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ABSTRACT:  This paper addresses the linear buckling behavior of tapered Timoshenko beams made 
of axially functionally graded material (AFGM). Material properties of the non-prismatic Timoshenko 
beam vary continuously along the length of the member according to power law as well as exponential 
law. Based on Timoshenko beam assumption and using small displacements theory, the linear equilibrium 
equations are adopted from the energy principle for functionally graded non-uniform Timoshenko beams 
related to constant compressive axial load. The resulting system of stability equations are strongly 
coupled due to the presence of transverse deflection and angle of rotation. The differential equations 
are then uncoupled and lead to a single homogeneous differential equation where only bending rotation 
is present. The finite difference method (FDM) is then selected to numerically solve the resulting 
second-order differential equation with variable coefficients and determine the critical buckling loads. 
Two numerical examples are finally conducted to demonstrate the performance and efficiency of this 
mathematical procedure. The obtained results are contrasted with accessible numerical and analytical 
benchmarks.
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1-INTRODUCTION
Accurate evaluation of the critical buckling loads and 

stability limit state of elastic members is one of criteria 
in designing different structures. Euler-Bernoulli beam 
theory is commonly adopted for stability and free vibration 
analyses of long and slender beams with constant or 
variable cross-sections. According to this model, the effect 
of shear deformation is neglected and only the influence 
of flexural deformation is taken into consideration in the 
calculation process. Researchers usually use Timoshenko 
beam assumptions to model the behavior of short and thick 
beams such as towers, moveable arms and antenna, in which 
the influences of shear deformation and rotatory inertia are 
taken into account. Based on Timoshenko beam assumption 
and using small displacements theory, the stability behavior 
is governed by a pair of second order differential equations 
coupled in terms of the transverse deflection and the angle 
of rotation due to bending. In the last decades, with the 
development of manufacturing process, elastic members 
whose cross-sectional profile changes partially or gradually 
along their length, known as non-prismatic beams, have 
been widely spread in many engineering applications. This is 
because their ability in improving both strength and stability, 
satisfaction aesthetic necessities and optimization weight 
of structures. For Timoshenko beams with an arbitrarily 

variable cross-section, the stability analysis becomes more 
complex due to the presence of variable coefficients in the 
governing differential equations. Due to Timoshenko beam 
relevance to engineering configurations ranging from civil 
engineering to aeronautical applications, there are numerous 
researches dedicated to linear stability and vibration analyses 
of this member with constant or variable cross-section [1-
11].  Despite these extensive studies for non-prismatic and 
prismatic elastic Timoshenko beams, the abovementioned 
researches are exclusively restricted to the buckling and 
dynamic analyses of homogeneous beam. By improvements 
in fabrication process, structural members are now adopted 
with different materials such as wood, steel and composite 
materials. Functionally Graded Materials (FGMs) as a new 
class of advanced materials are made up by gradually and 
smoothly changing the composition of two or more different 
materials in any desired direction. Engineers can thus 
produce structures with favorable stability and manage the 
distribution of material properties. Due to smooth variations 
in material properties, functionally graded materials can also 
overcome some disadvantages and weaknesses of laminated 
composites such as delamination and stress concentration. 
The use of non-prismatic beams made of functionally graded  
materials during the past twenty years has been increasing in 
complicated mechanical components such as turbine blades, 
rockets, aircraft wings and space structures due to their 
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conspicuous characteristics such as high strength, thermal 
resistance and optimal distribution of weight. Chakraborty 
et al. [12] introduced a new finite element solution based 
on the first-order shear deformation theory to investigate 
the thermo-elastic behavior of FG beam structures. Simsek 
and Kocatürk [13] investigated free vibration characteristics 
and the dynamic behavior of a simply-supported FG beam 
subjected to concentrated moving harmonic load. Further, 
Li et al. [14] has studied the free vibration behavior of 
axially inhomogeneous functionally graded beams by 
assuming material properties of the beam including Young’s 
modulus and density to vary exponentially. Pradhan and 
Chakraverty [15] used Rayleigh–Ritz method to analyze the 
free vibration of Euler and Timoshenko functionally graded 
beams. Further, Arefi [16] investigated electromechanical 
stability of a functionally graded circular plate integrated 
with two functionally graded piezoelectric layers under 
radial compressive. By contemplating the impact of elastic 
foundation and semi-rigid end conditions, buckling analysis of 
axially functionally graded Euler-Bernoulli beam having non-
uniform cross-section was surveyed in detail by Shvartsman 
and Majak [17]. Soltani [18] investigated free vibration 
behavior of axially functionally graded Timoshenko beams 
with varying cross-section through the power series method. 
Based on six different shear deformation theories, Pradhan 
and Chakraverty [19] surveyed free vibration behavior of 
functionally graded beam with various end restrains using 
Rayleigh–Ritz method. Based on the modified couple stress 
theory, mechanical behavior of non-uniform bi-directional 
functionally graded beam sensors was comprehensively 
studied by Khaniki and Rajasekaran [20]. Additionally, Li 
et al. [21] conducted instability analysis of a micro-scaled 
bi-directional functionally graded beam having rectangular 
cross-section by employing the Generalized Differential 
Quadrature Method (GDQM). Recently, Soltani and 
Asgarian [22] performed the stability analysis of cantilever 
axially functionally graded non-prismatic Timoshenko beam 
through a new finite element model based on power series 
approximation.

In previous authors’ works [18, 22], the stability and free 
vibration analyses of axially functionally graded Timoshenko 
beam with varying cross-section has been investigated. For 
instance, a numerical technique based on the power series 
expansions of displacement components was utilized to 
simulate the problem [18], as well as finite element method 
[22]. The power series method [18] needs a considerable 
amount of time to determine explicit expressions of 
displacement functions for governing equilibrium equations. 
Another numerical method based on the power series 
expansions to acquire structural stiffness matrices was also 
proposed by authors to perform linear stability analysis of 
non-prismatic members with non-symmetric thin-walled 
cross-section [22]. However, this technique is only applicably 
for cantilever beams. The objective of the current paper 
is to present a new single governing equation in terms of 
angel of rotation for investigating the critical loads of axially 
functionally graded Timoshenko beam with non-uniform 

cross-section. Considering Timoshenko beam assumption 
and the effect of initial stress, the equilibrium equations and 
corresponding boundary conditions are established from the 
total potential energy of functionally graded non-uniform 
Timoshenko beams subjected to a constant compressive axial 
load tangential to the beam’s axis. The governing equilibrium 
equations are derived in the case of elastic behavior and 
small displacements. The acquired system of linear stability 
equations are coupled in terms of the transverse deflection 
and the angle of rotation due to bending. The differential 
equations are then uncoupled and transformed to a single 
homogeneous differential equation where only bending 
rotation is present. Due to the complicated mathematical 
structure of the resulting differential equation, closed-
form solutions are not accessible. In order to overcome this 
difficulty, the finite difference method (FDM) is utilized. Finite 
difference method, especially in its explicit formulation, is a 
very fast numerical method. Besides, it could be effectively 
tuned to achieve a desirable amount of accuracy. Regarding 
the finite difference rules, all the derivatives of the dependent 
variables in the resulting differential equation and the related 
boundary conditions are replaced with the corresponding 
forward, central and backward second order finite differences. 
Next, the discreet form of the governing equation is derived 
in a matrix formulation. The critical buckling loads are 
then determined by solving the eigenvalue problem of the 
obtained matrix. Finally, the effectiveness and reliability of 
this numerical technique in linear stability analysis have been 
confirmed by comparing the obtained numerical results with 
the outcomes of accessible numerical and analytical solutions 
for homogeneous and nonhomogeneous Timoshenko beams 
with variable cross-sections. The effects of material variations, 
taper ratios and end conditions on the critical buckling loads 
are also investigated intensively. It is worthy to note that 
these methodologies are employed to solve the linear stability 
problem for simply supported and clamped–free non-
prismatic beams. Comments and conclusions are close to last 
section of present manuscript.

