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ABSTRACT: In recent decades, analysis of structures considering variability of some parameters for 
more reliable design has attracted the attention of researchers. In this paper, the stochastic analysis of a 
cantilever deep beam made of large deformable neo-hookean material is carried out. For this purpose, 
the meshless local Petrov-Galerkin (MLPG) method is developed to obtain the geometrically non-linear 
equilibrium equations. The radial point interpolation method is used for generating the shape functions. 
The incremental iterative Newton-Raphson method with suitable load steps is used to solve the non-
linear governing equations. The results of deterministic analysis obtained with proposed method are 
compared with the finite element results and good agreement is achieved. The initial elasticity modulus 
of neo-hookean material is considered to be uncertain variable. To generate random field of uncertain 
variable with normal, lognormal and uniform probability density functions (PDFs), the Monte Carlo 
Simulation (MCS) technique was employed. The sufficient number of simulations for convergence 
the results was determined experimentally. The effect of elasticity modulus, PDF and coefficients of 
variation (COV) on maximum vertical displacement, PDF and COV of results are studied in details. 
Comparing the stochastic and deterministic results shows that the uncertainty in mechanical properties 
has significant effect on results.
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1- Introduction
   Structural analysis generally is faced with some uncertainties 
in related parameters such as applied loads, material properties, 
geometry and other quantities. Analysis of structures 
considering variability of parameters yields to more reliable 
design. Hence, stochastic analysis has found extensive 
attention by researchers in recent decades. Chakraborty and 
Bhattacharyya proposed a stochastic finite element method 
for determining response variability for three-dimensional 
(3D) static problems subjected to spatial uncertainties of the 
material properties [1]. In their work the random parameters 
were generated using the Monte-Carlo Simulation (MCS) 
technique. Xu et al. investigated free vibration of functionally 
graded (FG) beam in which both physical parameters of each 
constituent material and material distribution are treated 
as random variables with low variability [2]. Singh et al. 
examined the influence of random variables on the free 
vibration of shear deformable composite plates using the finite 
element method in conjunction with first order perturbation 

technique [3]. Sakata et al. employed the perturbation method 
and the finite difference method, analyzed a stochastic 
homogenization problem of a periodic porous material 
considering a microscopic geometrical random variation [4]. 
Naskar et al. developed the stochastic representative volume 
element (SRVE) to quantify the probabilistic variability in 
free vibration responses of damaged thin-walled laminated 
composite beams due to spatially random stochasticity in 
the micro-mechanical and geometric properties [5]. Onkar et 
al. proposed a stochastic finite element formulation for the 
buckling analysis of laminated plates with random material 
properties using perturbation technique [6]. A comparison 
among three methodologies usually employed in stochastic 
analysis of structures including direct Monte-Carlo method, 
perturbation techniques and theory of fuzzy sets presented by 
Lima and Ebecken [7].
   Some researches in the stochastic and reliability field of 
structures have been carried out using the meshless method 
that do not require a structured mesh to discretize the problem 
domain. Hosseini and Shahabian using the MCS studied on the 
effect of variation in material properties on dynamic response 
of FG thick hollow cylinders under mechanical shock loading 
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[8, 9]. Rao and Rahman developed the enriched element-
free Galerkin method for analysis of elastic–plastic cracked 
structures with uncertainties in load, material properties, and 
crack geometry [10]. They used the first-order reliability 
method (FORM) for predicting probabilistic fracture response 
and reliability of cracked structures. The propagation of 
thermal and elastic waves in the FG thick hollow cylinder 
with uncertainty in mechanical properties using the MLPG 
method under thermal shock loading is studied by Hosseini 
et al. [11]. The application of meshless method for solving 
stochastic advection-diffusion equations based on radial basis 
functions was developed by Dehghan and Shirzadi [12]. Su et 
al. presented the stochastic spline fictitious boundary element 
method for modal analysis of plane elastic problems in which 
the structural parameters modeled as random fields [13]. 
   Hyperelastics are special case of large deformable materials 
in which the stress-strain relationship derives from a strain 
energy density function. Neo-hookean, Mooney-Rivlin 
and Ogden are three hyperelastic material models which 
are widely used in articles [14]. Anani and Rahimi studied 
on thick walled spherical shells composed of functionally 
graded incompressible neo-hookean hyperelastic materials 
[15]. Soares and Gonçalves investigated large-amplitude 
vibrations of a rectangular hyperelastic membrane [16]. In 
their work, geometric non-linearity due to finite deformations 
was taken in to account and material non-linearity were 
described by deformations of a hyperelastic body described 
by Ogden’s model under impact loading is done by Feng et 
al. [17].
  Despite the finite element method (FEM) is a standard 
analytical tool for the large deformation problems, extremely 
large deformations and the nearly incompressible nature of 
hyperelastic materials, cause to some drawbacks such as 
mesh distortion in applying this method. Since no mesh is 
used in meshless method, it is an effective method for large 
deformation problems. In this method, distorted geometry 
doesn’t have a negative impact on the solution accuracy [18]. 
Gu et al. developed a meshless method based on the total 
Lagrangian (TL) approach for large deformation problems 
[19]. They computed the material moduli using the strain 
energy density function given for hyperelastic compressible 
neo-hookean materials. Ghadiri rad et al. proposed a MLPG 
method for elasto-dynamic analysis of geometrically non-
linear two dimensional (2D) domains made of neo-hookean 
hyper-elastic functionally graded materials [20, 21]. 
    In this paper, the stochastic analysis of hyperelastic 
materials with large deformation is carried out using the 
geometrically nonlinear MLPG method. The neo-hookean 
model is employed to model hyper elasticity of material. The 
initial elasticity Modulus of neo-hookean material is supposed 
to be uncertain where randomly generated using the MCS in  
which  over  1000  samples  are  generated  for  each  set  of  
analytical results. The effect of elasticity modulus PDF and 
COV on maximum vertical displacement, PDF and COV of 
results are studied in details.

