where λ ̆ (x1,…, xk) is an estimate of λ(x1,…, xk) and λ ̆ 
(y1,…, yh) is an estimate of λ(y1,…, yh). A range from 0 to 
∞ shows the values of  λ ̆(x1,…,xk,y1,…,yh ) and the location 
most likely to be affected by future landslides are determined 
by the largest estimated values. The estimated value were 
normalized between a range of 0 to 1; 0 indicating no landslide 
susceptibility, and 1 indicating the highest susceptibility to 
landslides. The susceptibility values obtained in each pixel 

were converted to a raster map by using Arc-GIS software. 
The values of susceptibility were reclassified into five classes 
(very low, low, moderate, high, and very high) by standard 
deviation method. 

3- 5- Hazard modelling
     The procedure started with the development and evaluation 
of a probabilistic susceptibility model, which subsequently 
was transformed into a hazard map. Landslide models 
without landslide information like the return period and 
intensity (volume and speed of mass) of landslides cannot be 
correctly defined as hazard models [20, 51]. The inventory 
maps were used to collect temporal and spatial data on the 
landslides occurred in the region during the years 1960 
through 2015. Velocity and volume of landslides have been 
determined based on landslide inventory map, and this 
information has been employed to estimate the landslides 
intensity in the region (Tables 1 and 2) [73-76]. Landslide 
velocity is often a proxy for landslide type and classified 
accordingly [77]. In large landslides, the excepted creep cases 
are considered of having, at least, moderate intensity [78]. 
The landslides with moderate and high intensity, which have 
occurred or reactivated at least once over the past 55 years 
in the region, were selected for landslide hazard analysis [7, 
79]. The probabilistic susceptibility model was constructed 
by using the favorability function method and conditioning 
data including lithology, land use/land cover, elevation, slope 
aspect, slope gradient, slope curvature, distance to fault lines, 
distance to drainage network, distance to roads and distance 
to settlement. The probability of slope failure is calculated 
based on the data of the independent variables and landslide 
condition of the pixels using the favorability function method. 
The susceptibility map was transformed into landslide hazard 
model using triggering factors that include both seismic and 
precipitation data (Figure 6). 

Figure 6. Flow diagram showing the method used to model 
landslide hazard in this study
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Table 1. Single landslides intensity, in four classes, based on the estimated landslide volume and the expected landslide velocity 
[73-76, modified]

Estimated volume 
(m3) Description

Expected landslide velocity

Very rapid to 
rapid-moving flow

Rapid translational or 
translational-rotation-

al slides

Slow translational 
or translational-
rotational slides

Slow rotational 
slides

>5000 
Small Slight (1)

<50000
> 50000

Medium Medium (2) Medium (2) Slight (1) Slight (1)
<250000
>250000 
<1000000 Medium-large High (3) High (3) Medium (2) Medium (2)

>1000000 
<5000000 Very large Very high (4) High (3) High (3) Medium (2)

>5000000 Extremely large Very high (4) Very high (4) Very high(4) High (3)

Table 2. Ranking of the intensity of landslide zones [73-76, modified]

Types of mass movement zones
Expected landslide velocity

Very slow Slow Rapid Very rapid
Unmappable zones Medium (2) High (3) Very high (4)
Widespread zones Medium (2) High (3) Very high (4)

Creep zones Slight (1) Slight (1)
Widespread and Creep zones Medium (2)

   Transformation of LSM into a hazard model requires 
consideration of landslide triggering factors: mean annual 
precipitation map-layer and seismic data [44, 80, 81]. Next, 
for the creation of a landslide hazard map, the LSM and 
triggering factors were overlaid. For overlaying the LSM and 
the triggering factors, they must be standardized to a common 
dimensionless scale. The following Equation 7 is what should 
be used to implement a unity-based normalization [82]:

m(x1,….,xk,y1,….,yh)
New=(m(x1,….,xk,y1,….,yh)

