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ABSTRACT: In this study, the discharge coefficient (C
d
) of non-linear weirs with a triangular 

plan was mathematically modeled using a group of method data handling (GMDH), genetic 
programming (GP) and multivariate adaptive regression splines (MARS) techniques. For 
this purpose, related datasets including parameters on C

d
 were collected from literature. These 

methods were selected since they are classified as smart function fitting (SFF) methods. The main 
advantages of SFF methods compared to other artificial intelligence methods are defining the most 
effective parameters on output and assigning more weights to them in mathematical expression 
process. Results of MARS indicated that this method with fifteen basic functions could achieve 
good accuracy for modeling and predicting C

d
 (R2= 0.98 and RMSE=0.024).  Results of GMDH 

showed that this model includes two hidden layers and that there are five and four neurons at the 
first and second hidden layers, receptivity. Results of developed GP model declared that this model 
consists of three genes and has acceptable performance for modeling C

d
. Evaluation of proficiency 

of utilized models with each other indicated that the best accuracy is related to MARS model. 
Calculating the discrepancy ratio index (DDR) shows that the minimum range of DDR is related 
to MARS model.
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1- Introduction
   Modeling hydraulic structures is one of the major parts 
of hydraulic engineering. Among hydraulic structures, 
weirs have been widely used in hydraulic engineering 
projects. Modeling the hydraulic behavior of weirs is more 
important especially when designers decide to use them as 
flood evacuation system in the earthen dam projects [1]. 
Nowadays, due to the effect of climate change on river 
flow regimes and escalation of critical flood conditions, 
revising the performance of constructed weirs is necessary 
[2, 3]. In other words, increasing the discharge capacity 
of existing weirs is necessary. There are several ideas for 
improving the discharge capacity of weirs, however, the 
non-linear weirs are very convenient when it is needed 
to get out a lot of water in the low values of head flow 
[4-6].  Labyrinth weirs (W

L
) are the most famous form 

of nonlinear weirs. Several shapes such as triangular, 
trapezoidal, rectangular and piano key have been 
suggested for the crest of W

L
 [7]. The first study on W

L
 was 

reported by Taylor [8]. He conducted extensive studies on 
W

L
 with triangular, triangular and rectangular crest and 

he realized that the performance of trapezoidal labyrinth 
weir is more than others. Up to now, several studies on 
W

L
 have been reported. The concept of W

L
 has also been 

considered for improving the discharge capacity of side 

weirs [9-17]. Nowadays, W
L
 has been used in over 200 

hydro-system projects especially dam projects and river 
deviation systems. In this regard, Ute Dam, Loombah 
Dam, New London Dam, Brazos Dam, Koontz Lake 
Dam, and Isabella Dam can be mentioned [3, 18, 19]. Based 
on reports, at low value of head of flow over the crest, the 
discharge capacity of W

L
 is about three to five times more 

than linear weirs. It is notable that the discharge coefficient 
(C

d
) of W

L
 is less than the sharp linear weirs; however, their 

high discharge capacity is related to provide the larger 
length of their crest. Recently by advances in numerical 
methods such as computational fluid dynamic (CFD) 
techniques [20, 21] and soft computing methods in most 
areas of hydraulic engineering [22-24], Investigators have 
attempted to apply them for modeling the hydraulics of 
W

L
 [25]. Using of CFD technique for modeling labyrinth 

side weirs and W
L
 was reported by Aydin [26], Aydin and 

Emiroglu [27], Robertson [28] and Crookston and Tullis 
[29]. Using soft computing techniques such Artificial 
Neural Networks (ANN), Genetic Programming (GP), 
Support Vector Machine and M5 Model Tree, Group 
Method of Data Handling (GMDH), Adaptive Neuro-
Fuzzy Inference System for predicting the hydraulic 
characteristics of labyrinth side weirs have been reported 
by [30-39]. An overview of previous studies shows that 
so far, mathematical modeling of the C

d  
of W

L
 based on 

intelligent methods such as GP, MARS and GMDH has Corresponding author, E-mail: haghiabi.a@lu.ac.ir
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not been reported. Hence, in this paper, these techniques 
are used for intelligent mathematical expression for C

d
 of 

W
L
. 

