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ABSTRACT: Projecting future inflows under climate change and rapidly growing population has 
large uncertainty and requires serious attention for proper utilization of limited water resources. 
Existing algorithms can only optimize the operation policy for a specified scenario (e.g., drought, 
wet, or normal year; decreased or increased demands) and when established, the system would 
face serious operational difficulty if the expected scenario does not occur. On the other hand, 
most of water resources systems involve more than three objectives and demand proper techniques 
to handle computational complexities in so-called many-objective problems. This paper aims at 
providing a many-objective optimization algorithm using social choice (SC) and melody search 
(MeS) algorithms that is able to efficiently derive general system operation rules suitable for all 
possible future scenarios. In other words, the proposed algorithm overcomes uncertainties in the 
occurrence of future scenarios and works optimally regardless of future conditions; whether it 
be variable streamflows and/or increased water demands. To evaluate the performance of the 
proposed algorithm, a system consisting of five reservoirs in the Tehran region with four objective 
functions. It is shown that in all cases the general multi-scenario rule derived by the proposed 
method performs as good as each of the operation rules derived for every specific scenario 
assuming the occurrence of that scenario. Moreover, the proposed many-objective algorithm is 
able to handle as many objectives as needed without any computational burden and/or algorithm 
complexity.
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1- Introduction
  Multi-reservoir multi-objective system operation is 
a complex decision-making issue that involves many 
variables, objectives and considerable risk and uncertainty. 
In order to maximize benefits or minimize costs and losses, 
reservoir operators usually prefer to follow specified rule 
curves which determine the actions that should be taken 
based on the current state of the system. Rule curves are 
typically determined by a combination of simulation 
and optimization techniques. However, uncertainties 
around the supply and demand side are difficulties for 
water resources planning and management [1]. Significant 
variations in inflows have been observed due to warming 
climate on one hand and their inherent stochastic nature 
on the other hand. Discharge changes affect many other 
climatic and environmental phenomena such as runoff, 
flood, and humidity and also affect many human activities 
such as agriculture, economics, soil erosion and etc [2].  
Projecting future inflows under climate change effects 
and rapidly growing population has large uncertainty and 
requires serious attention on proper utilization of limited 
water resources [3].
   Reservoir systems are usually characterized by multiple 

objectives that often conflict and compete with one another 
[4]. The problems with a small number of objectives, 
mainly in two or three objectives are referred to as Multi-
Objective Problems (MOP). However, many real-world 
applications often involve four or more objectives, which 
are commonly called as Many-objective Optimization 
Problems (MaOP) [5]. 
  A review of the literature shows that multi-objective 
system operation has been extensively studied using 
various optimization algorithms. In the early stages of 
system optimization studies in water resources, weighting 
approach or constraint method were used with linear 
programming (LP) [6], dynamic programming (DP) [7, 
8], stochastic dynamic programming (SDP) [9–11] and 
various nonlinear programming (NLP) techniques [12]. 
These methods convert the multi-objective problem into 
a single objective via various techniques. In these cases, 
the solution is highly dependent on weight vector and user 
knowledge. There was a turnover in the early 1990s when 
evolutionary methods were introduced. Thereafter in 
less than a decade, an explosion of research was directed 
toward the development and application of these methods. 
This turnover was mainly due to simple structure, least 
knowledge of mathematics required, flexibility, and 
adaptability inherent in heuristic methods. Heuristic 
algorithms are mainly inspired by the natural systems 
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and have proved to be powerful tools for solving complex 
problems that were once considered very hard to solve. 
There have also been methods that were inspired by man-
made systems and processes. Simulated Annealing (SA) 
[13] and Harmony Search [14](HS) are in this category. 
  Many-objective optimization has been gaining increasing 
attention in recent years. In many-objective optimization 
problems, the proportion of non-dominated objective 
solutions increases rapidly with the number of objectives 
[15–17]. This leads the Pareto optimality to significantly 
diminishing selection pressure during the evolutionary 
process [18–20]. Zhou et al. [18] used a combination of 
Pareto dominance selection, diversity maintenance, and 
elitism strategy and proposed an ensemble of many-
objective evolutionary algorithms (EMaOEA). The 
hypervolume (HV) indicator [21, 22] is a quality indicator 
that is fully sensitive to Pareto dominance. There have 
been several well-established hypervolume-based MOEAs 
available in the literature [23–27]. The main drawback 
of this indicator is the computational cost of HV which 
grows exponentially with the number of objectives 
increasing [28, 29]. To address this issue, Bader and Ziztler 
[30] proposed a fast search algorithm that uses Monte 
Carlo simulation to approximate the exact hypervolume 
values. The hypervolume indicator gives the volume of 
the objective subspace that is dominated by a solution 
set A    Rd under consideration. Grid-based algorithms 
exploit the potential of the grid-based approach to 
strengthen the selection pressure towards the optimal 
direction while maintaining an extensive and uniform 
distribution among solutions. Each solution in the grid 
has a deterministic location [31]. The number of solutions 
whose grid locations are analogous reflects diversity. Also, 
the grid location of an individual compared with other 
solutions, determines the convergence. This approach 
compares solutions qualitatively and quantitatively [28, 
29]. Deb and Jain [32] proposed NSGA-III on the basis 
of the NSGA-II algorithm with significant changes in its 
selection mechanism for many-objective problems. This 
algorithm uses a predefined set of reference points H on a 
unit hyper-plane to ensure diversity in the solutions. The 
reference points can be predefined in a structured manner 
or by the user [33]. Ruiz et al. [34] used the reference points 
and suggested a preference-based evolutionary multi-
objective optimization called weighting achievement 
scalarizing function genetic algorithm. 
   The social choice theory is in close relation with multiple 
objective algorithms, especially in group decision contexts. 
The SC procedures are voting systems for group decision-
making when available information is minimal, or mainly 
qualitative [35]. The subject is to derive social orderings 
when individual welfares satisfy certain assumptions [36].
   Existing algorithms can optimize the operation policy 
only for a predetermined specified scenario (i.e., dry, 
wet or normal year etc) and do not work well in stressful 
conditions (when demand is high). This article aims at 
providing an optimization algorithm that solves this 
problem by using a combined model of social choice and 
melody search methods. The proposed algorithm optimizes 
reservoir operation policy considering various uncertainty 
scenarios. This leads to a readiness to deal with them in 
advance. As it was mentioned earlier, when the number 