Old-
Min(m(x1,….,xk,y1,….,yh)))/(Max(m(x1,….,xk,y1,…
.,yh))-Min(m(x1,….,xk,y1,….,yh )))

(7)

   where X(Old) and X(New) mean input and output data, Min(Xi) 
and Max(Xi) are the maximum and minimum of the input 
data, respectively. The m(x1,…,xk, y1,…, yh)New was used 
as favorability function in this study with a range from 0 to 
1. The future location of probable landslides was estimated 
by the pixel with the largest calculated m(x1,…,xk, y1,…, yh)
New near 1. A predictive map showing the relative hazard 
level was produced for the area of study based on each pixels’ 
computed values.

3- 6-  Accuracy assessment
      The accuracy of landslide susceptibility and hazard predictive 
models was calculated by drawing receiver operating 
characteristic (ROC) curves and by calculating the area under 
the ROC curve (AUC). A percentage of observations (pixels) 
with landslides, being predicted correctly by model, is called 

sensitivity (Equation 8) (Probability of correctly identifying a 
positive or the true positives). 

Sensitivity=ntp/(ntp+nfn ) (8)

   ntp: Number of true positive decisions; ntn: Number of false 
negative decisions
   The specificity of the model has been shown based on the 
percentage of correct classified observations (pixels) with no 
landslides (Probability of correctly identifying a negative or 
true negatives) (Equation 9).

Specificity=ntn/(ntn+nfp )      (9)

    Ntn: Number of true negative decisions; Nfp: Number of 
false positive decisions
    Commonly, ROC curve is plotted by using true positive 
rate (sensitivity) against false positive rate (1– specificity) for 
different cut-points of test, starting from coordinate (0, 0) and 
ending at coordinate (1, 1). False positive rate (1 – specificity) 
is represented by x-axis and true positive rate (sensitivity) is 
represented by y-axis. The area under the curve varies from 0 
to 1. If the area under the curve is equal to 1 in a model, it will 
carry out the best and most complete prediction. 

3- 7- Risk assessment 
   In recent years, development of approaches for LRA has 
always been a challenge. In the present study, a method for 
LRA, based on fuzzy set theory, has been developed and 
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implemented to generate LRA map for southern region of 
Ardabil province, NW-Iran. The fuzzy set theory has been 
proposed in 1965 by Zadeh [83]. The fuzzy logic theory 
is based on fuzzy sets which are a natural extension of 
the classical set theory. Unlike classical set theory, fuzzy 
set theory is flexible and focuses on the degree of being a 
number of a set. Membership value of elements are computed 
depending upon varying degrees of support on a phenomenon 
[32]. The membership function embodies the mathematical 
representation of membership in a set, and the notation used 
throughout this text for a fuzzy set is a set symbol with a tilde 
underscore, say A, where the functional mapping is given as:

μA(x)     [0, 1]            (10)

   Moreover, the symbol μA(x) is the degree of membership 
of element x in fuzzy set A. Therefore, μA(x) is a value on 
the unit interval that measures the degree to which element x 
belongs to fuzzy set A; equivalently, μA(x) = degree to which 
x    A. The fuzzy membership values of different classes of 
the LHP and RDP were assigned based on a linguistic scale 
derived from recorded inventory data and expert knowledge. 
Exclusive rate values in hazard map prepared for the region 
is in accordance with the linguistic law (Table 3) [32]. In 
this region, the highest degree of membership fuzzy is given 
to buildings and roads and the lowest rates are given to 
forestlands (Table 4). 