2- Materials and Methods
  The C

d
 of triangular W

L
 is proportional to the geometric 

and hydraulic parameters. The main effective parameters 
are shown in Figure 1. In this figure, P  is the weir height, 
W is the main channel width, w is the width of one cycle, 
h and H are the depth and head of flow over the crest at 
upstream, respectively. y

0
 and E

0
 are the total of depth and 

head of flow at upstream, respectively. 

Figure 1. the scheme of labyrinth weir with triangular plans 
crest [40]

  Formulation of the C
d
 and influenced parameters are 

presented in Equation 1 [41].

(1)( ), , , , , , , , , ,d w cC f H W w L L P g V σ µ ρ=

    In which, L
w
 : total length of the crest of weir, L

c
: length 

of one cycle, g: gravitational acceleration, σ: surface 
tension and ρ: density of flow and V is the mean velocity 
of flow. Using dimensional analysis such as Π theorem, 
the most important parameters that influence the C

d
 are 

derived as Equation 2. It is notable that due to installation 
W

L
 in particular of flow, therefore, the flow condition 

always is subcritical, moreover, in irrigation channel flow 
is turbulent and investigators try to remove the effect of 
surface tension. Therefore, Froude, Reynolds and Weber 
numbers can be negligible [42].

(2), , ,c c
d

L LH w
C f n

P W W w

 = = 
 

   The ratio of w/W and L
c
/w introduces the Compression 

and elongation ratio. Preparation of artificial intelligent 
techniques are based on the dataset. Therefore, For this 
purpose, 223 data were extracted from various sources 
such as  Ghodsian [42], Kumar, Ahmad and Mansoor 
[43]. The statistical properties of the extracted dataset is 
given in Table 1.

Parameters range Min Max Avg. STDEV
Weir length 0.245 1.200 0.475 0.282

Channel width 0.245 0.300 0.271 0.019
Cycle width 0.123 0.280 0.213 0.075
Cycle length 0.123 1.082 0.373 0.263
Weir height 0.092 0.170 0.110 0.024
Total head 0.007 0.145 0.046 0.024

Discharge coefficient 0.148 0.906 0.595 0.172

Table 1. The range of collected dataset related to triangular 
labyrinth weirs

2- 1- Multivariate Adaptive Regression Splines (MARS)
  The MARS was come up with Friedman [44]. The 
MARS method categorized in non-parametric analysis 
of dataset. In MARS method, the features of dataset 
are divided into sub-domains and fitted splines to them 
to express a mathematical relation between independent 
and dependent variables. Mathematical form of derived 
formula from modeling using MRAS method is presented 
in Equation 3:

(3)( )( )0 ,11

N Kj

i ji v j ij
i

n C C B y
=

=

= + Π∑
   In which, n is the desired parameter, C

0
 is the constant 

value, C
i
 are the weight coefficients are multiplied in basis 

functions,                  is the truncated power basis function,      
         is the index of desired input parameters of the ith term 
and   jth product and k

j
 is the limitation of interaction order. 

The mathematical form of fitted splines are presented in 
equation:

( )( ),ji v j iB y
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(4)

  Where t
ji
  is the loop of spline, developing the MARS 

model consist of two stages. Frist is dividing the feature 
space of the dataset into many computational sub-domains 
and fitting spline to them. In this stage that named the 
growth stage, many splines are developed and fitted. In 
the next step, to increase the efficiency and prevent of 
local performance of the model, the number of splines is 
removed. This stage named purned stage. Removing the 
splines is based on the ing the residual sum of squares 
(RSS) error for dataset which are assigned to the training 
stage. The RSS is calculated via the following equation:

( )
2

1

N

i i
i

RSS n f
=

= −∑ (5)

  In which, n
i
 is the observed data and f

i
 is the predicted 

data. The accuracy of basis function is measured by 
the generalized cross-validation (GCV) index that is 
calculated by the equation:

(6)2( )1

RSS
GCV

C B
N

N

=
 −  
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    In GCV index, the n is the number of dataset and C(B) 
is the penalty function that is calculated by the following 
equation:

(7)
1( )

2
B

C B B d
− = +  

 

   where B is the number of the basis functions and d the 
penalty for each basis function term included to the model 
[44-47].

2- 2- Group Method of Data Handling (GMDH)
   GMDH is a self-organized AI method that was offered 
by Ivakhnenko [48]. The idea of developing GMDH was 
derived from Volterra’s series. According to this idea, the 
relation between the input and output of each complex 
system can be approximated by an infinite series of 
polynomials. The algebraic form of the Volterra series is 
presented in Equation 8. 