2-DERIVATION THE GOVERNING EQUATIONS 
A non-prismatic Timoshenko beam of length L with 

axially variable material properties, as depicted in Fig.1, is 
taken into account. In this study, stability analysis is done 
considering small displacements. It is also contemplated that 
the beam is made from non-homogeneous material with 
shear (G) and Young’s (E) moduli which are variable along 
the beam’s length. A direct rectangular co-ordinate system is 
chosen, with x the initial longitudinal axis and y and z the 
first and second main bending axes, as depicted in Fig. 1. The 
origin of these axes is located at the centroid O. In the current 
research, the beam is undergoing a constant compressive axial 
load, which is tangential to the x-axis of member. Based on 
the Timoshenko beam theory, the longitudinal and transverse 
displacement components can be respectively expressed as:

0( , , ) ( ) ( )U x y z u x z x= − θ  

( , , ) ( )W x y z w x= �
(1a, b) 
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In the previous equations, U denotes the axial 
displacement, W signifies the vertical displacement (in z 
direction), and     represents the angle of rotation of the cross-
section due to bending. The equilibrium equations for non-
prismatic Timoshenko beam are derived if the first variation 
of the total potential energy vanishes:
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δ  illustrates a virtual variation in the last formulation. 
U represents the strain energy and 
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of applied loads. For the particular case of linear stability 
context, where the beam is not under any external forces, 
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Substituting Eq. (4) into Eq. (3), the expression of the 
virtual strain energy can be carried out as:

0( )
( )
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The variation of strain energy can be formulated in terms 
of section forces acting on cross-sectional contour of the 
elastic member in the buckled configuration. The section 
stress resultants are presented by the following expressions:

xxA
P dA= ∫ σ   

xxA
M zdA= ∫ σ

xzA
Q dA= ∫ τ 	�

(6a, c)

In which N is the axial force applied at end member. M 
and Q are respectively the bending moment and shear force at 
any point of the beam. Using relation (6), the final form of the 
strain energy variation         is then acquired as:

0( )
( )L

P u w w MU dx
Q w
δ δ δθδ
δ δθ

 ′ ′ ′ ′+ + +=   ′ − 
∫ � (7)

According to the equation presented above, the first 
variation of strain energy contains the virtual displacements 
( 0 , ,u wδ δ δθ ) and their derivatives. After appropriate 
integrations by parts, one gets an expression in terms of 
virtual displacements. After some calculations and needed 
simplifications, the following equilibrium equations in the 
stationary state are obtained:

0P ′− =  
( ) 0Pw Q′ ′ ′− − =   

0M Q′− − = 	�
(8a, c)

The boundary conditions of the beam can be also 
expressed as:
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Assuming E and G to be the elastic parameters for an 
axially non-homogeneous material, which can be both 
variable through the longitudinal direction, the expression of 
the stress components including the normal and shear ones 
are as:

 ارائه معادلات دارای اشکال به همراه شماره معادله در متن مقاله: ججدول 
 MathTypeمعادله تایپ شده در  شماره معادله  مورد 

1 (2) ( ) 0eU W + = 
2 (10a, b) ( ) ,       ( )xx xx xz xzσ E x ε τ G x γ= = 

3 (13a, b) 
 

 
:   ( ) 0

:    0
w kGA w Pw

EI
  −  − =

  =
 

4 (25) 

( )

( )

( )

,

, 1

, 2

,

, 1

, 2

2

2 ;
4 ;

2
2 ;

2 4 ;

2

i i

i i

i i

i i i i i i i i i i

i i i i i i

i i i i i i i i i i

G i i i i i i

G i i i i

G i i i i i i

K kG A hI E hE I E I
K kG A E I

K kG A hI E hE I E I
K hI E hE I E I

K h kG A E I

K hI E hE I E I
+

+

+

+

 = − + −

= −

 = + +

 = + −

= +

 = − + +

 

5   
6   
7   
8   
9   
10   

	�  (10a, b)

Substituting the strain-displacement relations defined in 
Eq. (4) into elastic stresses of Eq. (10) and integration over 
the cross-sectional area in the context of principal axes, the 
following components are derived:

 �  

(11a, c) 
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In Eq. (12c), k is the shear correction factor. I denotes the minor moment of inertia about y-axis. In this 
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derived: 

2 2
0 0

2
0

1 1( ) ( )( ( ) ) ( ( ) )
2 2

1( )( ( ) )
2

( )( ) ( )

xx xxA A A

xxA A

xzA A

P dA E x ε dA E x u z w dA EA u w

M zdA E x u z w zdA EI

Q dA G x w dA kGA w

   = = = − + = +

   = = − + =

 = = − = −

  

 
 

 

  

  

     (11a, 

c)  

In Eq. (12c), k is the shear correction factor. I denotes the minor moment of inertia about y-axis. In this 

study, it is assumed that the concentrated compressive axial load (P) is applied at end beam without any 

eccentricity (Fig. 1). This model is also established in the context of small displacements and deformations. 

According to linear stability, non-linear terms are also disregarded in the equilibrium equations. Based on 

these assumptions, the system of equilibrium equations for non–prismatic Timoshenko beam are finally 

derived by replacing Eq. (11) into Eq. (8): 

( )0 0EAu  =  ( )( ) 0kGA w Pw − − =  ( ) ( ) 0EI kGA w  + − =                            (12a, c) 
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expression in terms of virtual displacements. After some calculations and needed simplifications, the 

following equilibrium equations in the stationary state are obtained: 

0P − =    ( ) 0Pw Q  − − =     0M Q− − =          (8a, c)  

The boundary conditions of the beam can be also expressed as: 

( )
( )
( )

0                                                        

                                              

                                   

0 0

0 0

0 0                   

P u

Pw Q

Or

O w

M

r

Or

=   =

 + =   =

=   =

        (9a, c) 

Assuming E and G to be the elastic parameters for an axially non-homogeneous material, which can be 

both variable through the longitudinal direction, the expression of the stress components including the 

normal and shear ones are as: 

( )xx xxσ E x ε=                         ( )xz xzτ G x γ=                    (10a, b) 

Substituting the strain-displacement relations defined in Eq. (4) into elastic stresses of Eq. (10) and 

integration over the cross-sectional area in the context of principal axes, the following components are 

derived: 
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xx xxA A A
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Q dA G x w dA kGA w

   = = = − + = +

   = = − + =

 = = − = −

  

 
 

 

  

  

     (11a, 

c)  

In Eq. (12c), k is the shear correction factor. I denotes the minor moment of inertia about y-axis. In this 

study, it is assumed that the concentrated compressive axial load (P) is applied at end beam without any 

eccentricity (Fig. 1). This model is also established in the context of small displacements and deformations. 

