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ABSTRACT: Intake structures have been widely used for flow diversion in the irrigation and drainage 
networks. In this paper, the multivariate adaptive regression splines (MARS), artificial neural network 
(ANN), and support vector machine (SVM) techniques were utilized for prediction of discharge 
coefficient (Cd) of lateral intakes. The experimental data pertaining to dimensionless parameters on Cd 
were collected to develop the models. The results indicated that the best performance in modeling is 
related to the MARS model with R2=0.98 and RMSE=0.023 and the MARS model outperforms the ANN 
and SVM models. The tangent sigmoid and radial basic functions were found to be the most efficient 
transfer and kernel functions for ANN and SVM, respectively. Moreover, Froude number (Fr1) and the 
ratio of the weir height to the upstream flow depth (P/d1) were the most effective factors for predicting 
Cd. Evaluation of the performance of applied models in term of developed discrepancy ratio (DDR) 
index shows that the minimum data dispersivity is related to the MARS model.
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1- Introduction
   Lateral intakes (LIs) have been widely used in water 
engineering projects such as irrigation and drainage 
networks. A LI sets at the side wall of open channels or 
riverine. Weir is the main part of lateral intake. The main 
task of the LIs are diverting a certain volume of flow [1]. 
Study on the hydraulic properties of LIs initially was started 
by experimental studies conducted by De Marchi [2] and till 
to now, many investigators have investigated the hydraulic 
propertices of this structure and they have proposed and 
tested many theories tho this end [3-5]. Discharge capacity 
of LI is proportional of Cd and length of crest of weir. To 
increase the discharge capacity, it is possible to increase 
the length of crest and improve the discharge coefficient. 
By considering these points, researchers has proposed 
some palns for shape of crest and improveing the discharge 
coefficient. in this regard proposing the labyrinth, oblique, 
semi-elliptical, curved plan-form have been proposed for 
increasing the length of crest [6-8] and circulating the crest 
and using the guide vanes have been proposed for increasing 
the Cd [6, 9-12]. Based on reports, increasing the length of 
crest leads to improve the discharge capacity about three or 
four times [13-16]. Associated laboratory studies, numerical 
methods have been used for simulation of flow through the 
LIs [17-19]. In the field of numerical modeling, water surface 

profile over the LIs has been simulated using the classical 
numerical approaches such as Runge–Kutta method and 
advanced numerical methods such as computational fluid 
dynamic techniques. The aim of those studies in addition to 
modeling of water surface profile, were characterizing the 
flow properties such as flow pattern, distribution of velocity 
and pressure along the LIs [20]. In the numerical approaches, 
modeling of Cd also has been taken into consideration. 
To this end, soft computing techniques have been applied 
[21]. Using the artificial neural network has been reported 
by [Bilhan, Emin Emiroglu and Kisi [22], Bilhan, Emiroglu 
and Kisi [23]]; Based on these reports the performance of the 
ANN are so suitable for predicting the Cd. Emiroglu and Kisi 
[24] have stated that the Neuro-Fuzzy method has suitable 
performance for prediction of discharge coefficient of the 
labyrinth LIs. Successfully Using the GMDH for predicting 
the Cd of LIs was reported by Ebtehaj, Bonakdari, Zaji, Azimi 
and Khoshbin [25]. This paper considers intelligent modeling 
of Cd of LIs using MARS method as new soft computing 
approach in hydraulic engineering. Performance of MARS 
model is compared with other types of soft computing 
techniques including ANN and SVM. The experimental data 
pertaining to dimensionless parameters on Cd were collected 
from the literature.

2- Method and Materials
    Most important geometrical and hydraulic parameters 
effect the Cd are shown in Figure 1. 
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      As seen from Figure 1, d1 is the flow depth at the beginning 
of the weir, y is the flow depth on the weir. P is the weir 
height, B is channel width, b is the length of weir. Using the 
Buckingham theory the dimensionless parameters related to 
Cd  can be written as Equation 1 [26].

Figure 1. Sketch of Lateral weir at subcritical flow condition

(1)1
1 1

, , ,d
b b Pf Fr
B d

C
d

 
=  

 

In which Fr1 is the Froude number. Equation 1 is fundamental 
for developing the empirical formula and soft computing 
models to predict and mathematical model of Cd. Developing 
of soft computing techniques are based on the dataset, 
therefore 169 datasets with regarding to the Equation 2 were 
collected from Jalili and Borghei [27]. The histograms of 
collected dataset are shown in Figure 2. 

