Document Type : Research Article
Authors
Civil Engineering Department, University of Guilan, Rasht, Iran
Abstract
Highlights
[1] K. Ozawa, K. Maekawa, H. Okamura, “Self-Compacting high performance concrete”, Collected Papers (University of Tokyo: Department of Civil Engineering), 34 (1996): 135-149.
[2] H. Okamura, K. Ozawa, “Self-compactable high-performance concrete in Japan”, International Workshop on High Performance Concrete, 159 (1994).
[3] W. Khaliq, V. Kodur, “Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures”, Cem. Concr. Res., 41(11) (2011): 1112-1122.
[4] ACI 237R-07, Self-Consolidating Concrete, American Concrete Institute, Farmington Hills. MI, USA (2007).
[5] M.R. Bangi, T. Horiguchi, “Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures”, Cem. Concr. Res., 42(2) (2012): 459-466.
[6] H. L. Malhotra, “The effect of temperature on the compressive strength of concrete”, Mag. Concr. Res., 8.23 (1956): 85-94.
[7] K. K. Sideris, “Mechanical characteristics of self-consolidating concretes exposed to elevated temperatures”, J. Mater. Civ. Eng., 19 (8) (2007): 648- 654.
[8] M. Husem, “The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete”, Fire. Saf. J., 41(2) (2006): 155- 163.
[9] R. Sharma, P. P. Bansal, “Use of different forms of waste plastic in concrete–a review”, J. Cleaner. Prod., 112 (2016): 473-482.
[10] E. Martinelli, A. Caggiano, H. Xargay, “An experimental study on the post-cracking behaviour of Hybrid Industrial/Recycled Steel Fibre-Reinforced Concrete”, Constr. Build. Mater. 94 (2015): 290-298.
[11] A. Caggiano, H. Xargay, P. Folino, E. Martinelli, “Experimental and numerical characterization of the bond behavior of steel fibers recovered from waste tires embedded in cementitious matrices”, Cem. Concr. Compos., 62 (2015): 146-155.
[12] D. Foti, “Use of recycled waste pet bottles fibers for the reinforcement of concrete”, Compos. Struct. 96 (2013): 396-404.
[13] R. P. Borg, aul, O. Baldacchino, F. Liberato, “Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete”, Constr. Build. Mater., 108 (2016): 29-47.
[14] B. Yesilata, Y. Isıker, P. Turgut, “Thermal insulation enhancement in concretes by adding waste PET and rubber pieces”, Constr. Build. Mater., 23(5) (2009): 1878-1882.
[15] F. Fraternali, V. Ciancia, R. Chechile, G. Rizzano, L. Feo, L. Incarnato, “Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete”, Compos. Struct., 93(9) (2011): 2368-2374.
[16] P. Soroushian, J. Plasencia, S. Ravanbakhsh, “Assessment of reinforcing effects of recycled plastic and paper in concrete”, Mater. J., 100(3) (2003): 203- 207.
[17] A. Noumowé, H. Carré, A. Daoud, H. Toutanji, “High-strength self-compacting concrete exposed to fire test”, J. Mater. Civ. Eng., 18(6) (2006): 754-758.
[18] C. S. Poon, Z. H. Shui, L. Lam. “Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures”, Cem. Concr. Res., 34(12) (2004): 2215-2222.
[19] EFNARC European, Specification and guidelines for self-compacting concrete, Federation of National Associations Representing producers and applicators of specialist building products for Concrete, (2005).
[20] Guo, Yong-chang, et al. “Compressive behaviour of concrete structures incorporating recycled concrete aggregates, rubber crumb and reinforced with steel fibre, subjected to elevated temperatures”, J. Cleaner. Pro., 72 (2014): 193-203.
[21] G.F. Peng, W. W. Yang, J. Zhao, Y. F. Liu, S. H. Bian, L. H. Zhao, “Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures”, Cem. Concr. Res. 36(4) (2006): 723-727.
[22] X. Liu, G. Ye, G. De Schutter, Y. Yuan, L. Taerwe, “On the mechanism of polypropylene fibres in preventing fire spalling in self-compacting and high-performance cement paste”, Cem. Concr. Res., 38(4) (2008): 487-499.
[23] G. A. Khoury, “Polypropylene fibres in heated concrete. Part 2: Pressure relief mechanisms and modelling criteria”, Mag. Concr. Res. 60(3) (2008): 189-204.
[24] A. Lau, M. Anson, “Effect of high temperatures on high performance steel fibre reinforced concrete”, Cem. Concr. Res., 36(9) (2006): 1698-1707.
[25] F. Aslani, B. Samali. “Constitutive relationships for steel fibre reinforced concrete at elevated temperatures”, Fire. Tech., 50(5) (2014): 1249-1268.
[26] F. Aslani, B. Samali, “High strength polypropylene fibre reinforcement concrete at high temperature”, Fire. Tech., 50(5) (2014): 1229-1247.
Keywords