According to linear stability, non-linear terms are also disregarded in the equilibrium equations. Based on 

these assumptions, the system of equilibrium equations for non–prismatic Timoshenko beam are finally 

derived by replacing Eq. (11) into Eq. (8): 

( )0 0EAu  =  ( )( ) 0kGA w Pw − − =  ( ) ( ) 0EI kGA w  + − =                            (12a, c) 
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( ) 0U W + =                                             (2)  

  illustrates a virtual variation in the last formulation. U represents the strain energy and W denotes the 

work of applied loads. For the particular case of linear stability context, where the beam is not under any 

external forces, one considers that the external load work equals to zero. U could be computed using the 

following equations: 

( )xx xx xz xzL A
U dAdx= +                       (3)  

In which, L and A express the element length and the cross-sectional area, respectively. xx and xz are 

strain tensor variations. xx and xz denote the Piola–Kirchhoff stress tensor components. Based on the 

assumption of the Green’s strain-tensor, the strain-displacement relations and their first variation are:  

2
0 0

1 ( )
2

2

xx xx

xz xz xz

u z w u z w w

w w

     

     

     = − + → = − +

 = = − → = −
                     (4a, b)

       

Substituting Eq. (4) into Eq. (3), the expression of the virtual strain energy can be carried out as: 

( )0( ) ( )xx xzL A
U u z w w w dAdx    = − + + −                       (5) 

The variation of strain energy can be formulated in terms of section forces acting on cross-sectional contour 

of the elastic member in the buckled configuration. The section stress resultants are presented by the 

following expressions: 

xxA
P dA=                  xxA

M zdA=     xzA
Q dA=                                               (6a, c)  

In which N is the axial force applied at end member. M and Q are respectively the bending moment and 

shear force at any point of the beam. Using relation (6), the final form of the strain energy variation (U) is 

then acquired as: 

( )0( ) ( )
L

U P u w w M Q w dx    = + + + −                    (7) 

According to the equation presented above, the first variation of strain energy contains the virtual 

displacements ( 0, ,u w   ) and their derivatives. After appropriate integrations by parts, one gets an 

5 
 

comparing the obtained numerical results with the outcomes of accessible numerical and analytical 

solutions for homogeneous and nonhomogeneous Timoshenko beams with variable cross-sections. The 

effects of material variations, taper ratios and end conditions on the critical buckling loads are also 

investigated intensively. It is worthy to note that these methodologies are employed to solve the linear 

stability problem for simply supported and clamped–free non-prismatic beams. Comments and conclusions 

are close to last section of present manuscript. 

2-Derivation the governing equations  

A non-prismatic Timoshenko beam of length L with axially variable material properties, as depicted in 

Fig.1, is taken into account. In this study, stability analysis is done considering small displacements. It is 

also contemplated that the beam is made from non-homogeneous material with shear (G) and Young's (E) 

moduli which are variable along the beam’s length. A direct rectangular co-ordinate system is chosen, with 

x the initial longitudinal axis and y and z the first and second main bending axes, as depicted in Fig. 1. The 

origin of these axes is located at the centroid O. In the current research, the beam is undergoing a constant 

compressive axial load, which is tangential to the x-axis of member. Based on the Timoshenko beam theory, 

the longitudinal and transverse displacement components can be respectively expressed as: 

0( , , ) ( ) ( )U x y z u x z x= −            ( , , ) ( )W x y z w x=                     (1a, b)  

 

Fig. 1: An axially functionally graded Timoshenko beam with varying cross-section, Coordinate system and 
notation of displacement parameters 

In the previous equations, U denotes the axial displacement, W signifies the vertical displacement (in z 

direction), and  represents the angle of rotation of the cross-section due to bending. The equilibrium 

equations for non-prismatic Timoshenko beam are derived if the first variation of the total potential energy 

vanishes: 
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In Eq. (12c), k is the shear correction factor. I denotes 
the minor moment of inertia about y-axis. In this study, it is 
assumed that the concentrated compressive axial load (P) is 
applied at end beam without any eccentricity (Fig. 1). This 
model is also established in the context of small displacements 
and deformations. According to linear stability, non-linear 
terms are also disregarded in the equilibrium equations. Based 
on these assumptions, the system of equilibrium equations 
for non–prismatic Timoshenko beam are finally derived by 
replacing Eq. (11) into Eq. (8):

( )0 0EAu ′′ =

( )( ) 0kGA w Pw′′ ′′− − =θ

( ) ( ) 0EI kGA w′ ′ ′+ − =θ θ �
(12a, c)

In these differential equations, the successive x-derivatives 
are denoted by ( )’, ( )”. The last two equilibrium equations 
(12b and 12c) are coupled differential equations due to the 
presence of vertical and rotation displacement components (w 
and θ) and shear rigidity (GA). It is obvious that the equation 
for the axial displacement (Eq. (12a)) is uncoupled from the 
others and can be handled independently. The associated 
boundary conditions by ignoring the axial equation which 
has no incidence on stability analysis of Timoshenko beam 
are formulated as follows:

 ارائه معادلات دارای اشکال به همراه شماره معادله در متن مقاله: ججدول 
 MathTypeمعادله تایپ شده در  شماره معادله  مورد 

1 (2) ( ) 0eU W + = 
2 (10a, b) ( ) ,       ( )xx xx xz xzσ E x ε τ G x γ= = 

3 (13a, b) 
 

 
:   ( ) 0

:    0
w kGA w Pw

EI
  −  − =

  =
 

4 (25) 

( )

( )

( )

,

, 1

, 2

,

, 1

, 2

2

2 ;
4 ;

2
2 ;

2 4 ;

2

i i

i i

i i

i i i i i i i i i i

i i i i i i

i i i i i i i i i i

G i i i i i i

G i i i i

G i i i i i i

K kG A hI E hE I E I
K kG A E I

K kG A hI E hE I E I
K hI E hE I E I

K h kG A E I

K hI E hE I E I
+

+

+

+

 = − + −

= −

 = + +

 = + −

= +

 = − + +

 

5   
6   
7   
8   
9   
10   

� (13a, b)

The boundary condition in vertical direction (Eq. (13a)) 
can be transformed into:

( )kGAw
kGA P

′ =
−

θ
                                                           	�  (14)

The last expression is incorporated in the third differential 
equation (Eq. (13c)). After some simplifications, Eq. (12c) is 
then uncoupled from the transverse displacement (w). The 
following differential equation is derived only in terms of the 
angle of rotation (θ ):

( ) (( -1) ) 0kGAEI kGA
kGA P

′ ′ + =
−

θ θ      

 Or   

( ) ( ) 0PEI kGA
kGA P

′ ′ + =
−

θ θ                                            (15)

In order to solve the resulting second-order differential 
equation (Eq. (15)), prescribe boundary conditions including 
natural or geometrical ones at the two ends of the problem 
domain are required. It is noteworthy that the governing 
differential equation (Eq. (15)) is known as the strong form of 
the problem. Besides, to acquire the corresponding boundary 
conditions, the homogeneous differential equation should 
be transformed to a weighted-integral expression called the 

weak form which is equivalent to equilibrium equation and 
its relating boundary conditions. In order to construct the 
weak form for the governing differential equation, we should 
multiply Eq. (15) by an arbitrary function (ψ ) and integrate 
the result over the problem domain. The weak form of the 
equilibrium equation in terms of bending rotation (Eq. (15)) 
is thus obtained by:

0
( ) ( ) 0

L PEI kGA dx
kGA P

 ′ ′ + = − ∫ ψ θ θ �       (16)

In which ψ  is a test function which is continuous and 
satisfies the essential end conditions. Thus, the weak form for 
the equilibrium equation becomes:

0

0

( ) ( )

( ) 0

L

L

PEI kGA dx
kGA P

EI

θ ψ θψ

θ ψ

 ′ ′− + + − 

′ =

∫ � (17)

In the current study, simply supported beams and 
cantilevers are surveyed. Their corresponding boundary 
conditions are thus obtained as follows:

0

0

Simply supported:      
         

Cantilever:         
                        

0      0

0      0

x x L

x x L

and

and

θ

θ

θ

θ

= =

= =

′ = =

′ =

′

=

� (18a, b)

In order to simplify the solution procedure based on the 
considered numerical technique, the governing equilibrium 
equation is transformed to:

( )( ) ( ( ) ) 0kGA EI P kGA EI′ ′ ′ ′+ − =θ θ θ � (19)

Extending the above equation results in:

( ) ( )
( ) ( )

( ) ( )

( ) 0

kGA IE EI kGA EI

P kGA P IE EI P EI

θ θ

θ θ θ

′ ′ ′ ′′+ + +

′ ′ ′ ′′− + − =
� (20)

In the following section, the application of FDM in linear 
stability analysis of non-homogeneous Timoshenko beams 
with variable cross-section is presented.