∩

of objectives increases, the proportion of non-dominated 
objective solutions grows rapidly. Existing many-objective 
algorithms use special methods to overcome this issue 
which includes high computational costs.  Meanwhile, 
it should be noted that the proposed algorithm has no 
restrictions on the number of functions. Moreover, on 
issues related to water resources and specifically reservoir 
management, objective functions have weighted priorities 
and the weight assignment of each consumer is important. 
Finding appropriate weights requires sensitivity analysis 
and multiple runs in traditional algorithms which includes 
high computational costs, but in the proposed method this 
is done by selecting the suitable social choice technique. 
Also, social choice approach is based on the consent of 
the individual components of the system. Easy perception, 
simple implementation, and rapid convergence are other 
advantages of this algorithm. 
  The paper is organized in the following way. Section 
2 presents a brief discussion on methodology. The MeS 
and SC methods are presented in Sections ‎2.1 and ‎2.2. 
Section ‎2.3 presents a brief discussion on the proposed 
method considering various uncertainty scenarios. The 
case study is presented in Section 3 followed by results and 
discussion in Section ‎4. Finally, a conclusion is provided 
to summarize the important findings of the paper.

2- Methodology
2- 1- Melody Search Algorithm (MeS)
  Melody search algorithm was proposed by Ashrafi 
and Dariane (2013) on the basis of the harmony search 
algorithm [14]. However, the structure and efficiency of 
MeS are quite different from the harmony search algorithm. 
Harmony search is inspired by the improvisation process 
of jazz music and consists of the following steps [38–40].
1.	 Initialize the algorithm parameters.The parameters 

are the harmony memory size (HMS), harmony 
memory consideration rate (HMCR), pitch 
adjusting rate (PAR), distance bandwidth (BW), and 
termination criterion.

2.	 Initialize the harmony memory (HM).In Step 2, the 
‘‘harmony memory’’ matrix is filled with randomly 
generated solution vectors and sorted in terms of the 
objective function value.

3.	 Improvise a new harmony from the HM. A new 
harmony is produced by applying three rules:memory 
consideration, pitch adjustment, and random 
selection. First of all, if a uniform random number 
returned by rand () in [0,1] is less than HMCR, 
the decision variable is generated by the memory 
consideration; otherwise, it is obtained by a random 
selection. Secondly, each decision variable will 
undergo a pitch adjustment with a probability of 
PAR if it is updated by the memory consideration. 

4.	 Update the HM. If the new harmony vector is better 
than the worst harmony in the HM by the values of 
the objective function, the new harmony is included in 
the HM and the existing worst harmony is excluded 
from the HM then the harmony memory is sorted 
again.

5.	 Repeat Steps 3 and 4 until the termination criterion 
is satisfied.

   MeS simulates musical performance processes performed 
in a musicians group while they are searching for the best 
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series of notes within a melodic line. In such groups, 
each musician could be influenced by the others, and 
some interactive relations occur among different music 
players. In the MeS algorithm, particular emphasis is on 
simulation of these interactive relations through proper 
equations.
   Unlike HS that uses a single Harmony Memory (HM), 
MeS algorithm employs several Player Memory (PM) sets. 
Existing different solutions in different memories would 
lead the search scheme to select more useful random 
variables if a suitable logical interactive relation is defined 
among various memories. Moreover, considering several 
memories with different historical experiences could 
increase the efficiency of the algorithm. 
    There are seven major parameters applied in MeS 
algorithm, including number of player memories (PMN), 
player memory size (PMS), maximum number of iterations 
(NII), maximum number of iterations for the initial phase 
(NI), bandwidth distance (bw), player memory considering 
rate (PMCR) and pitch adjusting rate (PAR). Main steps 
of MeS algorithm can be summarized as follows:
•	 nitializing the optimization problem and adopting 

algorithm parameters
•	 Phase 1;
    1.1. Initialize PMs with random solutions 
    1.2. Generate a new solution from each PM with 
specified improvisation operators
    1.3. Update PMs
  1.4. Repeat sub-steps 1.2 and 1.3 until the criterion 
for stopping the initial phase is satisfied (e.g. maximum 
number of iterations for initial phase (NII))
•	 Phase 2; 
  2.1. Determine the possible ranges of variables for 
randomization operator 
    2.2. Generate a new solution from each PM according 
to the calculated possible variable ranges
    2.3. Update PMs
    2.4. Repeat sub-steps 2.1 to 2.3 until the stopping 
criterion is satisfied (e.g. maximum number of iterations 
(NI))
    In the initial phase, each player improvises his/her melody 
individually. In this phase, players do not influence each 
other. In the next phase, the new possible range for each 
variable is calculated from the best melody of each Player 
Memory PM. These ranges are changed through different 
iterations [37]. This process is shown in Figure 1 where 
D is the number of decision variables of the optimization 
problem.

