Document Type : Research Article
Authors
1 School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
2 Zachry Department of Civil Engineering, Texas A&M University, Texas, USA
3 Manchester Business School, Manchester, United Kingdom
4 Department of Civil and Environment Engineering, Amirkabir University of Technology, Tehran, Iran
Abstract
Highlights
[1] ASTM Standard E867, Standard Terminology Relating to Vehicle-Pavement Systems, 2012.
[2] P. Mohan, V.N. Padmanabhan, R. Ramjee, Nericell: rich monitoring of road and traffic conditions using mobile smartphones, in: Proceedings of the 6th ACM conference on Embedded network sensor systems, ACM, 2008, pp. 323-336.
[3] R. Bhoraskar, N. Vankadhara, B. Raman, P. Kulkarni, Wolverine: Traffic and road condition estimation using smartphone sensors, in: Communication Systems and Networks (COMSNETS), 2012 Fourth International Conference on, IEEE, 2012, pp. 1-6.
[4] N. Abulizi, A. Kawamura, K. Tomiyama, S. Fujita, Measuring and evaluating of road roughness conditions with a compact road profiler and ArcGIS, Journal of Traffic and Transportation Engineering (English Edition), 3(5) (2016) 398-411.
[5] W. Chen, J. Yuan, M. Li, Application of GIS/GPS in Shanghai Airport pavement management system, Procedia Engineering, 29 (2012) 2322-2326.
[6] S.M. Bazlamit, H.S. Ahmad, T.I. Al-Suleiman, Pavement Maintenance Applications using Geographic Information Systems, Procedia Engineering, 182 (2017) 83-90.
[7] A. Ozden, A. Faghri, M. Li, K. Tabrizi, Evaluation of Synthetic Aperture Radar satellite remote sensing for pavement and infrastructure monitoring, Procedia Engineering, 145 (2016) 752-759.
[8] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, H. Balakrishnan, The pothole patrol: using a mobile sensor network for road surface monitoring, in: Proceedings of the 6th international conference on Mobile systems, applications, and services, ACM, 2008, pp. 29-39.
[9] A. Mednis, G. Strazdins, R. Zviedris, G. Kanonirs, L. Selavo, Real time pothole detection using android smartphones with accelerometers, in: Distributed Computing in Sensor Systems and Workshops (DCOSS), 2011 International Conference on, IEEE, 2011, pp. 1-6.
[10] A. Mahmoudzadeh, S.F. Yeganeh, A. Golroo, Kinect, a novel cutting edge tool in pavement data collection, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(1) (2015) 425.
[11] L. González, F. Martínez, M.R. Carlos, Identifying roadway surface disruptions based on accelerometer patterns, IEEE Latin America Transactions, 12(3) (2014) 455-461.
[12] P. Aksamit, M. Szmechta, Distributed, mobile, social system for road surface defects detection, in: Computational Intelligence and Intelligent Informatics (ISCIII), 2011 5th International Symposium on, IEEE, 2011, pp. 37-40.
[13] F. Seraj, B.J. van der Zwaag, A. Dilo, T. Luarasi, P. Havinga, RoADS: A road pavement monitoring system for anomaly detection using smart phones, in: Big data analytics in the social and ubiquitous context, Springer, 2014, pp. 128-146.
[14] Y.-c. Tai, C.-w. Chan, J.Y.-j. Hsu, Automatic road anomaly detection using smart mobile device, in: conference on technologies and applications of artificial intelligence, Hsinchu, Taiwan, 2010.
[15] G. Alessandroni, L. Klopfenstein, S. Delpriori, M. Dromedari, G. Luchetti, B. Paolini, A. Seraghiti, E. Lattanzi, V. Freschi, A. Carini, Smartroadsense: Collaborative road surface condition monitoring, Proceedings of the UBICOMM, (2014) 210-215.
[16] V. Douangphachanh, H. Oneyama, A study on the use of smartphones for road roughness condition estimation, Journal of the Eastern Asia Society for Transportation Studies, 10 (2013) 1551-1564.
[17] V. Douangphachanh, H. Oneyama, A study on the use of smartphones under realistic settings to estimate road roughness condition, EURASIP Journal on Wireless Communications and Networking, 2014(1) (2014) 114.
[18] ProVal version 3.5 [Computer software]. Transtec Group, Austin, TX.
[19] S. Islam, W. Buttlar, R. Aldunate, W. Vavrik, Measurement of pavement roughness using android-based smartphone application, Transportation Research Record: Journal of the Transportation Research Board, (2457) (2014) 30-38.
[20] H. Zeng, Identifying Deficient Pavement Sections using an Improved Acceleration-based Metric, in: Pavement Evaluation Conference 2014, 2014.
[21] T. Hanson, C. Cameron, E. Hildebrand, Evaluation of low-cost consumer-level mobile phone technology for measuring international roughness index (IRI) values, Canadian Journal of Civil Engineering, 41(9) (2014) 819-827.
[22] T. Fwa, K. Gan, Bus-ride panel rating of pavement serviceability, Journal of transportation engineering, 115(2) (1989) 176-191.
[23] MnDOT (2009), Minnesota Department of Transportation, Pavement Condition Executive Summary, Report No. MnDOT/OMRR-PM--2009-01.
[24] A. Golroo, S. Tighe, Developing an overall combined condition index for pervious concrete pavements using a specific panel rating method, Transportation Research Record: Journal of the Transportation Research Board, (2153) (2010) 40-48.
[25] A. Golroo, S.L. Tighe, Development of Panel Rating Protocol and Condition Evaluation Model for Pervious Concrete Pavement, Journal of Transportation Engineering, 138(3) (2011) 315-323.
Keywords