3- FDM FORMULATION OF THE PROBLEM
As it was previously mentioned, closed-form solutions of 

the equilibrium equation due to the variable terms viz: cross-
sectional area, moment of inertia and material properties are 
generally difficult. Therefore, an appropriate mathematical or 
numerical method must be adopted. Finite difference approach 
is a numerical iterative procedure that involves the use of 
successive approximations to obtain solutions of differential 
equations especially with variable coefficients. This approach 
is also capable of predicting the critical buckling loads with 
the desired precision. In order to apply the finite difference 
method to the equilibrium equation, the beam member with 
length of L is assumed to be sub-divided into n parts, with 
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length h=L/n, as shown in Fig. 2. Therefore, there are (n+1) 
nodes along the beam’s length with number i=0,1…n, with 0 
and n denote beam ends. From numerical point of view, the 
second order forward difference formulation is used for the 
first node (i= 0) whereas for the last (i= n), the second order 
backward formulation is applied to the governing equation. 
For all the other nodes (0 <i < n), the second order central 
difference formulation is implemented.   

According to central finite difference method, the first 
and second order derivatives of cross-section rotation angle

10 
 

to the governing equation. For all the other nodes (0 <i < n), the second order central difference formulation 

is implemented.    

 

Fig. 2: Finite difference method: Definition spaced grid points 

According to central finite difference method, the first and second order derivatives of cross-section rotation 

angle () for a discrete member are formulated as follows: 

1 1

2
i i

i h
+ −− =

 
                                    1 1

2

2i i i
i h

+ −− + =
  

                                                                      (21a, 

b)       

In which:
 

i 1− i ، and i 1+ are angle of rotation of considered member in three points, located at equal 

distances of h. By replacing the above formulations (Eq. (21)) in equation (19), and simplifications, the 

finite difference form of the governing differential equation at node i, can be expressed as follows: 

( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1 1

2
1 1 1 1 1 1

( )( ) ( )( ) 2( ) ( 2 )

2 ( ) ( ) ( ) 2 ( 2 ) 0
i i i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i

h kG A I E h kG A E I kG A E I

h P kG A Ph I E Ph E I P E I
+ − + − + −

+ − + − + −

 − + − + − +

 + − − − − − − + =

      

       
     (22a) 

Or 

( ) ( ) ( )
( ) ( ) ( )

1 1

2
1 1

( ) 2 4 ( ) 2

2 2 4 2 0
i i i i i i i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i i i i

kG A hI E hE I E I kG A E I kG A hI E hE I E I

P hI E hE I E I P h kG A E I P hI E hE I E I
− +

− +

   − + − + − + + +

   + + − + + − + + =

  

  
     (22b) 

Equation (22b) should be written for n-1 grid points of a divided element. (n-1) equations are thus derived 

including n+1 unknown parameters ( 0 1, ,...., n   ). In order to solve the system of obtained equations by 

the finite difference method, two equations eventuated from boundary conditions of the beam are required 

as: 

Pinned-Pinned:           0 1 2

1 2

0      3 4 0
      3 4 0n n n

i
i n

  
  − −

= → − + − =
 = → − + =

                                                                  (23a) 

 for a discrete member are formulated as follows:

1 1

2
i i

i h
+ −−′ =

θ θ
θ

1 1
2

2i i i
i h

+ −− +′′ =
θ θ θ

θ
�

(21a, b)

In which:
 

i 1−θ iθ  and i 1+θ are angle of rotation of 
considered member in three points, located at equal distances 
of h. By replacing the above formulations (Eq. (21)) in 
equation (19), and simplifications, the finite difference form of 
the governing differential equation at node i, can be expressed 
as follows:

( )
( )

( )

( ) ( )
( )

1 1

1 1

1 1

2

1 1 1 1

1 1

( )( )

( )( )

2( ) ( 2 )

2 ( ) ( )
( )

2 ( 2 ) 0

i i i i i i

i i i i i i

i i i i i i i

i i i i i

i i i i i i

i i i i i

h kG A I E

h kG A E I

kG A E I

h P kG A Ph I E
Ph E I

P E I

θ θ

θ θ

θ θ θ

θ
θ θ θ θ

θ θ θ

+ −

+ −
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+ − + −

+ −
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′ − +
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′+ −

′− − − −

− + =

� (22a)

Or
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1
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4 ( )

2
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2 0
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P hI E hE I E I

P h kG A E I
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θ
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−

+

−

+
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− +
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+ −
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� (22b)

Equation (22b) should be written for n-1 grid points of a 
divided element. (n-1) equations are thus derived including 
n+1 unknown parameters ( 0 1, ,...., nθ θ θ ). In order to solve 
the system of obtained equations by the finite difference 
method, two equations eventuated from boundary conditions 

of the beam are required as:
Pinned-Pinned:

0 1 2

1 2

0      3 4 0
      3 4 0n n n

i
i n

θ θ θ
θ θ θ− −

= → − + − =
 = → − + = �

(23a)

Fixed-Free:          

0

1 2

0      0
      3 4 0n n n

i
i n

θ
θ θ θ− −

= → =
 = → − + = �

(23b)

It is worth mentioning that forward and backward finite 
difference formulations are respectively implemented for the 
first (i=0) and last (i=n) nodes. In this manner, any virtual 
nodes are not required and the overall error is thus reduced. 
Therefore, finite difference approach in the presence of n equal 
segments constitutes a system of simultaneous equations 
with (n+1) linear equations. In the following, the simplified 
equilibrium equation through FD formulation is written in a 
matrix notation as follows:

[ ] { } { }1 1 1 1( ) 0G n nK P K
+ × + ×

+ =   θ � (24)

K and KG are 1 1n n+ × +  matrices. As mentioned 
previously, n denotes the number of segments along the 
computation domain ( 0 x L≤ ≤ ). Regarding Eq. (22b), the 
terms of K and KG for 1 1i n≤ ≤ −  are determined in the 
following forms:
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3 (13a, b) 
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10   

  �    (25)

in which, h is the length of each segment. In Eq. (24), {θ} 
is the displacement vector:

{ } { }0 1 2 3 2 1. . .T
n n n− −=θ θ θ θ θ θ θ θ  � (26)

The rest of constants in matrix [K] are obtained from the 
boundary conditions:
Pinned-Pinned:  

,1 ,2 ,3

1, 1 1, 1, 1

3;  4;  1
3;  4;  1

n n n

n n n n n n

K K K
K K K+ + + + −

= − = = −
 = = − =

� (27a)

Fixed-Free:    

,1

1, 1 1, 1, 1

1
3;  4;  1

n

n n n n n n

K
K K K+ + + + −

=
 = = − =

� (27b)   

After wards, the critical buckling loads for Timoshenko 
beam with different boundary conditions (fixed–free and 
hinged–hinged) can be computed from the eigenvalues of 
Eq. (24). Note that all of the terms presented in the coefficient 
matrices ([K] and [KG]) are real. Besides, [K] and [KG] 
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are invertible matrices. It should be emphasized that the 
calculated axial critical loads are considered as real values.