Figure 1. Calculating possible ranges of variables (sub-step 2.1)

2- 2- Social Choice
   The beginnings of social choice theory can be traced back 
to the French Revolution when a French mathematician 
and political scientist, Jean-Charles de Borda, devised the  
Borda method in 1770 [41]. But it was about two centuries 
later where Arrow (1951) resurrect the use of social choice. 
The social choice (SC) procedures are voting systems for 
group decision-making when available information is 
minimal, or mainly qualitative [35]. The subject is to derive 
social orderings when individual welfares satisfy certain 
assumptions [36]. Several approaches have been proposed 
for SC such as plurality voting, the Hare system, the Borda 
count, pairwise comparisons voting and approval voting. 
Using different methods usually gives different results, 
hence, selecting the right method is very important [43]. 
All methods try to find the best alternative in accordance 
with the preferences of all individuals [44]. 
   There is various exploratory work on voting schemes [45-
47]. Kant and Lee (2004) demonstrated the relevance of a 
social choice approach to sustainable forest management. 
Goetz et al. (2008) presented the concept of sequential 
allocation rules developed in social choice theory. 
D’Angelo et al. (1998) applied five of the most popular 
methods of social choice to select the best alternatives in 
a forestry management problem. Srdjevic (2007) Linked 
analytic hierarchy process and social choice methods to 
support group decision-making in water management.
  Brief overviews of the most prominent methods of 
social choice are described in the following paragraphs 
by considering an example involving elections which is 
explained by Malkevitch (2002) and illustrated in Figure 
2a. The election problem has 5 candidates, 6 ballots and 
55 voters. 

Figure 2. Social choice methods

2- 2- 1- Plurality Voting
  The plurality voting method selects candidate who gets 
the largest number of first-place votes (but not necessarily 
the majority of the first-place votes). By this method 
which simply uses information from the first row, as it can 
be seen from Figure 2a, candidate A (with 18 votes) is the 
winner. This concept can be formulated mathematically 
as follows where i and j are the candidates and ballots 
respectively. If i is the first priority of jth ballots then a

ij
=1; 
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if i is the second one then a
ij
=2 and so on. 		

f(aij )=1   if aij=1,0   Otherwise (1)

Pi= ∑j=1
55 f(aij ) (2)

Pi
*=maxi Pi (3)

2- 2- 2- Approval Voting
   This method is non-preferential because does not use 
all information directly but it is easy to understand and 
use. Each voter can approve of any number of candidates. 
The winner is the most-approved candidate. In this case, 
if voters approve only the first two rows in the table, then 
the ballots will be as Figure 2b. D is the winner with 27 
votes. 

2- 2- 3- Run-off Election
   If no candidate receives the majority number of votes, 
then those candidates having less than a certain proportion 
of the votes, or all but the two candidates receiving the 
most votes, are eliminated, and a second round of voting 
is held. In this example, A (18 votes) and B (12 votes) are 
selected first and then in the next stage, B becomes the 
winner with 37 votes. It is worthwhile to mention that 
after eliminating other candidates, A only receives votes 
from the first ballot (i.e., 18 votes), while B becomes the 
first priority in all the remaining 5 ballots and receives 37 
votes (i.e., 12+10+9+4+2). This process is illustrated in 
Figure 2c.

2- 2- 4- Sequential Run-off Election
  In this method, if no candidate gets a majority based 
on first-place votes, candidates are eliminated one by one. 
First, the candidate with the fewest first-place votes is 
eliminated and a new election based on voting only for 
the remaining collection of candidates is held.  In this 
case, first candidate E (6 votes) and then D (9 votes) and 
B (16 votes) are eliminated respectively. Eventually, C is 
the winner with 37 votes as shown in Figure 2d.

2- 2- 5- Condorcet (Pairwise voting)
  All possible two-way races between candidates are 
considered and the candidate that would win in all pairings 
against the other candidates is called non-dominated and 
elected. It should be noted that in each race between two 
candidates all other candidates are eliminated and the 
votes in each type are given to the first priority candidate. 
In this case, there are 20 combinations of two-way races 
and E is the final winner. Since the majority preferences 
can be like rock-paper-scissors a Condorcet winner 
doesn’t always exist (Condorcet paradox). 

2- 2- 6- Borda Count
  This method assigns candidate “i” a number of points equal 
to the number of candidates below candidate “i” on the 
ballots. The winner of the election is the candidate with the 
highest Borda count. For example, in this case, the Borda 
count of D is 136 (3×18+2×12+1×10+4×9+2×4+2×2) and 
is higher than A(72), B(101), C(107) and E(134). Hence, D 
is the winner (Figure 2e). 
   Borda method is the only method that simultaneously 
uses all data in the priorities table. It is proved that Borda 

count and approval voting methods are more effective 
in determining the winner than the other methods [51]. 
Moreover, in the Borda count method, priorities could be 
weighted. 