2- Stochastic hyperelastic constitutive model
    In geometrically non-linear analysis of some materials, such 
as rubber like materials, linear elastic model is not consistent 
with the test data. The stress-strain behavior of such materials 
can be defined using hyperelastic models. In these models, 
the second Piola-Kirchhoff stresses, the stresses computed 

with respect to the initial configuration, can be derived from 
a strain energy density function per unit of un-deformed 
volume which is denoted by ‘W’. The compressible neo-
hookean model is a hyperelastic material model in which the 
strain energy density function is expressed as follow:

(1)( ) ( )20 0
1 03 ln ln

2 2
W I J Jµ λµ= − − +

  Where ‘  ’ and ‘   ’ are the Lame constants at the initial 
configuration. ‘I1’ is the first strain invariant and ‘J’ is 
determinant of deformation gradient tensor ‘F’. The initial 
elasticity modulus ‘E ’ and Poisson ratio ‘v ’ are related to the 
Lame constants using the following equations.

( ) ( )20 0
1 03 ln ln

2 2
W I J Jµ λµ= − − +( ) ( )20 0

1 03 ln ln
2 2

W I J Jµ λµ= − − +

(2)( )0 2 1
Eµ
ν

=
+

(3)( )( )0 2 1 1 2
Eλ

ν ν
=

+ −

   The initial elasticity modulus is considered as uncertain 
property which is generated using the equations presented in 
Table 1. In this table, ‘z(i)’ is the standard normal random 
number at the ‘i’th simulation and The PDF stands for the 
probability density function which maps the standard random 
numbers on to the real values [22]. In the normal probability 
density function, the PDF of random variable ‘X’ are bell-
shaped. The random variable is a lognormal if the ‘y=ln(X)  
’ is normally distributed. For a uniform random variable, the 
PDF has a constant value for all random variable located in 
the sample space. The most important PDFs used in reliability 
analysis of structures are introduced in details in Nowak and 
Collins’s book [22].

3- Deformation gradient tensor
   In large deformation analysis, two different configuration 
can be imagined for a body: initial configuration and current 
configuration (see Figure 1). According to Figure 1, the 
following relation can be written between the position vectors 
in the initial and current configuration which are denoted by 
‘Xi’ and ‘xi’ respectively.

(4)i i ix X u= +

Figure 1. Initial and deformed configuration of a body with 
finite deformation
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Table 1. The equations for generating random elasticity modulus in various PDFs [22]
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  where ‘ui’ is the displacement vector. Using the chain 
rule, the relationship between ‘dxi’ and ‘dXi’ can be readily 
obtained as follows.