4- NUMERICAL EXAMPLES:
In the previous sections, the equilibrium equation of 

axially functionally graded Timoshenko beam with varying 
cross-section was formulated and numerically solved for 
linear stability analysis. In this section, to study the effect 
of tapering ratio and material gradient on the critical load, 
two numerical examples relating to homogeneous and non-
homogeneous Timoshenko beams with varying cross-section 
are included. In the following, the mechanical properties at 
the left support (x=0) and the right one (x=L) of the beam 
are respectively indicated with the subscripts 0 and 1. In 
order to simplify the solution procedure and the illustration 
of obtained results, two non-dimensional parameters are also 
adopted as:

2
0 0( )r I A L= 	 2

0 0nor crP P L E I=  �    

  Where         
3

0 0 0 12I h b=  and 0 0 0A b h= .�
(28a, b)

The cross-section of all considered beams is in the form 
of rectangle with width h and depth b which is assumed to be 
sufficiently small relative to the width. It should be noted that 
Poisson’s ratio and the shear correction factor in all presented 
cases are assumed to be 0.3 and 5/6, respectively.

In the first case (Case A), the height of the beam’s section is 
(b0) at the left support and linearly decreased to ( 1 0(1 )b bβ= − ) 
at the other end. The width of the beam (h0) remains constant. 
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rectangle with a height of (b1) and width of (h0).
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 can change 
from zero (prismatic beam) to a range of [0.1, 0.9] for non-
uniform beams. For the above-mentioned cases, the minor 
axis moment of inertia and the cross-section area can be 
respectively represented in the following forms:

Case A:

 ( ) ( )3
0 01- / ; 1- /I I x L A A x Lβ β= =  

Case B:

 ( ) ( )4 2
0 01- / ; 1- /I I x L A A x Lβ β= = �

(29a, b)

4-1- Example 1- Tapered Timoshenko beam with power-law 
distribution of material properties:

As mentioned before, it is assumed that the considered 
FG beam in this research is composed of two different 
components and for such a member it can also becontemplated 
that the Young’s modulus of elasticity varies continuously in 
the longitudinal direction according to a simple power-law 
function (P-FGM) of the volume fractions of the constituent 
materials while the Poisson’s ratio is supposed to equal 0.3 

along the beam axis:

0 1 0( ) ( )( / )mE x E E E x L= + − � (30)

E0 and E1 represent values of Young’s modulus of the 
constituent materials. Note that E0 is root elastic modulus. 
m signifies the material non-homogeneity index indicating 
the material variation profile through the length of the beam. 
It is supposed that tapered Timoshenko beam is made of 
a mixture of ceramic phase and metal phase. Regarding 
this, two different materials specifically Zirconia (ZrO2) 
and Aluminum (Al) with the following characteristics are 
considered as: ZrO2: E0=200GPa;  Al: E1=70GPa.

According to the material property variation (Eq. (30)), 
the left side of AFG beam (x=0) is intended pure ceramic 
(Zirconia) and the right end (x=L) is pure metal (Aluminum). 
By notifying Eq. (30), it can also be concluded that by raising 
the power-law index (m), the proportion of zirconia over the 
beam’s length increases. The linear stability analysis of the 
contemplated beams with varying rectangular cross-section 
has been performed using power-law index in the range of  
0.3 3m≤ ≤ .

The aim of the first section of this example is to define 
the required number of divisions in the longitudinal direction 
while using FDM to obtain an acceptable accuracy on critical 
elastic buckling loads. Regarding this, the lowest value of 
non-dimensional buckling load of the tapered beam related 
to Case A, having various values of tapering ratios ( 

13 
 

FGM) of the volume fractions of the constituent materials while the Poisson’s ratio is supposed to equal 

0.3 along the beam axis: 

0 1 0( ) ( )( / )mE x E E E x L= + −                   (30) 

E0 and E1 represent values of Young’s modulus of the constituent materials. Note that E0 is root elastic 

modulus. m signifies the material non-homogeneity index indicating the material variation profile through 

the length of the beam. It is supposed that tapered Timoshenko beam is made of a mixture of ceramic phase 

and metal phase. Regarding this, two different materials specifically Zirconia (ZrO2) and Aluminum (Al) 

with the following characteristics are considered as:          ZrO2: E0=200GPa;  Al: E1=70GPa. 

According to the material property variation (Eq. (30)), the left side of AFG beam (x=0) is intended pure 

ceramic (Zirconia) and the right end (x=L) is pure metal (Aluminum). By notifying Eq. (30), it can also be 

concluded that by raising the power-law index (m), the proportion of zirconia over the beam’s length 

increases. The linear stability analysis of the contemplated beams with varying rectangular cross-section 

has been performed using power-law index in the range of  0.3 3m  . 

The aim of the first section of this example is to define the required number of divisions in the longitudinal 

direction while using FDM to obtain an acceptable accuracy on critical elastic buckling loads. Regarding 

this, the lowest value of non-dimensional buckling load of the tapered beam related to Case A, having 

various values of tapering ratios ( = 0.2, 0.5 and 0.8) and for two different boundary conditions are 

calculated with respect to the number of segments considered in the finite difference method. The 

convergence study is conducted out for AFG beam with non-homogeneity index of m=2. Note that the 

cross-sectional dimensions are taken by setting r=0.01 (Eq. (28a)). Besides, the elapsed time to perform 

numerical computations is displayed in this table. The calculated results are verified with the results 

obtained by finite element technique proposed by Shahba et al. [23] in Table 1. According to Table 1, it 

can be easily observed that an increase in the number of segments has a great effect on the convergence 

rate of critical load parameters at each case. This table shows that Central Processing Unit (CPU) needs an 

average of 14.67 seconds to accomplish finite difference method simulation for a pinned-pinned AFG 
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The calculated results are verified with the results obtained 
by finite element technique proposed by Shahba et al. [23] in 
Table 1. According to Table 1, it can be easily observed that 
an increase in the number of segments has a great effect on 
the convergence rate of critical load parameters at each case. 
This table shows that Central Processing Unit (CPU) needs 
an average of 14.67 seconds to accomplish finite difference 
method simulation for a pinned-pinned AFG tapered beam (
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tapered beam (=) with the number divisions equals to 40. The normalized buckling load is 2.0481 

(error =1.01%). In order to improve the results, more CPU times are needed. With 60 segments, the 

buckling parameter is 2.0353 (error =0.37%) the CPU time is impressive (40.16 s). Finally, it can be 

concluded that that fifty number of segments (N=50) are sufficient to obtain the first buckling load 

parameters for different tapering ratios with desired accuracy.  

Table 1: Effect of number of segments on the lowest non-dimensional critical buckling load parameters (Pnor) of FG 
tapered Timoshenko beam with two different end conditions and CPU time comparisons 

Case End 
Conditions ()) 

The lowest non-dimensional critical buckling load 
Number of Divisions Shahba et 

al. [23] 10 20 30 40 50 60 

A 

Hinged-
Hinged 

 

0.2 4.2744 
(2.10s) 

4.1007 
(5.04s) 

4.0572 
(9.54s) 

4.0398 
(16.17s) 

4.0311 
(24.23s) 

4.0261 
(38.37s) 4.0176 

0.5 2.2575 
(2.40s) 

2.1043 
(5.18s) 

2.0643 
(9.34s) 

2.0481 
(14.67s) 

2.0399 
(24.65s) 

2.0353 
(40.16s) 2.0276 

0.8 0.7438 
(2.66s) 

0.6206 
(6.15s) 

0.5858 
(12.97s) 

0.5708 
(22.35s) 

0.5629 
(45.28s) 

0.5583 
(53.25s) 0.5502 

Fixed-Free 

0.2 1.6681 
(2.34s) 

1.6129 
(6.77s) 

1.5998 
(12.25s) 

1.5946 
(24.35s) 

1.5920 
(38.70s) 

1.5905 
(56.85s) 1.5875 

0.5 1.0770 
(2.68s) 

1.0134 
(6.96s) 

0.9978 
(12.41s) 

0.9916 
(25.71s) 

0.9885 
(40.47s) 

0.9867 
(57.11s) 0.9833 

0.8 0.4811 
(2.72s) 

0.4082 
(7.05s) 

0.3882 
(12.50s) 

0.3796 
(25.82s) 

0.3752 
(41.94) 

0.3725 
(57.34s) 0.3676 

Following the above mentioned procedure, the first non-dimensional buckling load parameter for various 

tapering ratios () with different gradient parameters (m=1, 2 and 3) are tabulated in Table 2.  The outcomes 

related to beams made up of homogenous material are also arranged in Table 2. It should be noted that the 

values of tapering ratio ( ) are selected in such a way that make comparison possible with other available 

reference in the case of tapered Timoshenko beam made up of axially functionally graded materials [22]. 