Table 3. Linguistic rules for risk scoring of landslide hazard levels [32, modified]

Fuzzy membership value 
for landslide hazard 

potential (LHP)
Linguistic rules for risk scoring Landslide hazard 

zones

1 Landslides have occurred extensively and will occur frequently Very high hazard

0.80 The evidence of landslide activity can be seen in most regions. Most of 
the probable landslides occur under adverse conditions. High hazard

0.55 The previous landslides have occurred locally. Several landslides have 
occurred under certain conditions. Moderate hazard

0.30 Landslide occurrence probability is low and slopes are generally stable. Low hazard

0.10 Landslide occurs rarely or it does not exist at all. Slopes are naturally 
stable. Very low hazard

Table 4. Linguistic rules for risk scoring of different resource types [32, modified]

Fuzzy membership value for 
resource  damage potential Linguistic rules for risk scoring Resource types

1 It has a direct impact on the residents. Major damages are as 
killed, wounded and financial losses. Residential area

0.90
The road network is affected by landslides. Major damages are 

including: disconnection in the area can effect on the rescue 
and rehabilitation operations after the disaster.

Road

0.70 It has a direct impact on the financial situation of individuals 
and essential foods. Irrigated field

0.35 It has a direct impact on the economy of local residents. Non-irrigated farmland
0.80 It has a direct impact on the economy and people’s feeding. orchards

0.60 It has a direct impact on the financial situation of individuals; 
in addition, it causes the loss of national resources. Rangeland

0.30 National resources are destroyed, but it has no a direct impact 
on the individual economy of residents.                                                            Forested land

   Given two maps with fuzzy membership, functions can be 
employed to combine membership values [84]. Several fuzzy 
operators exist for combining membership functions. The 
applied fuzzy operators have much dependence on the type 
and nature of combined spatial data [85, 86]. In this study, the 
membership values of LHP and RDP have been combined 
using fuzzy algebraic product operator and landslide risk 
was calculated per pixel in the region. The operator of fuzzy 

algebraic product has been expressed mathematically as:

µPRODUCT (x)=∏i=1
2µi (x) (11)

    The obtained matrix values were divided into five vulnerable 
groups (Table 5), that result has been shown in a landslide 
risk map. The software packages used were ArcGIS -10.3 and 
SPSS Statistics Version 22.
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Table 5. The classes boundaries of landslide risk values [32]

Landslide risk zones Landslide risk rates
Very low risk (VLR)  0.1 ≥Landslide risk>0.0

Low risk (LR) 0.2≥Landslide risk>0.1
Moderate risk (MR)  o.4≥Landslide risk>0.2

High risk (HR) 0.6≥Landslide risk> 0.4 
Very high risk (VHR)  0.6<Landslide risk

4-  Results 
4- 1- Causal factors 
   The mapping of the study area at scale 1:25000 has 
produced a number of interesting results. The role of marly 
formation and altered zones, due to the presence of clay 
minerals, are very important in the occurrence of landslides 
[87]. The swelling potential rates of the marly and clayey 
samples of landslide area have been evaluated using physical 
and chemical properties of soils [88]. In the study region, the 
inherent properties of the soils that have clay minerals show 
that these soils have a medium to high swelling potential [89]. 
According to the physical and chemical assessment criteria at 
least 80% of the clayey material in the area have a swelling 
potential with medium to high intensity and soils at the unstable 
slopes are inherently “expansive soils”, where landslide can 
occur even without human intervention [90, 91]. The soil 
with clay minerals especially Montmorillonite could be the 
main reason of the landslide occurrence because of swelling 
and shrinkage characteristics at various moisture contents 
[92-94]. In the study area, marly and clayey formations 
with high-plasticity expansive materials are associated with 
numerous slope instability [95].  The type of lithology, due 
to their impact on rocks and soil resistance and permeability, 
are considered one of the most important factors in landslide 
occurrence [50, 53, 54]. Due to variations in the geological 
formations of the region and various degrees of sensitivity of 
the rocks to landslide, lithology also plays an important role 
in spread of landslides in the region [11-13]. Petrographically, 
the rocks range from Late Precambrian to Recent [96] and 
could be divided into a number of distinct group including 
calcareous rocks, plutonic, volcanic and pyroclastic rocks, 
metamorphic as well as sedimentary deposits of Neogene 
age, metamorphic rocks and quaternary sediments (Figure 7). 
About 32.8% of the whole area of the Miocene epoch clayey 
and marly sedimentary rocks and 42.97% of the whole area 
of altered zones had experienced landslides [11, 13, 95]. This 
rate of landslide is remarkable compared to other lithologies. 
The results obtained from the contingency tables revealed 
that the highest number and area of landslides occurred on 
Miocene clay to marly sedimentary rocks [13]. Therefore, the 
effect of expansive soils is now generally accepted in slope 
instability [91]. 
   The range of failure depths change between 5 to 25 m, 
with a mean value of about 10 m. Most of these landslides 
affect lithologic units composed by marls, alteration zones, 
volcanic rock and regolith1. The term marl has been assigned 
various meaning. It has been defined as a rock with 35-65% 
clay and a complementary content of carbonate [97]. It can be 