(8)0
1 1 1 1 1 1

...
n n n n n n

i i ij i j ij i j k
i i j i j k

y w w x w x x w x x x
= = = = = =

= + + + +∑ ∑∑ ∑∑∑

    Where, w
0
, w

i
, w

ij
,… are weights and x

i
, x

j
, x

k
 … are 

inputs. In the development of the first layer of GMDH 
network, pairs of inputs are introduced to neurons, 
individually. The number of neurons in the first layer is 
calculated as Equation 9.

(9)( )1
2

n n −

  Where, n is input features. Ivakhnenko [48] stated that for 
modeling each complex system using GMDH network, a 
quadratic polynomial (Equation 9) of Volterra’s series as 
the governing equation (transfer function) on the neurons 
is enough.

(10)( ) 2 2
0 1 2 3 4 5,i j i j i j i jy x x w w x w x w x x w x w xϕ= = + + + + +

   Figure 2 shows a sketch of the structure of GMDH 
neural network. As shown in Figure 2, the first layer of 
GMDH model assuming four inputs includes six neurons. 
For developing the next layers, competent neurons are 
selected to create the next layer. The competent criteria 
is defined based on their errors that are declared via root 
means square error (RMSE).

Figure 2. The scheme of the GMDH neural network

  Justifying the weights can be assumed as optimization 
function. In other words, a function fitting problem should 
perform. To this end, the error (RMSE) of fitted function 
(governing equation on neurons) should be minimized.

2- 3- Genetic Programing 
  Genetic programming (GP) is a smart function fitting 
method the idea of which was based on the genetic 
algorithm. The main point about GP is the artificial 
evolution, which is a manifest characteristic of GP. 
This means that GP involved some artificial evolution 
such as genes, multigene, mutation and so on. GP has 
been widely used for function fitting in many fields of 
engineering and sciences, especially in water engineering 
for modeling scouring, water quality components, and 
discharge capacity of water convinces structure and so 
on. GP developed a new formula based on mathematical 
operators such as (+, −, /, and *) and functions such as 
(ex, x, sin, cos, tan, lg, sqrt, ln, power). GP conducts 
this operation by randomly generating a population of 
computer programs (represented by tree structures) and 
then mutating and crossing over the best performing 
trees to create a new population. Unlike conventional 
regression operation, where the researcher defines the 
structure of empirical formula, GP automatically creates 
the structure of developed formula called semi-empirical 
formula. The final developed formula that is resulted from 
summarization of multigene, consists of one or more genes 
that is called GP tree. To improve the performance of 
fitness (e.g. to reduce a model’s sum of squared errors on 
a dataset), the genes are obtained increasingly. The final 
formula may be weighted linear or nonlinear. The optimal 
weights for the genes are automatically obtained using the 
ordinary least squares to regress the genes against output 
data. Figure 3 shows a pseudo formula obtained by GP 
technique. In this formula, y is the output and inputs are 
x1, x2 and x3 [49].

Figure 3. A sketch of formula generation by GP technique

3- Results and Discussion
  The purpose of this study was to model the discharge 
coefficient of the labyrinth weirs with a triangular plan 
using artificial intelligence techniques including GMDH, 
MARS and GP. These methods were selected since 
they are categorized as smart function fitting methods. 
This means that these methods using mathematical 
correlation process find most effective parameters on 
output and assign more weights to them during function 
fitting process. To develop GP, MARS and GMDH 
methods, the right side parameters of Equation 2 were 
considered as inputs and its left side (Cd) as output. To 
develop applied models, the dataset categorized into two 
classes as training and testing. Training was applied for 
calibration and testing dataset for validation. Eighty 
percent (80%=178) of collected dataset were assigned for 
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calibration and the rest (20 percent=45) for validation.  
Random selection was considered for data allocating to 
each group. There is required to set some parameters of 
GP model for developing the mathematical formula of C

d
 

of labyrinth weir with a triangular plan. The setting values 
of GP parameters are presented in Table 2. 