Besides, the relative errors between the finite element solution suggested by Soltani and Asgarian [22] for 

cantilever members and the proposed methodology are arranged in the mentioned table. As presented in 

Table 2, an outstanding compatibility between the critical buckling loads for different values of non-

uniformity ratios acquired by the current study and those computed by Soltani and Asgarian [22] is 

observed. Comparing the results of uniform beam and those of tapered ones (Table 2), it can be culminated 

that the considered prismatic beam in this example has the highest critical buckling load and is also most 

stable. This can be explained by the fact that an increase in taper ratios causes reduction in cross-sectional 

 with the number divisions equals to 40. The normalized 
buckling load is 2.0481 (error 
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tapered beam (=) with the number divisions equals to 40. The normalized buckling load is 2.0481 

(error =1.01%). In order to improve the results, more CPU times are needed. With 60 segments, the 

buckling parameter is 2.0353 (error =0.37%) the CPU time is impressive (40.16 s). Finally, it can be 

concluded that that fifty number of segments (N=50) are sufficient to obtain the first buckling load 

parameters for different tapering ratios with desired accuracy.  
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tapered Timoshenko beam with two different end conditions and CPU time comparisons 

Case End 
Conditions ()) 

The lowest non-dimensional critical buckling load 
Number of Divisions Shahba et 

al. [23] 10 20 30 40 50 60 

A 

Hinged-
Hinged 

 

0.2 4.2744 
(2.10s) 

4.1007 
(5.04s) 

4.0572 
(9.54s) 

4.0398 
(16.17s) 

4.0311 
(24.23s) 

4.0261 
(38.37s) 4.0176 

0.5 2.2575 
(2.40s) 

2.1043 
(5.18s) 

2.0643 
(9.34s) 

2.0481 
(14.67s) 

2.0399 
(24.65s) 

2.0353 
(40.16s) 2.0276 

0.8 0.7438 
(2.66s) 

0.6206 
(6.15s) 

0.5858 
(12.97s) 

0.5708 
(22.35s) 

0.5629 
(45.28s) 

0.5583 
(53.25s) 0.5502 

Fixed-Free 

0.2 1.6681 
(2.34s) 

1.6129 
(6.77s) 

1.5998 
(12.25s) 

1.5946 
(24.35s) 

1.5920 
(38.70s) 

1.5905 
(56.85s) 1.5875 

0.5 1.0770 
(2.68s) 

1.0134 
(6.96s) 

0.9978 
(12.41s) 

0.9916 
(25.71s) 

0.9885 
(40.47s) 

0.9867 
(57.11s) 0.9833 

0.8 0.4811 
(2.72s) 

0.4082 
(7.05s) 
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(25.82s) 
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(57.34s) 0.3676 

Following the above mentioned procedure, the first non-dimensional buckling load parameter for various 

tapering ratios () with different gradient parameters (m=1, 2 and 3) are tabulated in Table 2.  The outcomes 

related to beams made up of homogenous material are also arranged in Table 2. It should be noted that the 

values of tapering ratio ( ) are selected in such a way that make comparison possible with other available 

reference in the case of tapered Timoshenko beam made up of axially functionally graded materials [22]. 

Besides, the relative errors between the finite element solution suggested by Soltani and Asgarian [22] for 

cantilever members and the proposed methodology are arranged in the mentioned table. As presented in 

Table 2, an outstanding compatibility between the critical buckling loads for different values of non-

uniformity ratios acquired by the current study and those computed by Soltani and Asgarian [22] is 

observed. Comparing the results of uniform beam and those of tapered ones (Table 2), it can be culminated 

that the considered prismatic beam in this example has the highest critical buckling load and is also most 

stable. This can be explained by the fact that an increase in taper ratios causes reduction in cross-sectional 

=1.01%). In order to improve 
the results, more CPU times are needed. With 60 segments, 
the buckling parameter is 2.0353 (error 
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tapered beam (=) with the number divisions equals to 40. The normalized buckling load is 2.0481 

(error =1.01%). In order to improve the results, more CPU times are needed. With 60 segments, the 

buckling parameter is 2.0353 (error =0.37%) the CPU time is impressive (40.16 s). Finally, it can be 

concluded that that fifty number of segments (N=50) are sufficient to obtain the first buckling load 

parameters for different tapering ratios with desired accuracy.  

Table 1: Effect of number of segments on the lowest non-dimensional critical buckling load parameters (Pnor) of FG 
tapered Timoshenko beam with two different end conditions and CPU time comparisons 
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Following the above mentioned procedure, the first non-dimensional buckling load parameter for various 

tapering ratios () with different gradient parameters (m=1, 2 and 3) are tabulated in Table 2.  The outcomes 

related to beams made up of homogenous material are also arranged in Table 2. It should be noted that the 

values of tapering ratio ( ) are selected in such a way that make comparison possible with other available 

reference in the case of tapered Timoshenko beam made up of axially functionally graded materials [22]. 

Besides, the relative errors between the finite element solution suggested by Soltani and Asgarian [22] for 

cantilever members and the proposed methodology are arranged in the mentioned table. As presented in 

Table 2, an outstanding compatibility between the critical buckling loads for different values of non-

uniformity ratios acquired by the current study and those computed by Soltani and Asgarian [22] is 

observed. Comparing the results of uniform beam and those of tapered ones (Table 2), it can be culminated 

that the considered prismatic beam in this example has the highest critical buckling load and is also most 

stable. This can be explained by the fact that an increase in taper ratios causes reduction in cross-sectional 

 =0.37%) the CPU 
time is impressive (40.16 s). Finally, it can be concluded that 
that fifty number of segments (N=50) are sufficient to obtain 
the first buckling load parameters for different tapering ratios 
with desired accuracy. 

Following the above mentioned procedure, the first non-
dimensional buckling load parameter for various tapering 
ratios 
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tapered beam (=) with the number divisions equals to 40. The normalized buckling load is 2.0481 

(error =1.01%). In order to improve the results, more CPU times are needed. With 60 segments, the 

buckling parameter is 2.0353 (error =0.37%) the CPU time is impressive (40.16 s). Finally, it can be 

concluded that that fifty number of segments (N=50) are sufficient to obtain the first buckling load 

parameters for different tapering ratios with desired accuracy.  
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Following the above mentioned procedure, the first non-dimensional buckling load parameter for various 

tapering ratios () with different gradient parameters (m=1, 2 and 3) are tabulated in Table 2.  The outcomes 

related to beams made up of homogenous material are also arranged in Table 2. It should be noted that the 

values of tapering ratio ( ) are selected in such a way that make comparison possible with other available 

reference in the case of tapered Timoshenko beam made up of axially functionally graded materials [22]. 

