[1]S. Dyke, B. Spencer Jr, M. Sain, J. Carlson, Experimental verification of semi-active structural control strategies using acceleration feedback, in: Proc. of the 3rd Intl. Conf. on Motion and Vibr. Control, 1996, pp. 291-296.
[2] B. Spencer Jr, S. Dyke, M. Sain, J. Carlson, Phenomenological model for magnetorheological dampers, Journal of engineering mechanics, 123(3) (1997) 230-238.
[3] S. Dyke, B. Spencer Jr, M. Sain, J. Carlson, Modeling and control of magnetorheological dampers for seismic response reduction, Smart materials and structures, 5(5) (1996) 565.
[4] J. Carlson, Magneto-rheological fluid dampers for semi-active seismic control, in: Proc. 3rd Int. Conf. on Motion and Vibration Control, 1996-9, 1996, pp. 35-40.
[5] B. Spencer, J.D. Carlson, M. Sain, G. Yang, On the current status of magnetorheological dampers: seismic protection of full-scale structures, in: American Control Conference, Proceedings of the 1997, IEEE, 1997, pp. 458-462.
[6] G. Yang, B. Spencer Jr, J. Carlson, M. Sain, Large-scale MR fluid dampers: modeling and dynamic performance considerations, Engineering structures, 24(3) (2002) 309-323.
[7] L.M. Jansen, S.J. Dyke, Semiactive control strategies for MR dampers: comparative study, Journal of Engineering Mechanics, 126(8) (2000) 795-803.
[8] A. Karamodin, Damage Control of Structures (PhD dissertation), (2008).
[9] A. Karamodin, F. Irani, A. Baghban, Effectiveness of a fuzzy controller on the damage index of nonlinear benchmark buildings, Scientia Iranica, 19(1) (2012) 1-10.
[10] L. A. Zadeh, Fuzzy sets, Inf. Control, 8(3) (1965) 338–353.
[11] N.N. Karnik, J.M. Mendel, Type-2 fuzzy logic systems: type-reduction, in: Systems, Man, and Cybernetics, 1998. 1998 IEEE International Conference on, IEEE, 1998, pp. 2046-2051.
[12] N.N. Karnik, J.M. Mendel, Centroid of a type-2 fuzzy set, Information Sciences, 132(1-4) (2001) 195-220.
[13] J.M. Mendel, Uncertain rule-based fuzzy logic system: introduction and new directions, (2001(.
[14] N.N. Karnik, J.M. Mendel, Introduction to type-2 fuzzy logic systems, in: Fuzzy Systems Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on, IEEE, 1998, pp. 915-920.
[15] J.M. Mendel, R.B. John, Type-2 fuzzy sets made simple, IEEE Transactions on fuzzy systems, 10(2) (2002) 117-127
[16] J.M. Mendel, R.I. John, F. Liu, Interval type-2 fuzzy logic systems made simple, IEEE transactions on fuzzy systems, 14(6) (2006) 808-821.
[17] J.M. Mendel, Advances in type-2 fuzzy sets and systems, Information sciences, 177(1) (2007) 84-110.
[18] D.G. Schwartz, The case for an interval-based representation of linguistic truth, Fuzzy Sets and Systems, 17(2) (1985) 153-165.
[19] M. Ghaemi, M.-R. Akbarzadeh-T, M. Jalaeian-F, Adaptive interval type-2 fuzzy PI sliding mode control with optimization of membership functions using genetic algorithm, in: Computer and Knowledge Engineering (ICCKE), 2012 2nd International eConference on, IEEE, 2012, pp.123-128.
[20] M. Ghaemi, M.-R. Akbarzadeh-T, M. Jalaeian-F, Optimal design of adaptive interval type-2 fuzzy sliding mode control using genetic algorithm, in: Control, Instrumentation and Automation (ICCIA), 2011 2nd International Conference on, IEEE, 2011, pp. 626-631.
[21] M.-Y. Hsiao, T.-H.S. Li, J.-Z. Lee, C.-H. Chao, S.-H. Tsai, Design of interval type-2 fuzzy sliding-mode controller, Information Sciences, 178(6) (2008) 1696-1716.
[22] T.-C. Lin, H.-L. Liu, M.-J. Kuo, Direct adaptive interval type-2 fuzzy control of multivariable nonlinear systems, Engineering Applications of Artificial Intelligence, 22(3) (2009) 420-430.
[23] D.W.W.W. Tan, A simplified type-2 fuzzy logic controller for real-time control, ISA transactions, 45(4) (2006) 503-516.
[24] H. Shariatmadar, S. Golnargesi, M.R. Akbarzadeh Totonchi, Vibration control of buildings using ATMD against earthquake excitations through interval type-2 fuzzy logic controller, Asian Journal of Civil Engineering-Building And Housing, 15(3) (2014) 321-338.
[25] D. Vamvatsikos, Seismic Performance, Capacity and Reliability of Structures as Seen Through Incremental Dynamic Analysis (PhD dissertation), (2005).
[26] Y. Ohtori, R. Christenson, B. Spencer Jr, S. Dyke, Benchmark control problems for seismically excited nonlinear buildings, Journal of Engineering Mechanics, 130(4) (2004) 366-385.
[27] N.N. Karnik, J.M. Mendel, Q. Liang, Type-2 fuzzy logic systems, IEEE transactions on Fuzzy Systems, 7(6) (1999) 643-658.
[28] Q. Liang and J. M. Mendel, Interval type-2 fuzzy logic systems: theory and design, IEEE Trans. Fuzzy Syst., 8(5) (2000) 535-550.
[29] V.V. Bertero, Strength and deformation capacities of buildings under extreme environments, Structural engineering and structural mechanics, 53(1) (1977) 29-79.
[30] N. Luco, C.A. Cornell, Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions, Earthquake Spectra, 23(2) (2007) 357-392.
[31] A. Nassar, H. Krawlinker, Seismic demands for SDOF and MDOF systems. Rep 95, the John Blume Earthquake Engineering Center, in, Stanford University, 1991.
[32] I. Psycharis, D. Papastamatiou, A. Alexandris, Parametric investigation of the stability of classical columns under harmonic and earthquake excitations, Earthquake engineering & structural dynamics, 29(8) (2000) 1093-1109.
[33] S.S.F. Mehanny, G.G. Deierlein, Modeling and assessment of seismic performance of composite frames with reinforced concrete columns and steel beams, Stanford University CA, 1999.
[34] G. De Matteis, R. Landolfo, D. Dubina, A. Stratan, Influence of the structural typology on the seismic performance of steel framed buildings, (2000).
[35] D. Vamvatsikos, C. Cornell, Seismic performance, capacity and reliability of structures as seen through incremental dynamic analysis, John A. Blume Earthquake Engineering Center Rep. No. 151, in, Stanford University, CA, 2002.
[36] F.E.M. Agency, Recommended Seismic Design Criteria for New Steel Moment-frame Buildings: Fema 350, Fema, 2013.