2- 2- 7- Proposed Method
   Existed algorithms can optimize the operation policy 
only for a predetermined specified scenario (i.e., dry, 
wet or normal year) and do not work well in stressful 
conditions (when demand is high). Therefore, when the 
basin condition changes they are unable to adapt to 
the situation and fail to operate properly. Moreover, 
some of the water resources systems involve more than 
three objectives that demand the use of many-objective 
algorithms. The proposed method overcomes these issues 
by innovative use of together melody search algorithm and 
social choice methods to solve a many-objective reservoir 
operation problem under various probable scenarios. 
Thus, the derived rules would work properly and optimal 
under different basin conditions. 
   The proposed algorithm consists of the following steps 
as shown in Figure 4:
•	 Initializing the optimization problem and determining 

algorithm parameters.
•	 Generating various scenarios (by systematically 

varying inflows and demands.)
•	 Phase 1 (each player improvises his/her melody 

individually.);
    1.1. Initialize PMs with random solutions.
    1.2. Check constraints and adjust solutions if necessary.
   1.3. Calculate all objectives functions for every existing 
solution and different scenarios.
  1.4. Rank player memories based on different objective 
functions for each scenario individually. For example for 
“m” objective functions, solutions should be sorted m 
times for each scenario.
   1.5. Combine the results of different objective functions 
based on SC methods for each PM and each scenario 
separately.
    Use the Borda count method for sorting solutions in 
each scenario based on objective functions. If the Borda 
count of two solutions is the same, the winner is selected by 
the approval voting method based on objective function 
plurality. Hence, if m and s are the number of objectives 
and scenarios respectively, we have s sorted memory for 
each PM. It should be noted that in this way the proposed 
algorithm has no restrictions on the number of objective 
functions.
     Other methods of SC can be used instead of the Borda 
count method. Since the objective functions have priorities 
in water resources systems and specifically reservoir 
management problems, selecting the suitable social choice 
technique is an alternative for sensitivity analysis for 
finding appropriate weights of each consumer. Finding 
optimum weights requires multiple runs in traditional 
algorithms that demand high computational costs. 
   1.6. Combine the results of different scenarios based on 
Borda counts for each PM. Each solution has different 
ranks in harmony memory based on different scenarios. 
Borda count is calculated based on these ranks for each 
solution in each PM. Then PM memory is sorted based 
on these Borda counts where solutions with higher Borda 
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counts are preferred. Figure 3 shows steps 1.4 to 1.6.
  1.7. Generate a new solution from each PM with specified 
improvisation operators.
  1.8. The Borda count of the new solution is calculated 
for each scenario based on different objective functions.  
If the Borda count of the new solution is better than the 
worst one in the memory for each scenario, that scenario 
preliminary votes to replace the new solution with the 
existing worst solution. However, the final decision 
depends on the collective vote of all scenarios. Thus, based 
on votes of all scenarios (plurality voting method) the 
decision for replacing the new solution with the existing 
worst solution is made. 
   1.9. Repeat sub-steps 1.3 to 1.7 until the criterion for 
stopping the initial phase is satisfied (e.g., the maximum 
number of iterations for the initial phase (NII)).  
•	 Phase 2 (a suitable logical interactive relation is 

defined among various memories); 
  2.1. Determine the possible ranges of variables for 
randomization operator.
   2.2. Generate a new solution from each PM according 
to the possible variable ranges as defined in the previous 
step.
  2.3. Decide if the new solution would replace the existing 
worst solution or not, based on scenarios votes, similar to 
phase 1.
   2.4. Sort memory by using social choice techniques. 
In this phase unlike the initial phase that the solutions 
were sorted by Borda count, the plurality voting method 
is employed and accordingly, the solution with higher 
total rank of the first and second objective functions is 
preferred over the other one. In this way, the priority of 
functions is considered.  
  2.5. Combine the results of different scenarios based on 
Borda counts.
   2.6. Repeat sub-steps 2.1 to 2.5 until the stopping 
criterion is satisfied (e.g., maximum number of iterations 
(NI))
Figure 4 shows the schematic flowchart of the algorithm.

3- Case Study
   To evaluate the performance of the proposed algorithm, 
a five-reservoir system including Taleghan, Karaj, Lar, 
Latian and Mamloo reservoirs within the Tehran region is 
employed as the case study. The area is located in northern 
Iran at 35◦45΄ northern latitude and 51◦30΄ eastern 
longitude. Figure 5 schematically shows the location map 
of the system under study.
   The region has municipal, agricultural and hydropower 
demands. Among these reservoirs, Lar suffers from 
excessive water escape and is unable to effectively store 
the water. In this site, water is transferred to Tehran using 
a channel with maximum capacity and the remaining 
is transferred to the Latian reservoir, again up to its 
maximum channel capacity. Moreover, Taleghan and 
Karaj reservoirs act in parallel in meeting the municipal 
demand of Tehran. The water is transferred from these 
reservoirs by channels with limited capacities that must be 
considered in modeling the system. Similarly, Latian and 
Mamloo act as parallel in meeting Tehran water demand, 
although they are in cascade on Jajrud River. There are 
three agricultural sites in the region namely; Taleghan, 
Karaj and Varamin areas. Meanwhile, maintaining a 
minimum instream flow for environmental purposes is 
also required. In addition, three hydropower plants on 
Karaj, Taleghan and Lar reservoirs generate part of the 
electricity demand of the system. Municipal demands of 
Tehran have been estimated from the previous studies 
and are shown in Table 1 along with long-term monthly 
average inflows at different sites.