Figure 2. The Histogram of collected data set related discharge 
coefficient

2- 1- Multivariate Adaptive Regression Splines (MARS)
     MARS was introduced  by Friedman [28] and up to now 
has been used in most fields of the engineering especially 
in hydraulic engineering. The MARS technique has been 
successfully applied for predicting the energy dissipation 
and scour depth at the downstream of the spillways, river 
discharge forecasting, rainfall-runoff modeling etc. [29-31]. 
MARS is a pliable method to map relationships between the 
independent and dependent variables in a desired system. 
MARS method uses to recognize the hidden pattern in 
dataset in complex systems. Pattern recognition is defined via 
proposing number of coefficients and basic functions. These 
coefficients and basic functions are justified in regression 
operation on the used dataset. The main advantage of MARS 
include high ability for mapping input parameters and desired 
outputs, developing simple but robust model and  rational in 
term of computational cost. The MARS technique is based on 
the simple basis functions defined as bellow

     where t denotes the knot. Basic functions some time calls 
as mirrored pair functions. These functions are defined for 
each input variables such as Xj at observed dataset related of 
them. Sets of basic functions are defined as
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      The general form of function derived from MARS model 
is written as an adaptive function as bellow.
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   where    is the constant value, BFi (X) known is basic 
functions and      are the coefficients of the as basic functions. 
The constant and coefficient of derived function in MARS 
model are justified using least square error technique. The 
M is number of basic functions derived from the final stage 
of model development. Developing of MARS model has 
two stages. One forward stage in this stage number of basic 
function is increased to decrease difference between the 
results of model and observed data.  In the next step of model 
development to avoid over parameterization and over fitting 
pruning the some of the basic functions are considered. In this 
stage with regarding to cross-validation (GCV) criteria that 
are given as bellow the basics function are pruned.
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    Where, SSEl is the sum of square of residuals, n denotes 
the number of records and C(B) defined a difficulty criteria, 
which increases by the number of basic functions [32-35]. 

2- 2- Artificial neural networks (ANNs)
      ANN is an advance mathematical method that has ability 
for mapping complexes systems which are based dataset. 
Common type of ANN is MLP are that are widely used in 
the researches. To use MLP model, definition of appropriate 
transfer functions, designing a suitable structure in term of 
computational cost should be considered. Different transfer 
function can be tested. An ANN maybe has one or more 
hidden layers. Figure 3 demonstrates a neuron consisting of 
inputs, weight and output. As shown in Figure 3. wi is the 
weight and bi is the bias for each neuron. After designing the 
structure of MLP (number of hidden layer and number of 
neurons in each hidden layer), definition of weight and biases’ 
should considered. This stage named model training. Several 
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methods, whether classical or modern have been suggested. 
In classical approach, Levenberg–Marquardt technique and 
modern ways such as modern optimization approach such as 
PSO, GA can be stated [21, 36-39].

Figure 3. Sketch of three-layer ANN architecture

2- 3- Support vector machine (SVM)
     SVMs are a type of artificial intelligence method has 
been widely used in the field of hydrology studies. Published 
literatures, the SVM has high ability for pattern recognition. 
Developing the SVM is based on the data set. Therefore, 
collected data set has been separated into two categories 
as calibration and valuation. For preparation of SVM for 
modeling and predicting the problems two steps should be 
considered. Choosing the regularization parameter (C) and 
kernel function, and learning algorithm has high effect on 
increasing the SVM performance as well. Various types of 
kernel functions such as linear, polynomial, Gaussian radial 
basis function have been proposed for the kernel functions. 
Selecting the type of kernel function is a trial and error 
process and for specific problem a types of functions should 
be tested. The value of the regularization parameter is defined 
during the calibration process. For gave more information 
about the SVM are presented in the literature [21, 40].

2- 4- Development of applied Model 
   Preparations of AI models are based on the data set. 
The first step on modeling based on the AI models is data 
preparation. Data preparation means that collected dataset 
should be divided into two groups as training and testing. 
Training dataset is used for calibration and testing is applied 
for validation. Usually 75 to 85 percent of total dataset are 
assigned to training and remains for testing. Data shuffling 
apprach was considered for accloation dataset to each group. 
To provide a good simulation, it is better that range of training 
and testing dataset would be close together. Designing of MLP 
model include some steps such as 1- considering the number 
of the hidden layer(s), 2- considering the number of the 
neurons in each layer, 3- defining of suitable transfer function 
and 4-training algorithm. Since discharge coefficient of the 
Lateral weir is not a deterministic phenomenon, therefore 
it would have expected that the MLP model has small size. 
To achieve an optimal structure for the MLP model, firstly 
one hidden layer which include numbers of neurons equal to 
number of input features is considered.  Next, different type 
of transfer functions such as logsig, tansig, purelin are tested. 
After selecting the activation appropriate function, to improve 
the precision of MLP model, number of hidden layer(s) and 
number of neurons in hidden layer may be increased step by 
step. This strategy was proposed by Azamathulla, Haghiabi 
and Parsaie [1]. 