1 is a layer of loose, heterogeneous superficial deposits covering 
solid rock

concluded that the marl formations of the area are considered 
as hard soil and soft rock [98]. During the field studies carried 
out for the preparation of landslide inventory maps, it was 
found that most springs that led to slope instabilities in the 
region are located at the boundary between the impermeable 
sedimentary units of Neogene age (mostly marls, mudstone, 
siltstone, sandstone, conglomerate and altered zones) and 
semi-permeable igneous rocks with joints and fractures 
of Eocene age. Field checking indicates that the failures 
generally occurred in the marly sediments and along the 
sedimentary-volcanic rock contact surfaces. Rapid changes 
in water levels during late winter or early spring rainfalls 
cause new landslides or reactivation of the old landslides in 
these times [90]. There are seven basic types of landslides 
that occur in three types of material. Flows, translational, 
rotational slides combinations of translational-rotational, 
creep, unmappable and widespread can occur in bedrock, 
debris, soils or a combination of the soil and rock. The soil 
materials are related with the 73% of landslides occurred in 
the study area. [10, 11, 13, 99].  

Figure 7. Landslide probability histogram and chi-square test 
result based on lithological and landslide maps

  The results of the spatial relationship analysis between 
distance from faults and landslide show that approximately 
75% of landslides are distributed within 0-8 km from the 
major faults. Moreover, movement along an existing fault, 
e.g. caused by earthquake, can also trigger landslides. The 
major land use classes in the area are rangeland (> 92%), 
farmland and orchard (5.2%), forest (2%) and build-up area. 
Vegetation provides both hydrological and mechanical effects 
that generally are advantageous to stability of the slopes. 
Comparing aerial photographs of the years 1958, 1968 and 
1993 with 2002 satellite images shows that in this period, 
many changes have taken place in land use/land cover types 
in the area. For more than 55 years, the forest and rangelands 
have been extensively damaged due to unprincipled actions 
and applications or have been changed into agricultural lands, 
orchards, and build-up areas or used to construct roads. It 
is quite difficult to find an area that is unaffected by these 
changes. Landslide occurs 2 to 6 times more in agricultural 
areas, orchards, sparse forests and some poor rangelands than 
in other land uses. In contrast, in the forest with deep root 
trees and pristine rangelands, the slopes have good stability. 
Investigations of landslide inventory maps and field studies 
revealed that occurrence of landslides in lands with a use 
change has increased 6 times over the past 55 years.
   Groundwater aquifers are mainly found in calcareous 
sedimentary rocks in the eastern parts as well as in non-
carbonate sedimentary strata comprising marl, mudstone, 
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siltstone, sandstone, conglomerate, and volcanic rocks, which 
include lavas and tuffs located mostly in the western part 
of the region. With respect to the relative permeability, the 
lithology units in the study area can fall into three groups: 
permeable, semi-permeable and impermeable [100] (Figure 
8). Analysis of the relationship of landslide occurrence with 
rock types show that the most of landslides have occurred in 
impermeable areas (Table 6). During the field studies carried 
out for the preparation of landslide inventory maps, it was 
found that most springs that led to slope instabilities in the 
region are located at the boundary between the impermeable 
and semi-permeable lithologies. Field checking indicates 
that the failures generally occurred along the sedimentary-
volcanic rock contact surfaces. Rapid changes in water 
levels during intense rain showers cause new landslides or 
reactivation of the old landslides in these times [90].