Figure 3. Individually ranking player memories (PM) based 
on different objective functions for each scenario and then 

combining the results of different scenarios based on Borda 
counts for each PM

Figure 4. Schematic flowchart of algorithm
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Figure 5. Tehran location map

Table 5. Soil properties in numerical modeling

month

Inflows to the reservoirs and maximum and minimum of storages 
(Smax and Smin) Demands

Taleghan Karaj Latian Mamloo Lar
Smax= 420 Smax= 205 Smax= 95 Smax= 250 Smax= 960 Tehran 

Municipal 
Taleghan 

ag. 
Karaj 

ag. 
Varamin 

ag. Smin= 100 Smin= 10 Smin= 20 Smin= 28 Smin= 10
1 10.4 13 9.4 3.8 14.6 85.3 10 3 5.3
2 14 14.6 13.3 5.5 13 79.9 3.5 1 6.3
3 12.7 13.5 13 5.7 11.1 77.8 0 0 3.4
4 11.5 12.3 12.7 5.2 9.6 77.5 2.8 0.8 3.7
5 12.9 13 15 6.4 8.8 78 2.9 0.9 7.9
6 24 22.8 30 12.8 10.4 81.3 7.1 2.1 15.8
7 78.7 57.5 72.8 28.6 39.9 76.8 27.7 8.3 40.4
8 138.6 92.5 84.3 33.8 110.3 84.2 41.4 12.3 56.6
9 99.2 78.4 48.8 18.7 105.5 92.6 54.4 16.2 51.9

10 39.1 45.4 21 7.2 50.6 100 65.8 19.6 50.6
11 16.7 24.4 11.6 4 28.9 101 61.6 18.4 34.9
12 10.4 16.3 9.1 3.1 20.5 96.2 32.8 9.8 17.8

annual 468.2 403.8 341.2 134.8 423.3 1030 310 92.4 294.6

  The objective function of the system is reliability. 
Reliability is the probability that the reservoir provides 
the outflow required to satisfy the water demand. This 
parameter is obtained by dividing the number of successful 
periods into the total number of periods. Minimum flow 
requirements are determined for aquatic resources based 
on 10 percent of mean annual flow. In this system, the 
first priorities are given to satisfy the municipal demand 
of Tehran city with maximum reliability throughout 
the system and environmental minimum instream flow 
requirements. The next priority is to fulfill the agricultural 
demands, and finally, the hydropower energy production 
receives the least priority. The constraints are channel 
capacities, mass balance, and storage capacities. 
Release policies are usually derived using predefined rule 
curves based on the system states as defined by reservoir 
storages and inflows. In this study, a linear operating rule 

is defined for each reservoir release as follows. 

R(y,m)=a(m)*S(y,m)+b(m)*Q(y,m)+c(m)*Q(y,m-1)+d(m) (4)

   Where y and m denotes year and month indexes 
respectively, and a, b, c, and d are the policy parameters 
determined by the optimization model. S

(y,m)
 is the storage 

level at the beginning of period m in year y. R
(y,m)

 and 
Q

(y,m)
 are the total release and the inflow during period m, 

respectively.

4- Results and discussions
  In this section, the performance of the proposed procedure 
which employs combined use of MeS and SC methods is 
evaluated by comparing to other alternative methods. For 
this purpose 35 years of available monthly data are used 
for training and calibration, and the remaining 12 years 
of data are used for testing and cross-validation of the 
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results of trained models. Moreover, the number of player 
memories (PMN), player memory size (PMS), maximum 
number of iterations (NII), maximum number of iterations 
for the initial phase (NI), bandwidth distance (bw), player 
memory considering rate (PMCR) and pitch adjusting 
rate (PAR) program are obtained by sensitivity analysis 
as 5, 10, 8000, 30000, 0.1, 0.98 and 0.3 respectively. All 
the results shown in tables are for the test period and are 
obtained by 10 independent model executions. 
  In order to evaluate the performance of the proposed 
model in finding optimum reservoir operating policies for 
Tehran water resources system with multiple reservoirs 
and multiple purposes, two steps are followed. In the 
first step, the performance of the proposed algorithm is 
evaluated and compared to other existed multiple objective 
methods. Moreover, the performance of the melody search 
algorithm as part of the proposed model is compared 
with other heuristic methods including genetic algorithm 
(GA) and harmony search in combination with the social 
choice and weighting methods (WM). In the next step, the 
capability of handling multiple scenarios by the proposed 
model is demonstrated. Here, the reservoir’s operation 
policies are derived using various uncertainty scenarios 
combined. For this purpose, seven “hydroclimatic 
scenarios” are defined based on decreasing inflows to 
resemble the climate change impacts and another seven 
“population growth scenarios” are specified based on 
increasing municipal and agricultural demands. Results 
are orderly presented in the following sections.

4- 1- Comparison of Algorithms
   In this section, the performance of the proposed model is 
compared to the commonly applied multi-objective Non-
dominated Sorting Genetic Algorithm-II (NSGA-II). 
The non-dominated sorting genetic algorithm (NSGA) 
proposed by Srinivas and Deb [52], is one of the first 
evolutionary-based multi-objective algorithms. Deb et al. 
[53] proposed NSGA-II as an improved version of NSGA. 
For this purpose, first, the system reservoir operation 
policy was optimized considering a two-objective function 
problem consisting of the reliabilities for municipal and 
hydropower. The minimum point in the average Euclidean 
distance vector between solutions in Pareto and the ideal 
point was picked for comparison. The ideal point consists 
of the best value of each objective functions. It should be 
noted that parameters are obtained by sensitivity analysis 
and the number of function evaluations in both algorithms 
is the same.
   As can be seen from Table 2, the proposed model and 
the NSGA-II show similar performances when there are 
only two objective functions. However, when the number 