Besides, the relative errors between the finite element solution suggested by Soltani and Asgarian [22] for 

cantilever members and the proposed methodology are arranged in the mentioned table. As presented in 

Table 2, an outstanding compatibility between the critical buckling loads for different values of non-

uniformity ratios acquired by the current study and those computed by Soltani and Asgarian [22] is 

observed. Comparing the results of uniform beam and those of tapered ones (Table 2), it can be culminated 

that the considered prismatic beam in this example has the highest critical buckling load and is also most 

stable. This can be explained by the fact that an increase in taper ratios causes reduction in cross-sectional 
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buckling parameter is 2.0353 (error =0.37%) the CPU time is impressive (40.16 s). Finally, it can be 
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Following the above mentioned procedure, the first non-dimensional buckling load parameter for various 
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Besides, the relative errors between the finite element solution suggested by Soltani and Asgarian [22] for 

cantilever members and the proposed methodology are arranged in the mentioned table. As presented in 

Table 2, an outstanding compatibility between the critical buckling loads for different values of non-
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other available reference in the case of tapered Timoshenko 
beam made of axially functionally graded materials [22]. 
Besides, the relative errors between the finite element 
solution suggested by Soltani and Asgarian [22] for cantilever 
members and the proposed methodology are arranged in 
the mentioned table. As presented in Table 2, an outstanding 
compatibility between the critical buckling loads for different 
values of non-uniformity ratios acquired by the current study 
and those computed by Soltani and Asgarian [22] is observed. 

Comparing the results of uniform beam and those of tapered 
ones (Table 2), it can be culminated that the considered 
prismatic beam in this example has the highest critical 
buckling load and is also most stable. This can be explained by 
the fact that an increase in tapering ratio causes reduction in 
cross-sectional area and moment of inertia and consequently 
in the stiffness of the elastic member and as a result, a weaker 
and more unstable beam is acquired. By pondering Eq. 
(30), it can be stated that when non-homogeneity index is 

Table 1: Effect of number of segments on the lowest non-dimensional critical buckling load parameters 
(Pnor) of FG tapered Timoshenko beam with two different end conditions and CPU time comparisons 
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increased from 0.3 to 3, the volume fraction of Zirconia and 
consequently the value of Young’s modulus are increased, and 
as a result, the beam becomes stiffer and more stable. In other 
words, a higher buckling load is achieved by an increase in the 
value of the gradient index (m).

Afterwards, the lowest buckling loads variation versus 
the tapering ratio 

15 
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Hinged Fixed-Free Hinged-

Hinged Fixed-Free 
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and 

Asgarian 
[22] 
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Soltani 
and 

Asgarian 
[22] 

(%)  
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0.0 4.6673 1.7122 1.7101 0.123 4.66731 1.7122 1.7101 0.123 
0.2 3.3741 1.3599 1.3574 0.184 2.9257 1.2352 1.2326 0.211 
0.4 2.2196 1.0075 1.0043 0.319 1.5840 0.7913 0.7879 0.432 
0.6 1.2394 0.6571 0.6524 0.720 0.6634 0.4038 0.3991 1.178 
0.8 0.4786 0.3150 0.3076 2.406 0.1535 0.1170 0.1189 1.598 

m=2 

0.0 5.5558 1.9859 1.9815 0.222 5.5558 1.9859 1.9815 0.222 
0.2 4.0310 1.5920 1.5868 0.328 3.4868 1.4501 1.4446 0.381 
0.4 2.6564 1.1914 1.1855 0.498 1.8819 0.9392 0.9328 0.686 
0.6 1.4797 0.7840 0.7766 0.953 0.7802 0.4810 0.4730 1.691 
0.8 0.5629 0.3752 0.3655 2.654 0.1759 0.1364 0.1305 4.521 

m=3 

0.0 6.0492 2.1044 2.0966 0.372 6.0747 2.1044 2.0966 0.372 
0.2 4.4340 1.6999 1.6919 0.473 3.8388 1.5533 1.5451 0.531 
0.4 2.9396 1.2850 1.2764 0.674 2.0824 1.0198 1.0106 0.910 
0.6 1.6461 0.8568 0.8465 1.217 0.8649 0.5300 0.5185 2.218 
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H
om

og
en

ou
s 0.0 4.546 2.291 2.291 0.000 4.546 2.291 2.291 0.000 

0.2 5.674 1.884 1.884 0.000 5.036 1.743 1.742 0.057 
0.4 3.916 1.467 1.465 0.137 2.928 1.205 1.203 0.166 
0.6 2.332 1.032 1.029 0.292 1.337 0.691 0.688 0.436 
0.8 0.998 0.568 0.560 1.429 0.350 0.241 0.236 2.119 

Afterwards, the lowest buckling loads variation versus the tapering ratio () and the gradient index (m) for 

fixed-free and pinned-pinned double-tapered beams (Case B) is presented in Fig. 3. In the current section, 

the cross-sectional dimensions are taken by setting the aspect ratio (L/b0) equals 5. As shown in Fig. 3, for 

any value of power-law exponent the stability of prismatic beam (=0) and tapered beam with =0.9 is 

most and least, respectively. It is also observed that for 0.3 1.2m  , the non-dimensional critical loads 
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Afterwards, the lowest buckling loads variation versus the tapering ratio () and the gradient index (m) for 

fixed-free and pinned-pinned double-tapered beams (Case B) is presented in Fig. 3. In the current section, 

the cross-sectional dimensions are taken by setting the aspect ratio (L/b0) equals 5. As shown in Fig. 3, for 

any value of power-law exponent the stability of prismatic beam (=0) and tapered beam with =0.9 is 

most and least, respectively. It is also observed that for 0.3 1.2m  , the non-dimensional critical loads 

=0.9 is most and least, respectively. It is also observed that 
for 0.3 1.2m≤ ≤ , the non-dimensional critical loads relating 
to the first and second buckling modes increase sharply 
whereas, for 1.2m > , the buckling resistance increases slightly 
and approaches maximum magnitude. 

4-2- Example 2- Double tapered Timoshenko beam with 
exponential distribution of material properties

In this example, linear stability analysis is accomplished 
for an exponential FGM Timoshenko beam having variable 
cross-section. In this regard, a double tapered beam with 
rectangular cross-section whose height and width taper 
linearly along the member axis is taken into account. 
Therefore, the cross-sectional area and moment of inertia 
are identical to Case B of the first example. In the current 
numerical example, the cross-sectional dimensions are taken 
by setting r=0.05 (Eq. (28a)). The FG beam is assumed to be 
composed of ceramic and metal and for such a member it is 
also contemplated that the Young’s modulus of elasticity vary 
continuously in the longitudinal direction according to an 
exponential function (E-FGM) of the volume fractions of the 
constituent materials while the Poisson’s ratio is supposed to 
equal 0.3 along the beam axis:

 

 

Fig. 3: Effects of the gradient index (m) on the normalized buckling load of double-tapered Timoshenko 
beam with different tapering ratios: (a) Simply supported (b) Cantilever 
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E0 and E1 represent values of Young’s modulus of the 
constituent materials. 
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=  1 0( )ln E / E =          (31) 

E0 and E1 represent values of Young’s modulus of the constituent materials.  signifies a dimensionless 

parameter defining the gradual variation of the material property along the longitudinal direction. In the 

case of an isotropic and homogenous material  equals zero. The above expression is adopted in several 

papers [14, 18, 20-22]. The lowest normalized buckling load parameters (Pnor) for different non-uniformity 

ratios () are arranged in Table 3. Moreover, Fig. 4 illustrates the variation of buckling loads of E-FG 

double tapered Timoshenko beam with respect to the taper ratio () and the gradient parameter () for 

hinged-hinged and fixed-free members. 