3- Results and Discussion
      Based on the model development sention, the ANN, SVM 
and MARS model were prepared to predict the Cd. During the 
terial and error process of development of MLP model, the 
optimal achived structure is shown in Figure 4 and this model 
has suitable performance for predicting the Cd. It was found 
that increasing the number of the hidden layers and numbers 
of the neurons in the each hidden layer have not significant 
effect on increasing the accuracy of MLP model and just 
causes to increasing the computational cost. As seen from 
Figure 4 and with regarding to Equation 2, the dimensionless 
parameters including  Fr1, b/B, b/d1,  P/d1 were considered as 
inputs and Cd as output parameters. As seems from the Figure 
4, the MLP model contain two hidden layers which five and 
three neurons are located in the first and second hidden layer 
respectively. The hyperbolic tangent sigmoid (tansig) transfer 
function was considered for neurons in the first and second 
hidden layers, respectively. The Levenberg–Marquardt 
technique was used for MLP model learning.

Figure 4. Architect of the developed MLP model

     The performance of the MLP model during the training 
and testing stages are shown in Figure 6. In this figure, the 
predicted Cd were plotted versus the observed Cd. Moreover, 
in this figure, the results of error indices such as such as R2 

(Equation 7), and RMSE (Equation 8) have been presented, 
as well. In overall, these figure shows that the performance of 
the MLP for predicting the Cd is suitable.
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     Developing the SVM model is similar to the ANN. 
This means that the same dataset which had been used for 
training and testing the ANN was applied for preparation of 
SVM. The structure of developed SVM model is shown in 
Figure 5. The results of SVM in stages of model preparation 
are shown in Figure 6. For preparation of SVM, radial 
basis function (RBF) and polynomial kernel function were 
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assessed. Testing of both kernel functions show that the RBF 
kernel function has better performance in compare with the 
polynomial function. During the preparation of SVM, the 
value of internal coefficient (γ) and constant (σ) of radial 
basis function were found equal to 10931.07 and 51.24 
respectively. Assessing the performance of SVM model in 
both stages of development (training and testing) shows that 
this model with R2= 0.98 and RMSE=0.013 for training stage 
and R2= 0.96 and RMSE=0.046 for testing stage is more then 
the MLP model with  R2= 0.87 and RMSE=0.035 for training 
stage and R2= 0.86 and RMSE=0.040.

Figure 5. The network architecture of SVM

      Preparation of MARS model as similar to ANN and SVM 
is based on the data set. To this purpose, collected data set 
which had used for developing the MLP and SVM are used 
for preparation of MARS model. During the MARS model 
development, at the first step thirty basic functions was 
considered and at the second step (pruning step) five basic 
functions was pruned and at the end, the optimal MARS 
model with twenty five basic functions was derived. The 
general form of the obtained model MARS is given in the 
Equation 9. The extended form of the MARS model is given 
in Table 1.
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      Equation 9 can be used for predicting the Cd. As seen from 
Table 1, Fr1, P/d1 and L/b have been appeared in the almost 
of the basic functions. It means that these three parameters 
in compare to other parameters are more affective on the Cd. 
This result of MARS model upholds the results of the MLP 
model sensitivity analysis were reported by Azamathulla, 
Haghiabi and Parsaie [1]. Moreover, the performances of the 
MARS model during the development process (training and 
testing stages) are given in the Figure 6. Observing Figure 6, 
it was found that the performance of the MARS model for 
prediction the Cd is so suitable. 
     Assessing the results of utilized models (MARS, SVM 
and MLP) with regarding to error indices (R and RMSE) 
domanestated that the MARS model was the most accurate 
espacillay in testing stage. They incdices provide only an 
avrage value and does not provide any information about the 
error distribution. Hence, in this study another error index 
including developed discrepancy ratio (DDR) was used to 
present more information about the error propertices. The 
DDR index is calulcated as Eqaution 9. As presented in 
Equation 9, the DDR index is defined as ratio of predicted 
valued to observed value. It is notable that the predicted 
values are the output of applied models in training and testing 
stages. DDR index in addition to provide more information 
about the error distribution, it is charecterized the over and 
lower propertices of models. Results of DDR index for both 
stage of model development are shown in Figure 7 and their 
histograms are shown in Figure 8. Reviweing these figures 
shows that in training stage, the DDR values of SVM model 
varies between the -0.08 and 0.24, the DDR values of MLP 
model varies between -0.4 and 0.4 and DDR values of MARS 
model vaies between 0.08 and 0.1. Comparision the DDR of 
models in training stage shows that the mininmum range of 
DDR value in training stage is related MARS model and 
maximum range of DDR is related to MLP model.  These 
results regareding the DDR index for testing stage were 
almost repeated. Evalution the result of applied models in 
term of DDR index shows that the results of MARS model 
are more relaible. Another finding from the DDr index is 
defining the over and lower estimation propertices of models. 
Histogram of DDR index shows that they models has not 
significant over-lowe estimation propertice.