of objectives is increased to four (including municipal, 
minimum instream flow, agricultural and hydropower 
energy) and the problem becomes more complicated, 
the NSGA-II fails to reach solution easily obtained 
by the proposed model (see Table 2). This indicates 
the distinguished power of the proposed algorithm in 
the modeling of many-objectives problems. As it was 
mentioned earlier, when the number of objectives increases, 
the proportion of non-dominated objective solutions 
increases rapidly in Pareto based algorithms including 
the NSGA-II. This leads the algorithm to significantly 
diminishing selection pressure during the evolutionary 
process. Selection pressure reduction potentially reduces 
reproductive success in a proportion of the population. 
This is an advantage for the proposed model which does 
not require a Pareto front for solving a many-objective 
problem. 
  It should be noted that parameters for both algorithms 
are obtained by sensitivity analysis first for two objective 
functions and then for four ones.
   The performance of investigated methods including 
GA, HS, and MeS in combination with SC and WM is 
compared next. The objective functions are assumed to 
be the maximization of long-term system reliabilities for 
municipal, minimum instream flow, agricultural and 
hydropower energy demands. As was mentioned earlier, 
in the weighting method, multiple objective functions are 
combined into one overall function by using weighted 
aggregation of the objective functions depending on 
their importance [54]. It should be noted that for the 
weighting method, a sensitivity analysis is needed to find 
the optimum weights (0.4, 0.3, 0.2 and 0.1 for municipal, 
environmental, agricultural and hydropower demands 
respectively). Table 3 shows the results.
   As can be seen from Table 3, using social choice improves 
results for all demands. The difference is more evident for 
municipal demand which has the first priority. Moreover, 
MeS shows generally better performance than either of 
other heuristic algorithms including HS or GA algorithms 
in this study. 
   Finally in SC algorithms, finding appropriate weights is 
replaced by selecting the suitable social choice technique 
but WM methods require sensitivity analysis and multiple 
runs. In the proposed algorithm, Borda count is used 
for the iterations in phase 1 and for phase 2 iterations, 
plurality voting method is employed. Here, the first two 
objectives having higher priority are selected for phase 2 
analysis. Then, accordingly, the solutions with higher total 
rank based on these objective functions are preferred over 
the other ones.  Actually, the SC algorithms can draw the 
consent of the individual components of the system and 
reach the solution in much less time. 

Table 2. Comparing the performance of the algorithm under multi and many-objective problems

Algorithm
Two Objective Functions Four Objective Functions

Municipal Hydropower Municipal Minimum  
flow Agricultural Hydropower

NSGAII 0.82 0.78 0.64 0.56 0.42 0.79
MeS, SC 0.82 0.79 0.72 0.59 0.4 0.79
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4- 2- Uncertainty Scenarios
  In this section, the proposed algorithm optimizes 
reservoir operation policy considering various uncertainty 
scenarios. This leads to a readiness to deal with them 
in case of occurrence. Meanwhile, existed algorithms 
can optimize the operation policy only for a specified 
scenario. They can consider only one possible scenario 
for deriving the system operation rule. Thus, they fail to 
function if the system condition changes. In other words, 
the rules derived say for a normal condition would fail to 
properly work for drought situation and vice versa. For 
this purpose, seven “hydroclimatic scenarios” are defined 
based on decreasing inflows to resemble climate change 
impacts and seven “population growth scenarios” are 
defined based on increasing municipal and agricultural 
demands. The current condition is also assumed to form 
the first scenario which is common between the two 
scenario categories. To clear up the current condition is 
the first scenario of hydroclimatic scenario. The second 
one is prepared by decreasing 20 percent of inflow. The 
third one is prepared by decreasing 40 percent of inflow 
and etc. in population growth scenarios the first scenario 
is the current condition. The second one is prepared 
by increasing 20 percent of demands. The third one is 
prepared by a 40 percent increase in demands and etc.
  In order to demonstrate the power of the proposed 
algorithm, the decision parameters and thus the operation 
rules that were optimized by considering all scenarios, are 
tested under each possible scenario separately. Moreover, 
for comparison purposes, an operation rule is also obtained 
by using the third version of the Non-dominated Sorting 
Genetic Algorithm (NSGA-III), as a recently developed 
powerful many-objective algorithms, for every single 
scenario. The operation rule derived by each scenario 
through this process is also tested assuming the occurrence 
of any other scenario. It should be noted that NSGA-III 
similar to all other existing algorithms can optimize the 
operation policy only for a single predetermined climate 
scenario. The minimum point in the average Euclidean 
distance vector between solutions in Pareto and the ideal 
point was picked for comparison. The ideal point consists 
of the best value of each objective functions. Results are 
presented in Table 4 for hydroclimatic scenarios. The 
percent of variation between each objective function 
and the best value found under a special scenario are 
shown in the Tables using color trends. It is interesting 
to note that by applying the proposed algorithm (model 
1) where the decision variables are derived using all 
possible scenarios, the objective functions show the best 

Table 3. Comparing the performance of different algorithms for Tehran system

Method 
Reliability

Municipal Minimum  flow Agricultural Hydropower
GA, WM 0.57 0.48 0.35 0.73
GA, SC 0.66 0.51 0.38 0.79
HS, WM 0.60 0.43 0.34 0.73
HS, SC 0.66 0.51 0.40 0.78