(5)i
i j ij j

j

xdx dX F dX
X
∂

= =
∂

  where ‘Fij’ is called deformation gradient tensor. Substituting 
Equation 4 into Equation 5 yields to:

i i i
ij ij

j j j

X u uF
X X X

δ∂ ∂ ∂
= + = +
∂ ∂ ∂ (6)

   ‘   ’ is Kronecker delta function. The last equation can be 
rewritten in the following matrix notation:

i i i
ij ij

j j j

X u uF
X X X

δ∂ ∂ ∂
= + = +
∂ ∂ ∂

(7)[ ]
1

1

xx xy

yx yy

u u
F F X YF
F F v v

X Y

∂ ∂ +   ∂ ∂= =    ∂ ∂   + ∂ ∂ 
  Deformation gradient vector can be defined similar to the 
stress vectors. 
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   Thus, the increment of deformation gradient vector can be 
obtained as:
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  Using the shape function matrix ‘[N]’ the displacement 
functions ‘u’ and ‘v’ can be expressed with respect to its nodal 
values at the ‘n’ nodes located in support domain.

2 1

1 2

0
0

n
i i

i i i

N Du
N Dv

−

=

    
=    

     
∑ (10)

  Substituting the last equation into Equation 9, yields the 
increment of deformation gradient vector with respect to the 
nodal displacement.
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(12){ } [ ]{ }F B D∆ = ∆

   where:

[ ] [ ]1 2 nB B B B=  (13)
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4-  MLPG formulation
   In large deformation theory, two configurations including 
initial and current configurations can be considered for a body 
(see Figure 1). It should be mentioned that the real forces and 
geometry of problem can be defined merely in the current 
configuration. The differential equilibrium equation of a 
hyperelastic body at the current configuration is described as:

(14)[ ]

0

0

0

0

i

i

i
i

i

N
X

N
Y

B
N
Y

N
X

∂ 
 ∂ 

∂ 
 ∂ =
 ∂
 ∂ 
 ∂
 ∂ 

, 0ji j ibσ + = (15)

   where ‘bi ’ is the body force and ‘     ’ is the Cauchy stress 
tensor. It should be mentioned that three stress tensors 
including Cauchy ‘    ’, 1st Piola-Kirchhoff ‘P’ and second 
Piola-Kirchhoff ‘S’ can be defined in large deformation 
theory. The Cauchy and second Piola-Kirchhoff stress 
tensors give the stress state in the deformed and initial 
configurations, respectively. The 1st Piola-Kirchhoff stress 
tensor is called nominal stress tensor and defined as applied 
forces at the current configuration to the area in the reference 
configuration. Since before the analysis, the deformed 
configuration of body is unknown, the 1st Piola-Kirchhoff 
stress is useful to obtain the equilibrium equation at the un-
deformed configuration in total lagrangian approach. Thus, 
one can write the equilibrium equation with respect to the 
initial configuration as follow [23]:

, 0ji j ibσ + =

, 0ji j ibσ + =

(16), 0ji j iP b+ =

   Using the weight function ‘Wi’ in local subdomains at the 
initial configuration ‘     ’, the weak-form of Equation 16 will 
be obtained. 

(17)( ), 0ji j i iP b W d
Ω

+ Ω =∫

( ), 0ji j i iP b W d
Ω

+ Ω =∫

   The following relation between the 1st and second piola- 
Kirchhoff stress tensors can be easily derived.

(18)ij ik jkP S F=

   Applying gauss divergence theorem to the Equation 17, 
using stress-strain and strain-displacement relationships and 
after performing some calculations, this equation can be 
converted the following incremental matrix form [23].

(19)[ ]{ } { }TK D P∆ = ∆

   where, ‘[KT]’ is the tangent stiffness matrix and ‘     ’ is 
the equivalent incremental nodal force vector which can be 
obtained from the following equations:

[ ]{ } { }TK D P∆ = ∆

(20)
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    In the recent equations, some matrices are used which are 
introduced in the following equations:
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(26)

   ‘Ni’ In Equation 25, is the shape function at the node ‘i’. 
In this paper, the radial point interpolation method (RPIM) is 
employed to construct the shape function. 