Figure 8. Relative permeability map of the lithologies [90]

   An increase in the amount of rainfall together with the 
increase in river discharge accelerate the erosion along river 
banks; which boosts the slop failures [33, 101]. The results 
of present study suggest that slopes closer to the stream lines 
are more affected than remote ones.  In the study area, stream 
bank erosion has been responsible for 81% of single landslides 
and 42% of landslide zones. The probability of landslide 
occurrence on Northeast facing slope is about 2.25 times 
more than other slope aspects in the study area. Northeast 
facing slopes in direct contact with the humid airflow from 
the Caspian Sea have more rainfall and higher humidity, 
when compared with those to the other slope aspects.
   Slope angle is considered the most important factor in the 
slope failures [43, 102], it is expected that by increase in the 
slope gradient the landslide hazard potential is increased as 
well [56]. Slope angles in the study area ranged from 0° to 
73°, while landslide density is high (68.85%) for slopes with 
gradients 10 and 30 degree. The lithology and gradient of 
slopes are dependent [54] and in most areas, gradient increase 
in the slope cannot be the only landslide controller [103]. 
Lithology and slope gradients are the most influential factors 
for landslide occurrence in the study area. In the slopes with 
susceptible lithology (marl and clay sedimentary formations 
and altered zones) and gentle grade (slopes with gradients 

from 10–30°), the penetration of water can be considered as 
effective factor in the event of widespread landslides [104]. 
The relief developed is very marked and range from 850 m in 
the Qezel Owzan River in the southwestern corner of the area 
to 3324 m at the peak of the Agh Dagh that is the heighest 
point in the study area. Landslides between 1000 m to 2200 
m are dominant (90.5%) due to the lithological character of 
the layers that have marl and clay compositions. Most of 
rock outcrop of formations susceptible to landslides such as 
altered rocks, marl and clay sedimentary rocks correspond 
to the slopes with elevation of 1,000 to 2,200 meters and 
provide favorable conditions for rainfall infiltration; these 
conditions can be effective in the landslide occurrence. A 
total of 50.4% of the study area was concave slopes (-1), 
48.4% was convex slopes and 1.3% was flat, their respective 
frequency ratios were 0.106, 0.111 and 0.129, indicating 
nearly a same likelihood of landslide occurrence. According 
to PGA map, about 98.8% of the past landslide areas fall in 
high Peak Ground Acceleration zones (0.57 and 0.58 (g)).

4- 2- Landslides susceptibility and hazard analysis
   In this paper, landslide probability was calculated using 
categorical and continuous variables. Explanatory factors were 
introduced into favorability functions model as independent 
variables. Based on Equation 6, the two ratio function have 
been estimated, one for the five continuous independent 
variables: distance to fault lines, distance to drainage network, 
slope gradient, distance to roads and distance to settlement, 
and the other for the five categorical independent variables: 
lithology, land-use/land cover, elevation, slope aspect and 
slope curvature separately. Based on Equation 7, the estimated 
value for λ ̆(x1,…,xk,y1,…,yh ) were normalized in a specific 
range, between 0 and 1. The result is a raster map with the 
pixel values representing the relative probability of landslide 
occurrence (Figure 9a). The probability values of landslide 
occurrence have been divided into five classes by using 
standard deviation method to produce a LSM of region with 
five classes as very low susceptible (VLS), low susceptible 
(LS), moderate susceptible (MS), high susceptible (HS) and 
very high susceptible (VHS) (Figure 9b). Based on the result 
of the obtained landslide susceptibility map, 77.4% of the 
total area show low and very low landslide susceptibility. 
Moderate, high and very high susceptible zones make up 
8.5% and 14.2% of the total area, respectively.