Table 2. The values of Parameters required in the Genetic 
Programming

Parameter Description of 
parameter

Setting of 
parameter

P1 Function set
times, minus, 

plus, square, tanh, 
exp,sin, cos

P2 Population size 200
P3 Mutation frequency % 0.94
P4 Crossover frequency % 50
P5 Number of replication 10
P6 Block mutation rate % 30

P7 Instruction mutation 
rate % 30

P8 Instruction data
 mutation rate % 40

P9 Homologous crossover 
% 95

P10 Program size Initial 64, 
maximum 256

  Genes obtained from developing stages of GP for 
mathematical expression of involved parameters on C

d
, 

are presented in Figure 4. Observing Figure 4 shows 
that among the involved components used to model and 
predict C

d
, H/P, Lw/Lc, and Lw/Wmc were used more 

compared to others. This shows that these parameters are 
more important. Mathematical derived formulas for genes 
are presented in Equations 11-14. The final mathematical 
formal obtained from GP technique is given in Equation 
14.  Results of GP technique in calibration and validation 
stages are presented in Figures 6 and 7.

Figure 4. The structure of genomes derived from the genetic programming method

Gene 1:
(11)( )( )( )2.766 2.838 tanh / 0.884Sin Cos P H− −

Gene 2:
(12)( )( ) ( ) ( )( )0.056exp Lw/Lc / 1.232 0.056 Lc/Wc tanh / / 1.872H P Cos H P P H− + +

Gene 3:
(13)

( )( ) ( )( )0.040 / / 1.872 0.040 / / /Cos Lw Lc Lw Wmc Lw Lc H P Lc Wc+ − +

General Form:

(14)( )( ) ( )( )( )
( ) ( )( )

( ) ( )( )

0.04cos / / 1.872 2.837sin tanh cos / 0.885

0.04 / / / 0.056exp / / 1.232

0.056cos / tanh / / 1.872 2.766

Cd Lw Lc Lw Wmc H P

Lw Lc H P Lc Wc Lw Lc H P

Lc Wc H P H P

= + − − −

+ + − +

+ +

   The model derived from GMDH model for modeling 
the C

d
 is given in Figure 5. The structure of the obtained 

network that forms GMDH model is shown in Figure 5. 
Results of the coefficient of governing neurons are given 
in Table 3. Attention to the structure of obtained GMDH 
model, especially neuron five in the first hidden layer that 
is a key neuron in obtained structure of model, shows 
that H/P, Lw/Lc, and Lw/Wmc are the most effective 
parameters on C

d
. Previously, these results that obtained 

the most effective parameters on C
d
 were achieved using 

GP. Results of calibration and validation of the obtained 
model of GMDH technique are given in Figures 6 and 7. 
In these figures, the error indices including R-square (R2) 
and root mean square error (RMSE) that their related 
equations have given in Equation 16 are shown, as well.
   The results of the obtained model from MARS techniques 
are given in Table 4. Reviewing Table 4 indicated that the 
most effective parameters on C

d
 are H/P, Lw/Lc, and Lw/

Wmc.  The mathematical formula derived from MARS 
model is given in Equation 15. Results of MARS model 
during calibration and validation stages are shown in 
Figures 6 and 7. Development of MARS model for 
modeling C

d
 includes two stages. The first stage is called 

growing and the second is called pruning. The criterion 
in the pruning stage (GCV) was equal to (0.0022). At the 
first stage of MARS model development, thirty basic 
functions were developed, and in the pruning stage, fifteen 
functions were pruned. Obtained basic functions and their 
coefficients are given in Table 4. 

( )
15

1
1.025d m i

M

BF xC β
=

+= ∑ (15)
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Figure 5. Obtained structure of GMDH model

Table 3. Coefficients of GMDH model for modeling the discharge coefficient

Layer Neuron  b0  b1  b2  b3  b4  b5 RMSE

Layer-1

N1 - 1 0.561 0.057 0.333 0.019 -0.124 -0.136 0.056

N1 - 2 0.561 0.057 0.333 0.019 -0.124 -0.136 0.056

N1 - 3 0.561 0.057 0.333 0.019 -0.124 -0.136 0.056

N1 - 4 0.561 0.057 0.333 0.019 -0.124 -0.136 0.056

N1 - 5 0.815 -1.626 0.452 1.342 -0.273 0.260 0.081

Layer-2

N2 - 1 -0.471 2.694 0.022 0.435 3.004 -4.945 -0.004

N2 - 2 -0.471 2.694 0.022 0.435 3.004 -4.945 -0.04

N2 - 3 -0.471 2.694 0.022 0.435 3.004 -4.945 -0.04

N2 - 4 -0.471 2.694 0.022 0.435 3.004 -4.945 -0.04

Output N4 - 1 -0.011 0.522 0.522 -0.014 -0.014 -0.014 -0.011

Table 4. Mathematical model obtained from MARS method (basic functions and related coefficients)