MeS, WM 0.64 0.54 0.37 0.74
MeS, SC 0.72 0.59 0.40 0.79

performance (highest reliability) for all scenarios. But 
other models which employ a specified scenario to derive 
the rules, just work well under that scenario. For example, 
using the proposed algorithm, the municipal reliability 
(the first objective function) is 0.72 under scenario 1, 
0.65 under scenario 2 and so on.  It is obvious from this 
Table that the reliability values obtained by the proposed 
method for each hydroclimatic scenario is maximum 
among all other models. In other words, the maximum 
value in each scenario column occurs in the proposed 
model row. However, other models also reach to nearly 
the same reliability value that they are based on. In all 
other cases where the scenario changes to other than 
the one employed by the model, the model performance 
is very poor as compared to the proposed model. For 
example, model 2 which is based on scenario 1 (current 
condition) shows a reliability value of 0.72 (equal to the 
value obtained by the proposed method) if that scenario 
occurred, but in all other cases where a different scenario 
takes place, the reliability values are well below those of 
the proposed method. The same is true for model 3 which 
is based on scenario 2 where the best performance also 
occurs if scenario 2 takes place. In this case, a reliability 
value of 0.67 nearly the same as that obtained by the 
proposed method (i.e., 0.65) is obtained but in all other 
scenarios, the performance of model 3 is poor. Similar 
results are observable in all other models for municipal 
reliability. Also, the same trend is evident for other water 
demand sectors including the environmental (minimum 
flow), agricultural and hydropower sectors. Nevertheless, 
It is clear that when the operation rule is optimized under 
one scenario, optimal value should be obtained in that 
scenario for simulation phase but as one can see from the 
Table, the proposed algorithm can perform well under all 
scenarios. 
    In Table 4, color trends indicate that as we move further 
from the scenario that was used to derive the system 
operation rules, the results are further deviated from the 
best performance in each case (column). Interestingly, the 
rules derived for normal or near-normal hydroclimatic 
conditions show deteriorations when facing dryer 
conditions. This is more observable in case of municipal 
demands where higher demands are requested with the 
first priority than other sectors either with less amount of 
demand and/or lower priority. Yet, the hydropower sector 
experience similar trends as the municipal sector but to a 
lesser extent, since part of the water released for municipal 
use also is used for hydropower generation. Nevertheless, 
it is also observable from the results that in general the 
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rules derived for dryer conditions work relatively better 
in wet conditions than vice versa. This could be due to the 
hedging effect of dry condition rules that try to save more 
water in the reservoir storages for future conditions.  
  Similar trend is observed in population growth scenarios 
as shown in Table 5. As can be seen the percent of 
variation in Table 5 changes in a wider range than 

Table 4. According to these results, the system is more 
sensitive to demands changes than the inflow changes 
for the municipal objective. Moreover, rules derived for 
normal population conditions (i.e., first three scenarios) 
fail to function properly in higher population conditions 
(i.e., last three scenarios); similar to drought and wet 
conditions in the hydroclimatic scenarios as mentioned 
earlier in Table 4.  

Table 4. Results of objective functions for hydroclimatic scenarios

 model Optimization 
based scenario

Simulation with each hydroclimatic scenario
scenario 

1
scenario 

2
scenario 

3
scenario 

4
scenario 

5
scenario 

6
scenario 

7

Municipal 
Reliability

1 proposed method 
(all scenarios) 0.72 0.65 0.59 0.48 0.4 0.3 0.21

2 scenario 1 0.72 0.4 0.32 0.23 0.19 0.15 0.1

3 scenario 2 0.69 0.67 0.36 0.24 0.22 0.15 0.1

4 scenario 3 0.68 0.4 0.59 0.32 0.23 0.15 0.1
5 scenario 4 0.6 0.38 0.37 0.49 0.24 0.19 0.12
6 scenario 5 0.51 0.37 0.32 0.29 0.39 0.2 0.14
7 scenario 6 0.49 0.35 0.3 0.28 0.28 0.29 0.14
8 scenario 7 0.47 0.32 0.29 0.28 0.27 0.2 0.23

Instream
 Requirement 

Reliability

1 proposed method 
(all scenarios) 0.59 0.54 0.5 0.44 0.37 0.3 0.2

2 scenario 1 0.59 0.47 0.42 0.37 0.3 0.24 0.16
3 scenario 2 0.57 0.52 0.44 0.39 0.31 0.24 0.16
4 scenario 3 0.59 0.47 0.47 0.38 0.31 0.24 0.16
5 scenario 4 0.55 0.47 0.44 0.42 0.33 0.25 0.18
6 scenario 5 0.5 0.47 0.42 0.36 0.36 0.25 0.18
7 scenario 6 0.53 0.46 0.42 0.38 0.33 0.29 0.18
8 scenario 7 0.53 0.43 0.4 0.38 0.33 0.25 0.19

Agricultural  
Reliability

1 proposed method 
(all scenarios) 0.4 0.31 0.29 0.23 0.2 0.15 0.12

2 scenario 1 0.39 0.3 0.29 0.2 0.18 0.12 0.09
3 scenario 2 0.36 0.31 0.28 0.2 0.18 0.13 0.1
4 scenario 3 0.36 0.3 0.29 0.24 0.18 0.13 0.1
5 scenario 4 0.35 0.28 0.27 0.24 0.19 0.13 0.1
6 scenario 5 0.33 0.27 0.26 0.23 0.2 0.14 0.11
7 scenario 6 0.33 0.26 0.25 0.2 0.17 0.15 0.11
8 scenario 7 0.33 0.25 0.24 0.2 0.15 0.14 0.11