Figure 9. a) Landslide susceptibility and b) its different classes 
in the region 

(a) (b)
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Table 6. Landslide densities of the relative permeability classes in the study area

Relative permeability
Grid cells (pixels) with landslide All grid (pixels) cells

Landslide density (%)Frequency
(no. of pixels) % Frequency

(no. of pixels) %

Low or impermeable 57164 73.8 419072 59.2 13.64
 Moderate 

(semi-permeable) 10008 12.9 146907 20.7 6.8

High (permeable) 10275 13.3 142477 20.1 7.2

    LSM, the annual mean precipitation and PGA maps were 
overlaid to provide a landslide hazard map. Before overlying 
the triggering factors and landslide susceptibility layer, they 
must be normalized to a common dimensionless scale. To 
perform this process, the Equation 7 was used and the result 
is a raster layer with the pixel values, which vary from 0 
to 1 (Figure 10a). In the new map zero represents minimal 
hazard and 1 represents maximum hazard of landslides in the 
area. Based on the results of the landslide hazard modeling 
and with respect to Figure 8a, it is possible to determine the 
hazard level for any point on a map. LHM was classified 
into five categories e.g. very low, low, moderate, high and 
very high (Figure 10b). Based on the result of the obtained 
landslide hazard map, 78.1% of the total area show low 
landslide hazard. Moderate, high and very high hazard zones 
make up 8.6% and 13.3% of the total area, respectively.

(a) (b)
Figure 10. a) Landslides hazard and b) different levels of 

hazard 

  The Area Under Curve (AUC) value of ROC curve for 
landslide susceptibility model is 0.849 and the prediction 
accuracy of the model is 84.9% (Figure 11a). This result 
shows that there is a good agreement between the prediction 
accuracy and the landslides occurrence in the region [67, 
105, 106]. The ROC curve for landslide hazard model used 
in this study is given in Figure 11b. The AUC value for the 
hazard map obtained is 0.848, equivalent to an accuracy of 
84.8%. The result shows that there is a fair agreement the 
hazard prediction accuracy and the landslide occurrence in 
study region. Such a result indicates that the landslide hazard 
model has a stable and good prediction performance.

4- 3-  Landslide Risk Assessment
   Landslide risk is considered as a function of LHP and RDP. 
Landslide risk values for different combinations of RDP and 
LHP can be shown in the form of a LRA matrix, as given 
in Table 7. Landslide risk was calculated in each pixel by 
multiplying the LHP value and RDP.
   As it is observed from matrix of LRA, the LRA value for 
each pixel range from 0.03 to 1.0. The value of 0.03 represents 
a very small landslide risk potential in forestlands while 
the value of  1 indicates very high landslide risk potential 
in habitat areas. To aid visual interpretation, landslides risk 
values between 0.03 and 1.0 were divided into five landslide 
risk classes as per the scheme given in Table 5. Based on 
this method, the risk classes were defined as very high risk 
(VHR), high risk (HR), moderate risk (MR), low risk (LR), 
and very low risk (VLR) (Figure 12).

(a) (b)
Figure 11.  ROC curve to evaluate the accuracy of the model [Author]: a) susceptibility of the area under the curve 0.849 

and b) hazard with AUC 0.848
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Table 7. Landslide risk assessment matrix for various combinations of the LHP and RDP. Red: very high hazard; Pink: high 
hazard; Yellow: moderate hazard; Blue: low hazard; Green: very low hazard [32, modified].