5-  RPIM shape function
   One of the well-established methods for geometrically 
non-linear analysis of structures is the finite element method. 
However, extremely large deformations and the nearly 
incompressible nature of hyper-elastic materials cause to 
some drawbacks such as mesh distortion in applying this 
method. The mesh regeneration process in spite of prevention 
excessive element distortion, increases the time of analysis. 
  In meshless methods the distributed nodes in problem 
domain, rather than the meshing, are used for discretization 
of problem domain and its boundaries. Because no mesh is 
used in these methods, extremely large deformations doesn’t 
have a negative impact on the solution accuracy.
  The displacement field function ‘u’ can be interpolated by 
function ‘uh’ which is in terms of nodal values of displacement 
at the all nodes located in support domain ‘    ’ of point ‘xQ’, 
using the following equation:

sΩ

(27)
[ ]{ }

{ }
1

( ) ( )
n

h
i i

i
T

u a R R a

x y
=

= =

=

∑x x

x

   where, ‘a1,a2,...,an’ are  unknown coefficients and ‘ [R]’ is 
the radial basis function (RBF) at the all nodes located in ‘    ’. sΩ
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Many types of RBFs are used in literature such as Gaussian, 
thin plate, splineradial and multi-quadric basis functions [24]. 
In this paper, multi-quadric basis function with the following 
expression is used.

( ) ( )( )2 2 2( )
q

i i iR x x y y c= − + − +x (28)

   where, ‘c’ and ‘q’ are constant parameters which are 
experimentally determined as ‘c=0.5’ and ‘q=1.03’ to provide 
the best accuracy.  The unknown coefficients ‘a1,a2,...,an’ can 
be calculated by applying the Equation 27 at the all nodes 
located in ‘     ’.sΩ

{ } [ ]{ }0D R a= (29)

    where, ‘{D}’ is the nodal values of displacement field 
function and ‘[R0]’ is the moment matrix which is contains 
the nodal values of matrix ‘[R]’. 
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1 2 2 2 2
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1 2
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( ) ( ) ( )
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 
 
 =
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 
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x x x
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



   



  Using the Equation 29, the unknown coefficient can be 
obtained as follow:

{ } [ ] { }1
0a R D−= (31)

   Substituting the last equation into Equation 27, yields the 
shape function matrix.

[ ][ ] { } [ ]{ }1
0( )hu R R D N D−= =x (32)

    According to the Equation 20, the tangent stiffness matrix 
changes by increasing the deformation gradient and stresses. 
Thus, the Equation 19 is a non-linear equation which must be 
solved using an incremental-iterative procedure. In this paper, 
the Newton-Raphson method, presented in the next section, 
is implemented for solving the nonlinear governing equation.

6- Newton-Raphson technique
6- 1- Incremental load steps
   Using the Newton-Raphson technique, the residual force 
of Equation 19, at the n’th load step can be calculated by the 
following equation:

{ } { } { }n
n T n nR K D P = ∆ − ∆  (33)

   where ‘[KT
n]’ is the tangent stiffness matrix at the initial 

of the load  step. The iteration steps should be performed to 
minimize the residual force.

6- 2- Iteration steps
    The Newton-Raphson iteration formula is defined as:

(34){ } { }11k n
n T nD K Rδ

−+  = −  
   Thus, the incremental displacement at the ‘k+1’th iteration 
step can be modified using the following equation.  

(35){ } { } { }1 1Ä Äk k k
n n nD D Dδ+ += +

   By substituting ‘            ’ into Equation 33 and repeating this 
process, the residual force vector will be minimized. These 
iterations will be continued until the size of incremental 
displacement vector becomes less than a predefined value.

7-  Numerical results and discussion
7- 1- Verification
   At the first, a neo-hookean cantilever deep beam subjected 
to uniform pressure at the free end is considered to verify 
the accuracy of proposed non-linear meshless method. The 
dimensions of the beam is considered to be ‘2*10’ and plane 
strain condition is supposed (see Figure. 2). The applied 
traction at the k’th load step is defined as follow:.