Hydropower  
Reliability

1 proposed method 
(all scenarios) 0.74 0.7 0.65 0.64 0.56 0.48 0.42

2 scenario 1 0.76 0.68 0.62 0.54 0.46 0.33 0.22
3 scenario 2 0.72 0.72 0.62 0.57 0.47 0.37 0.25
4 scenario 3 0.7 0.67 0.63 0.61 0.48 0.37 0.25
5 scenario 4 0.66 0.67 0.63 0.61 0.54 0.47 0.33
6 scenario 5 0.66 0.67 0.63 0.61 0.57 0.48 0.33
7 scenario 6 0.54 0.55 0.54 0.51 0.51 0.49 0.37
8 scenario 7 0.47 0.48 0.46 0.46 0.5 0.48 0.44

Legend
Variation percent <10% 10-20% 20-30% 30-40% 40-50% >50%

Color     
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Table 5. Results of objective functions for population growth scenarios

 model Optimization 
based scenario

Simulation with each population growth scenario
scenario 

1
scenario 

2
scenario 

3
scenario 

4
scenario 

5
scenario 

6
scenario 

7

Municipal 
Reliability

1 proposed method 
(all scenarios) 0.72 0.56 0.48 0.34 0.23 0.17 0.13

2 scenario 1 0.72 0.45 0.19 0.12 0.03 0.05 0.02
3 scenario 2 0.67 0.55 0.23 0.15 0.1 0.02 0.01
4 scenario 3 0.67 0.37 0.47 0.18 0.16 0.03 0.03
5 scenario 4 0.63 0.31 0.26 0.35 0.16 0.1 0.07
6 scenario 5 0.63 0.3 0.26 0.19 0.25 0.11 0.08
7 scenario 6 0.63 0.27 0.26 0.19 0.17 0.18 0.12
8 scenario 7 0.57 0.23 0.22 0.18 0.17 0.15 0.13

Instream
 Requirement 

Reliability

1 proposed method 
(all scenarios) 0.59 0.55 0.53 0.51 0.49 0.49 0.49

2 scenario 1 0.63 0.5 0.49 0.48 0.47 0.43 0.44
3 scenario 2 0.63 0.55 0.46 0.45 0.45 0.43 0.44
4 scenario 3 0.63 0.55 0.54 0.5 0.51 0.44 0.45
5 scenario 4 0.6 0.54 0.52 0.51 0.5 0.44 0.44
6 scenario 5 0.59 0.51 0.5 0.49 0.49 0.45 0.45
7 scenario 6 0.57 0.49 0.47 0.46 0.45 0.47 0.45
8 scenario 7 0.53 0.46 0.45 0.44 0.43 0.43 0.46

Agricultural  
Reliability

1 proposed method 
(all scenarios) 0.42 0.39 0.35 0.34 0.33 0.3 0.3

2 scenario 1 0.73 0.37 0.33 0.33 0.3 0.3 0.29
3 scenario 2 0.42 0.4 0.34 0.32 0.32 0.31 0.28
4 scenario 3 0.4 0.41 0.36 0.33 0.33 0.29 0.26
5 scenario 4 0.4 0.4 0.35 0.34 0.33 0.3 0.28
6 scenario 5 0.39 0.36 0.32 0.33 0.33 0.3 0.28
7 scenario 6 0.38 0.34 0.32 0.31 0.28 0.3 0.29
8 scenario 7 0.39 0.33 0.35 0.29 0.28 0.31 0.3

Hydropower  
Reliability

1 proposed method 
(all scenarios) 0.71 0.69 0.67 0.63 0.62 0.6 0.58

2 scenario 1 0.72 0.69 0.67 0.63 0.57 0.53 0.5
3 scenario 2 0.68 0.71 0.66 0.63 0.62 0.53 0.5
4 scenario 3 0.68 0.69 0.69 0.63 0.6 0.56 0.53
5 scenario 4 0.68 0.69 0.69 0.65 0.62 0.58 0.53
6 scenario 5 0.65 0.69 0.68 0.64 0.63 0.62 0.58
7 scenario 6 0.63 0.69 0.65 0.63 0.63 0.62 0.59
8 scenario 7 0.62 0.69 0.63 0.6 0.62 0.61 0.59

Legend
Variation percent <20% 20-30% 30-40% 40-50% 50-70% >70%

Color     

5- Conclusion
  In this paper, a novel many-objective optimization 
algorithm was introduced that is able to derive the 
operation policy of systems with multiple reservoir 
considering various future scenarios. The model was 

evaluated using a five-reservoir system in the Tehran 
region with several objectives including meeting 
municipal, agricultural, environmental, and hydropower 
demands. For this purpose, two groups of scenarios 
including seven “hydroclimatic scenarios” and another 
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seven “population growth scenarios” were defined, based 
on decreasing inflows to resemble climate change impacts 
and increasing municipal and agricultural demands, 
respectively. Then, the performance of various methods 
including GA, HS, and MeS in combination with SC and 
WM was evaluated. Results indicated that using social 
choice coupled with heuristic algorithms improves the 
system performance especially for the municipal demand 
which has the first priority. Moreover, the MeS algorithm 
showed generally better performance than either of other 
heuristic algorithms including HS and GA. Finally, it was 
shown that in all cases the multi-scenario rule derived by 
the proposed method performs as good as the operation 
rule derived for any specific scenario when evaluated for 
that scenario. Finally, a comparison of results revealed 
the superiority of the proposed model over NSGA-II as 
the number of objectives increased from two to four (i.e, 
becoming more complicated). For instance, the proposed 
model was able to reach a reliability level of 0.72 in 
contrast to 0.64 obtained by the NSGA-II in meeting the 
municipal demand of Tehran city. The proposed method 
is more appreciated when the system planning (sizing the 
hydro structures) is considered.
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