Basic functions Coefficients
BF1 = max(0, Lw/Lc-1) × max(0, Lw/Wmc-3) 0.359
BF2 = max(0, Lw/Lc-1) ×max(0, 3 - Lw/Wmc) -0.113

BF3 = max(0, H/P-0.308) -0.386
BF4 = max(0, Lw/Wmc-1.023) -0.688

BF5 = max(0, 0.308 - H/P) × max(0, Lw/Wmc-2) -46.494
BF6 = max(0, Lw/Lc-1) × max(0, H/P-0.308) 0.3166
BF7 = max(0, Lw/Lc-1) × max(0, 0.308 - H/P) 0.342

BF8 = max(0, 1.023 - Lw/Wmc) × max(0, 0.417 - H/P) 87.599
BF9 = BF3  max(0, Lw/Wmc-1.976) 0.194

BF10 = BF4  max(0, 2 - Lw/Lc`) 0.277
BF11 = max(0, 1.023 - Lw/Wmc) × max(0, 0.504-x1) -76.852

BF12 = max(0, 3 - Lw/Wmc) × max(0, x3 -1.976) -5.7694
BF13 = max(0, 3 - Lw/Wmc) max(0, 1.976 - Lc/Wc) -0.121

BF14 = max(0, 0.308 - H/P) × max(0, Lw/Wmc-1.976) 46.530
BF15 = max(0, Lw/Wmc-1.414) 0.318
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  To prepare more details related to the outcomes of 
developed models throughout the dataset, developed 
discrepancy ratio (DDR) index, which was introduced 
by Noori, Ghiasi, Sheikhian and Adamowski [50] were 
calculated. This index is computed via Equation 16. This 
index declares the outcomes of applied models in terms of 
lower and over-estimation properties. Results of DDR for 
training and testing stages of developed models are shown 
in Figure 7. As shown in Figure 7, most amounts of data 
dispersion related to DDR index are related to GP model 
and the lowest data dispersion is related to the MARS, 
especially in testing stage. The accuracy of GMDH was 
less than MARS and more than GP. Reviewing Figure 
7 shows that all three models have a bit over-estimation 
property.

(16)
Predicted Values 1
Observed Values

DDR
 = − 
 

( ) ( )

( ) ( )

2

1 12

2 2

1 1

1

1 ( )     

obs prdobs

obs prdobs est

N

obs prd

i

n n

i i
n n

i i

Cd Cd Cdpr

R

d Cd

Cd Cd Cd Cd

RMSE Cd Cd
N

= =

= =

=

 
 

=


=

− −

−



−

−

∑ ∑

∑ ∑

∑

(17)

Figure 6. Results of applied models for predicting Cd versus observed data 

Figure 7. DDR index for results of applied models during training and testing stage

4- Conclusion
  In this paper, the discharge coefficient of WL with a 
triangular plan was modeled and predicted using artificial 
intelligence techniques including GMDH, MARS 
and GP. These techniques were selected since they are 
categorized as smart function fitting methods. The main 
properties of smart function fitting methods are related to 
the definition of the most effective parameters on output 
and assigning more weights to them in modeling process. 
This characteristic causes an increase in the reliability 
of results of obtained models. In this study, observing 
the structure of obtained models from GMDH, MARS 

and GP, indicated that H/P, Lw/Lc, and Lw/Wmc were 
the most effective parameters on Cd of triangular WL. 
Assessment of the performance of developed models via 
calculation of error indices on results of applied models 
such as coefficient of determination and root-mean-square 
error indicated that all of them have suitable accuracy 
for practical purposes. However, MARS model is more 
accurate than others are. Evaluating the performance of 
applied models in terms of DDR index declared that data 
dispersivity of results of MARS model is less than others 
are and its results are more reliable.
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Notations
W

L
 Labyrinth Weir

AI Artificial Intelligent
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN’s artificial neural networks
C

d
 discharge coefficient

CFD computational fluid dynamic
DDR discrepancy ratio
GMDH Group method of data handling
GP genetic programing
MARS multivariate adaptive regression splines
R2 Coefficient of determination
RMSE Root mean square error
SFF smart function fitting method
SVM Support Vector machine
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