{ }1Ä k
nD +

(36)y kT f kβ= = ×

Figure. 2. The sketch of problem

     where ‘    ’ is the load scale factor which is selected to be ‘   
  =10’. The loading is applied using ten load incremental 
steps. The mechanical properties of the beam is selected as 
[19]:

y kT f kβ= = ×
y kT f kβ= = ×

(37)4
0 0.5 10 Paµ = ×

(38)3
0 3.3 10 Paλ = ×

   The vertical displacement of point ‘A’ obtained from MLPG 
method for all load steps are listed in table Table 2 and 
compared with the reference FEM results. In this table, the 
percentage difference between the two methods is calculated 
using the following equation:.

(39)(%) 100
MLPG FEM
A A

v FEM
A

v ve
v
−

= ×

    According to this table, the results of proposed method are 
in good agreement with the FEM.
    The load-vertical displacement of point ‘A’ obtained from 
linear analysis and geometrically nonlinear analysis for ten 
load steps is plotted in Figure 3. According to this figure, it 
can be seen that the deformation of the deep beam is so large 
that the obtained results from linear and non-linear analysis 
are significantly different.
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   Based on Equation 20, the tangent stiffness matrix in 
geometrically non-linear problems consists of two parts. The 
first part is called the ‘linear stiffness matrix’ because it is a 
function of the geometry and material properties. The second 
part is called the ‘initial-stress matrix’ and depends on the 
stress state ‘      ’ at the initial of the load steps. The addition 
of initial-stress matrix, can increase or reduce the stiffness 
of the structure depend on the stress state. As seen in Figure 
3, the neo-hookean cantilever deep beam become stiffer by 
increasing the load steps.

7- 2- Determination the sufficient number of Monte Carlo 
simulations 
    In this section, the cantilever beam introduced in the 
previous section is analyzed considering uncertainty in initial 
elasticity modulus ‘E’. The random values of this property 
is generated using Monte-Carlo simulation with uniform, 
normal and lognormal PDFs. The COV of all PDFs is 
selected to be between 0 to 16 percent. The load scale factor 
is selected to be ‘         ’ and loading is applied using ten load 
incremental steps.
   The mean value of vertical displacement of point ‘A’ at the 
end of load steps vs. the number of simulations for normal 
PDF is plotted in Figure 4. It is obvious from this figure 
that after ‘600’ simulations convergence has been achieved 
for various COVs. The variation of mean values of vertical 
displacement after this number of simulations is less than 1%. 
The similar diagram is also presented for variance values of 
vertical displacement in Figure 5. According to this figure, 
the variance of vertical displacement is converged after ‘400’ 
simulations so that after this number of simulations, the 
variation of variance is less than 1%. By increasing the COV, 
the dispersion of the generated data with various probability 
density functions increases. Therefore, more simulations are 
needed to make the mean and variance of results converge to 
a certain value. According to Figures 4 and 5, one can deduce 
that for the selected COVs, ‘600’ simulations is sufficient to 
achieve the results convergence.

Table 2. The vertical displacement of point ‘A’ compared with the FEM results [19]

Loading steps k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

FEM [18] vA 0.816 1.617 2.376 3.078 3.714 4.283 4.768 5.235

MLPG
vA 0.786 1.566 2.318 3.022 3.668 4.251 4.772 5.235

ev (%) 3.68 3.15 2.44 1.82 1.24 0.75 0.08 0

Figure 3. Comparison between linear and non-linear analyses

S  

5β =

Figure 4. Determination the sufficient number of simulations 
for mean convergence of vertical displacement

Figure 5. Determination the sufficient number of simulations 
for variance convergence of vertical displacement

7- 3-  Stochastic analysis
   In this section, the effects of elasticity modulus PDF and 
COV on results is studied. For this purpose, the variance of 
vertical displacement of point ‘A’ at the all load steps for 
randomly generated elasticity modulus with various COVs 
in normal distribution is plotted in Figure 6. As can be 
seen in this figure, the variance of vertical displacement is 
increased by increasing the COV of initial elasticity modulus. 
Similar diagram is also plotted for various probability density 
functions with COV=16%, in Figure 7. According to this 
figure it can be concluded that the variance of results is also 
sensitive to elasticity modulus PDF. In addition, according 
to Figures 6 and 7 it can be seen that at the high load steps, 
the slope of this diagram is decreased by increasing the load 
steps. The reason for this matter is that the neo-hookean deep 
beam becomes stiffer by increasing the load steps.
   Figure 8 represents the maximum vertical displacement of 
point ‘A’ for uncertain elasticity modulus with normal PDF 
and various COVs in compared with deterministic results 
at the all load steps. In Table 3, the maximum values of 
vertical displacement of point ‘A’ at the end of load steps 
for various PDFs and COVs are listed and compared with 
the deterministic result. According to this table it can be 
deduced that maximum vertical displacement in lognormal 
distribution is more than other PDFs.
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Table 3. Comparison of maximum values of vertical displacement with deterministic result. The vertical displacement obtained from 
deterministic analysis is equal to ‘3.570 m’