Figure 6. The Performance of the applied models during the training and testing stages.
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Table 1. The Basic function and related coefficient of the MARS model

Basic function equation Coefficient (β)
 h1 (X) BF1 = max(0, 0.508 –b/B) -0.9929
 h2 (X) BF2 = max(0, P/d1 -0.37) -3.2360

 h3 (X) BF3 = max(0, 0.37 - P/d1) 0.6680

 h4 (X) BF4 = BF1 × max(0, Fr1 -0.294) 2.1341

 h5 (X) BF5 = BF1 × max(0, 0.294 - Fr1) -2.4153

 h6 (X) BF6 = max(0, Fr1 -0.453) -0.8700

 h7 (X) BF7 = max(0, 0.453 - Fr1) -19.5510

 h8 (X) BF8 = BF7 × max(0, 4.167 –b/d1) -1.1161

 h9 (X) BF9 = BF2 × max(0, b/B -0.508) 2.6338

 h10 (X) BF10 = BF7 × max(0, b/B -1.26) 89.0015

 h11 (X) BF11 = BF7 × max(0, 1.26 - b/B) -91.9290

 h12 (X) BF12 = BF7 × max(0, 1.5 - b/B) 90.9047

 h13 (X) BF13 = max(0, b/B -0.508) × max(0, Fr1 -0.558) 0.8923

 h14 (X) BF14 = max(0, b/B -0.508) × max(0, 0.558 - Fr1) -1.1671

 h15 (X) BF15 = max(0, b/B -0.508) × max(0, b/d1-4.167) -0.1619

 h16 (X) BF16 = BF2 × max(0, 4.167 - b/d1) 0.8684

 h17 (X) BF17 = BF7 × max(0, 3.409 - b/d1) 1.1468

 h18 (X) BF18 = BF2 × max(0, b/d1-3.495) 0.6231

 h19 (X) BF19 = BF2 × max(0, 3.495 - b/d1) -0.8032

 h20 (X) BF20 = max(0, b/d1-0.953) × max(0, P/d1 -0.88) 2.4854

 h21 (X) BF21 = BF2 × max(0, b/B -1.508) -61.3033

 h22 (X) BF22 = BF2 × max(0, 1.508 - b/B) 2.0168

 h23 (X) BF23 = max(0, L/d1-0.953) × max(0, 0.156 - Fr1) 0.8152

 h24 (X) BF24 = max(0, 4.46 - b/d1) -0.0328

 h25 (X) BF25 = BF7 × max(0, b/ d1-2.788) -0.5373

(9)
Predicted Value 1
Observed Value

DDR  = − 
 

4- Conclusions
   Discharge coefficient of flow measurment structure is 
the main parameter for controlling the efficiency of hydro 
systems. Among the hydraulic structures, Lateral intakes 
are the common structure widely uses in water engineering 
projects. Recently by advancing the soft computing 
techniques in most area of engineering especially in water 
engineering, the discharge coefficient of lareral intakes 
have been models using these techniques. In this study, the 
new soft computing model entitled multivariate adaptive 
regression splines (MARS) in hydraulic engineering has been 

used for mathematical expression for Cd.  The performance of 
MARS model was compared with the SVM and ANN which 
were developed to this end as well. Th MARS technique with 
R2=0.98 and RMSE=0.013 in calibration stage and R2=0.96 
and RMSE=0.023 in validation stage has satisfactory 
performance in intelligent modeling of Cd of lateral intakes. 
Reviweing of mathematical form derived from MARS 
technique for Cd, indicated that relative upstream head, 
relative weir length and Froude number of flow at beginning 
of weir are most importact factors on Cd. Results of ANN 
and SVM indicated that although these models have suitale 
value for error indices in development stages (R2

MLP=0.86 
and RMSE2

MLP=0.040, R2
SVM=0.86 and RMSE2

SVM=0.046), 
but their precisions are less then the MARS model. The high 
precision of MARS model is due to intelligent definition of 
most effective parameters are defined automatically during 
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the mapping the realtion between the independent and 
dependent variables. Another benefit of the MARS model 
are related to programing its results for another purposes. To 
prived more information about the results of applied models, 
the DDR index was calcluated. Evaltion of DDR shows that 
the minimum data dispersivity is related to MARS model. 
Therefor, the modeling by MARS model is more reliable.

Figure 7. Values of DDR for applied models in training and 
testing stages

Figure 8. Histogram of DDR values for applied models in 
training and testing stages
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