 Resource damage potential 
(RDP)

Landslide hazard potential (LHP)
Very high hazard

(VHH)
 (1.00)

High Hazard
(HH)

 (0.80)

Moderate Hazard 
(MH) 
(0.55)

Low hazard 
(LH) 
(0.30)

Very low hazard 
(VLH)
 (0.10)

Residential area (1.00) 1.00 0.8 0.55 0.30 0.10
Roads (0.90) 0.90 0.72 0.50 0.27 0.09
Garden (0.80) 0.80 0.64 0.44 0.24 0.08

Irrigated field (0.70) 0.70 0.56 0.38 0.21 0.07
Rangeland (0.60) 0.60 0.48 0.33 0.18 0.06

Non-irrigated farmland (0.35) 0.35 0.28 0.19 0.10 0.03

Forested land (0.30) 0.30 0.24 0.16 0.09 0.03

     
Very high risk High risk Moderate risk Low risk Very low risk

Figure 12. The landslides risk levels in the study area [Author]

      According to this risk map, 13.8% of the study area falls 
in the high and very high landslide risk zones. The very 
high landslide risk area is 2.3% of the total study area. The 
moderate-, low- and very low landslide risk zones form 8%, 
21.5% and 56.6% of the area, respectively. About 62.5% 
of the orchard land, 54.4% of agricultural land,41.5% of 
the residential areas and 27.7% of the area with a road are 
estimated to be high and very high risk. Based on the results 
only 11.6% of the rangelands are located in high and very 
high-risk classes. The main area of zones with low and very 
low risk have moderate or good rangeland cover.

5- Discussion 
   Landslides are the most common natural disaster seen 
in the studied area in the Alborz mountain, NW-Iran. The 
occurrence of new landslides as well as reactivation of old 
ones in the region have caused significant damages to natural 
resources, agricultural fields, buildings and infrastructure over 
the past 55 years. The main aim of this paper was to design 
a methodology for the assessment of landslide susceptibility, 
hazard and risk as basic information for risk prevention and 