PDF COV (%) Maximum displacement Difference percentage

Normal

4 3.852 7.90
8 4.270 19.61
12 5.217 46.13
16 5.686 59.27

Lognormal

4 3.848 7.78
8 4.287 20.08
12 4.647 30.17
16 5.840 63.59

uniform

4 3.747 4.96
8 4.056 13.11
12 4.395 23.11
16 4.833 35.38

Figure 6. The variance of vertical displacement of point ‘A’ at 
the all load steps for randomly generated elasticity modulus 

with various COVs in normal PDF

Figure 7. The variance of vertical displacement of point ‘A’ at 
the all load steps for various probability density functions with 

COV=16%

Figure 8. The maximum vertical displacement for various 
COVs in normal PDF in compared with the deterministic 

results

   In Figure 9, the vertical displacement of point ‘A’ at the 
end of load steps vs. the sample number for ‘COV=16%’ in 
normal distribution is plotted. According to this figure, the 
minimum and maximum vertical displacements are occurred 
at the 37th (2.32 m) and 327th (5.69 m) samples, respectively. 

Figure 9. The vertical displacement of point ‘A’ at the end of 
load steps vs. the sample number for ‘COV=16%’ in normal 

distribution

   In Figure 10, the maximum, minimum and deterministic 
values of vertical displacements of point ‘A’ at the all load 
steps for ‘COV=16%’ in normal distribution is presented. 
According to this figure it can be seen that uncertainty in 
mechanical properties has significant effect on structural 
responses.

Figure 10. Maximum, minimum and deterministic results for 
‘COV=16%’ in normal PDF
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7- 4- Result distribution (PDF of results)
   The histograms of vertical displacement of point ‘A’ for 
normal, lognormal and uniform PDFs of elasticity modulus 
with ‘COV=16%’ are plotted in Figure 11. By comparing these 
histograms, it can be concluded that the PDF of mechanical 
properties PDF has a significant effect on results PDF.

(a)

(b)

(c)

Figure 11. Histogram of vertical displacement of point ‘A’ for 
various elasticity modulus PDFs with ‘COV=16%’: (a) normal, 

(b) lognormal and (c) uniform

8- Conclusion
    In the present study, a neo-hookean cantilever deep beam is 
studied considering uncertainty in its mechanical properties. 
A hybrid meshless method which is a composition of MLPG 
method and Newton-Raphson technique is proposed for 
geometrically non-linear analysis of structure. The uncertainty 
of mechanical properties is simulated using MCS technique 
with normal, lognormal and uniform PDFs and various COVs. 
Several numerical analyses are carried out to investigate the 
effects of probability parameters on structural responses. The 
main results of this paper are outlined as follow:   
•	 The results of deterministic analysis obtained from 

proposed nonlinear MLPG method match very well with 
those obtained by FEM. 

•	 The obtained results from linear and nonlinear analysis 
are significantly different. 

•	 The neo-hookean cantilever deep beam becomes stiffer 
by increasing the deformations.

•	 The mean value and variance of vertical displacement 
vs. the number of simulations at the end of load steps are 
plotted. It is observed that after 600 simulations, the both 
parameters are converged. 

•	 For this problem, by increasing the load steps, the 
variance of results is increased but the slope of diagram 
at the high load steps is decreased. 

•	 The variance of results is very sensitive to type of 
elasticity modulus PDF.

•	 The difference percentage in compared with deterministic 
results for all PDFs and COV of elasticity modulus are 
reported in table 3.

•	 The PDF of mechanical properties has a significant effect 
on results PDF.
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