landuse planning in the region of NW Iran. The present study 
contributes to the debate on the LRA. Based on LRA map, 
a risk management procedure can be proposed to reduce 
the possible risk to elements available in the study region. 
Landslide risk analysis in a regional scale requires a complex 
multi-step process, and to this aim, it is essential to have 
landslide hazard layer and damage potential of the elements 
at risk [45]. The results from the study region suggest that 
the combined approach is effective in landslide susceptibility, 
hazard and risk assessment and can be extrapolated to another 
study area and the developed method can be used in basin 
scale projects. 
   In international landslide literature, it is possible to find 
many studies on LSA [22, 35-37, 48, 53, 76, 105, 107, 108]. 
However, only limited research has been done on LRA for 
large area such as south of Ardabil province region [22, 109]. 
In this study, a raster based combined model on a regional 
scale was developed using a spatial prediction method and the 
fuzzy sets theory to landslide susceptibility, hazard and risk 
assessment. The first stage of our study involved collecting 
a detailed landslide inventory data in the study area for a 
55-year-long period (1960-2015). Landslide susceptibility 
was determined for the area and the generated data constituted 
a base to assess landslide hazard in the region. Adequate data 
in this area have allowed the estimation of annual rainfall 
and calculation of PGA. Accordingly, the conversion of LSM 
to LHM became possible using precipitation and seismicity 
data. LRA map was prepared by combination of RDP and 
LHP. The risk map resulted from the study was classified in 
the form of zones with very high risk, high risk, moderate 
risk, low risk and very low risk degrees. According to the 
risk map obtained from proposed model, 13.8% of the area is 
located in zones with high and very high-risk classes.
   The landslide risk evaluation becomes further complicated 
in many regions due to the insufficient historical records 
on landslides, unavailability of input data on past losses 
and the uncertainty in the assessment of landslide risk 
[110]. Uncertainties in estimation of landslides intensity, 
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transformation of LSM into a hazard model and determining 
of the LHP and RDP of elements at risk constitute the main 
limitations for landslide hazard and risk studies [44]. High-
quality input data and determination of suitable factors are 
crucially important for the landslide susceptibility and hazard 
assessment of the study region. Uncertainty associated 
to errors of landslide inventory, data collection, database 
generation, factors affecting the occurrence of landslides 
and their propagation on landslide susceptibility and hazard 
assessment results are evaluated by Area Under Curve of ROC 
curve method. Based on the Area Under Curve of ROC curve 
(AUC), the prediction ability of the model is 84.9%, which is 
a good result for prediction of the landslide susceptibility in 
the study region. Therefore, the LSM can be transformed to 
LHM with an acceptable accuracy. Landslide hazard model 
has been validated by ROC curve analysis, which has given 
84.8% accuracy. These results suggest a good performance of 
the used methods. Therefore, the landslide risk map produced 
by using this LHM with high precision as a LHP layer yield a 
higher accuracy and higher certainty.
   Landslides susceptibility and hazard were evaluated at a 
pixel basis by correlation between specified types of past 
landslides (moderate to high intensity landslides occurred or 
reactivated at least once over the last 55 years) and a set of 
independent factors, which controls the instability. The twelve 
probable landslide-causing factors used in the landslide 
susceptibility and hazard evaluation have a high relevance 
and a low uncertainty association [7]. Historical data derived 
from the landslides frequency-intensity relationship cannot 
be completely reliable criterion to determine future landslide 
activity [111]. Therefore, review of the past decades reveals 
that more than 60% of landslides chosen to implement the 
model in the region are active now and this can somewhat 
reduce the foregoing uncertainties.
   Implementation of the model in pixel units can reduce 
the accuracy of the calculations due to the non-geometrical 
shape of landslides, but selecting pixels of 50m×50m on a 
regional scale has reduced the uncertainty [17]. The smallest 
area of  landslide is approximately 15805 m2, which is 
more than six times the size of the pixels (2,500 m2). In 
the proposed approach, the LHP levels and classes of RDP 
have been quantified in terms of fuzzy membership values 
as per their relative importance to risk analysis. There are 
several inherent uncertainties in the methodology as well as 
in assessment of the LHP and RDP. The first one arises from 
the empirical nature of the assessment. The accuracy of the 
predictive model of landslide hazard is 84.8%, which is a 
very good result for LHP preparation purposes. The second 
one concerns accuracy, nature and quality of data on damages 
to different resources at risk from landslides. In the present 
study, the database of elements at risk was used to assess the 
damage potential of different resources. Clearly, the higher 
quality the data will have the more accurate the results of the 
assessments. A complete and detailed inventory of elements 
at risk was carried out in order to reduce uncertainty in the 
RDP assessment procedure. 

6- Conclusions
   For the first time, in this study, LRA was accomplished 
on a regional scale for southern part of Ardabil province 
by using a combined method; which makes it the single 
landslide risk management study ever to be carried out in the 

West of Alborz mountain range located in the Northwest of 
Iran. The accuracies of the landslide susceptibility and hazard 
maps are 84.9%, and 84.8% respectively. This results indicate 
that the models are useful and suitable for the regional scale 
adopted in this study. According to the risk map obtained 
from proposed model, of the area considered in the present 
study, 13.8% falls in the high and very high-risk zones. About 
62.5% of the orchard lands and 54.4% of agricultural lands 
are located in areas with high and very high-risk zones. 
About 41.5% of settlement areas and 27.7% of the area with 
a road are estimated to be high and very high risk. Based on 
the results only 11.6% of the rangelands are located in high 
and very high risk. In these slopes, the rangeland coverage is 
either destroyed or severely weakened due to in discriminate 
exploitation. The main area of zones with low and very low 
risk have moderate or good rangeland cover. In the high risk 
zone, we should avoid the construction of any construction for 
human and livestock settlement. In cases where the building 
has already been made then the extension or rebuilding of 
it should be avoided. If forced to do construction activity in 
these areas, the necessary measures should be taken to reduce 
risk in slopes. This model can be used to evaluate landslide 
risks in similar mountainous areas such as Zagros and Alborz 
Mountain Ranges in Iran and mountain ranges in Caucasus.
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