Table 3: The lowest normalized critical buckling load parameter (Pnor) for exponential FGM double 
tapered Timoshenko beam for various tapering ratios and two different end conditions 

Tapering 
ratio () 

Simply Supported Fixed-Free 
Gradient Parameter () Gradient Parameter () 

-1 -0.5 0.5 1 -1 -0.5 0.5 1 
0.0 2.0422 2.9172 4.8096 5.5514 1.1122 1.4304 2.1587 2.5556 
0.2 1.3179 1.9546 3.6757 4.5921 0.7828 1.0410 1.6704 2.0300 
0.4 0.7378 1.1250 2.3712 3.2222 0.4861 0.6744 1.1779 1.4872 
0.6 0.3222 0.5014 1.1584 1.6996 0.2385 0.3490 0.6881 0.9236 
0.8 0.0792 0.1258 0.3105 0.4828 0.0636 0.1001 0.2360 0.3518 

As can be seen in Fig. 4, the variation of stability behavior for the cantilever is similar to those for the 

hinged-hinged beam, but the latter beam is obviously more stable than the former. Moreover, for any value 

of gradient parameters the corresponding buckling load for the beam having constant cross-section is the 

highest and that for tapered beam with the tapering ratio (0.9) is the lowest. It is found from Fig. 4 that the 

variation of non-homogeneity parameter has a significant influence on the linear stability behavior of both 

beams under different circumstances. It can also be stated that the critical buckling load parameters 

corresponding to the first mode are increased as the gradient parameter increases. The above-mentioned 

statement is reasonable due to the fact that Young’s moduli rises as the value of inhomogeneous constant 

increases over zero (), and the gradient parameter under zero () indicates Young’s moduli decreases 

(see Eq. (31)).  
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As can be seen in Fig. 4, the variation of stability behavior for the cantilever is similar to those for the 

hinged-hinged beam, but the latter beam is obviously more stable than the former. Moreover, for any value 

of gradient parameters the corresponding buckling load for the beam having constant cross-section is the 

highest and that for tapered beam with the tapering ratio (0.9) is the lowest. It is found from Fig. 4 that the 

variation of non-homogeneity parameter has a significant influence on the linear stability behavior of both 

beams under different circumstances. It can also be stated that the critical buckling load parameters 

corresponding to the first mode are increased as the gradient parameter increases. The above-mentioned 

statement is reasonable due to the fact that Young’s moduli rises as the value of inhomogeneous constant 

increases over zero (), and the gradient parameter under zero () indicates Young’s moduli decreases 

(see Eq. (31)).  
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critical buckling load parameters corresponding to the first 
mode are increased as the gradient parameter increases. The 
above-mentioned statement is reasonable due to the fact that 
Young’s moduli rises as the value of inhomogeneous constant 
increases over zero 
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E0 and E1 represent values of Young’s modulus of the constituent materials.  signifies a dimensionless 

parameter defining the gradual variation of the material property along the longitudinal direction. In the 

case of an isotropic and homogenous material  equals zero. The above expression is adopted in several 

papers [14, 18, 20-22]. The lowest normalized buckling load parameters (Pnor) for different non-uniformity 

ratios () are arranged in Table 3. Moreover, Fig. 4 illustrates the variation of buckling loads of E-FG 

double tapered Timoshenko beam with respect to the taper ratio () and the gradient parameter () for 

hinged-hinged and fixed-free members. 

Table 3: The lowest normalized critical buckling load parameter (Pnor) for exponential FGM double 
tapered Timoshenko beam for various tapering ratios and two different end conditions 
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0.6 0.3222 0.5014 1.1584 1.6996 0.2385 0.3490 0.6881 0.9236 
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As can be seen in Fig. 4, the variation of stability behavior for the cantilever is similar to those for the 

hinged-hinged beam, but the latter beam is obviously more stable than the former. Moreover, for any value 

of gradient parameters the corresponding buckling load for the beam having constant cross-section is the 

highest and that for tapered beam with the tapering ratio (0.9) is the lowest. It is found from Fig. 4 that the 

variation of non-homogeneity parameter has a significant influence on the linear stability behavior of both 

beams under different circumstances. It can also be stated that the critical buckling load parameters 

corresponding to the first mode are increased as the gradient parameter increases. The above-mentioned 

statement is reasonable due to the fact that Young’s moduli rises as the value of inhomogeneous constant 

increases over zero (), and the gradient parameter under zero () indicates Young’s moduli decreases 

(see Eq. (31)).  
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double tapered Timoshenko beam with respect to the taper ratio () and the gradient parameter () for 
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As can be seen in Fig. 4, the variation of stability behavior for the cantilever is similar to those for the 

hinged-hinged beam, but the latter beam is obviously more stable than the former. Moreover, for any value 

of gradient parameters the corresponding buckling load for the beam having constant cross-section is the 

highest and that for tapered beam with the tapering ratio (0.9) is the lowest. It is found from Fig. 4 that the 

variation of non-homogeneity parameter has a significant influence on the linear stability behavior of both 

beams under different circumstances. It can also be stated that the critical buckling load parameters 

corresponding to the first mode are increased as the gradient parameter increases. The above-mentioned 

statement is reasonable due to the fact that Young’s moduli rises as the value of inhomogeneous constant 

increases over zero (), and the gradient parameter under zero () indicates Young’s moduli decreases 
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In the following, comparison studies between the buckling 

resistance of ceramic-metal and metal-ceramic FG tapered 
Timoshenko beam having properties according to power 
law with different gradient indexes and exponential law are 
carried out and presented in Figs. 5 and 6. In this regard, we 
have determined the first non-dimensional buckling load with 
r=0.05 (Eq. (28a)) for double- tapered beams (Eq. (29b)) of 
hinged-hinged and fixed-free ends. Fig. 5 reveals the influence 
of tapering ratio 
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 on the non-dimensional critical buckling 
load of ceramic-metal FG beam with Zirconia root and 
having properties according to power law with indexes m=1, 
2 and 3 (Eq. (30)) as well as exponential law. The outcomes 
relating to homogenous beam are also plotted in this figure. 
In contrast with Al, ZrO2 has superior mechanical properties. 
The material property distributions in AFG Timoshenko 
beam as power law with m=3 and exponential law makes the 
volume fraction of ceramic in the longitudinal direction of 
beam highest and lowest, respectively. Regarding this, the 
contemplated E-FGM beam has the lowest volume fraction 
of Zirconia and consequently, a weaker member compared to 
a beam having properties according to power law is achieved. 
Since the linear buckling resistance of beam is proportional to 
the stiffness of the members, it can be easily evident from this 
illustration that the buckling load corresponding to any value 
of tapering ratios is the lowest for beam with exponential 
volume fraction law and highest for the homogenous beam 
from ceramic (ZrO2). Accordingly, the buckling load of beam 
having properties following simple power law with three 
different power law exponents (m=1, 2, 3) is between the 
above mentioned cases. In this case, the buckling resistance is 
higher for higher value of volume fraction indexes.

 The variation of the lowest normalized buckling loads 
for metal-ceramic Timoshenko beams with aluminum 
root versus tapering parameters 
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 are plotted in Fig. 6, 
for hinged-hinged and fixed-free beams having properties 
according to power law with indexes m=1, 2 and 3 (Eq. (30)) 
as well as exponential law (Eq. (31)). The non-dimensional 
buckling loads decrease substantially as the increase of non-
uniformity constant 
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Fig. 5: Variation of dimensionless critical axial load with tapering parameter of ceramic-metal FG beam with 

Zirconia root for property distribution through the longitudinal direction as power law and exponential law as well 
as homogeneous beam: (a) Simply supported member, (b) Cantilever member. 

  
Fig. 6: Variation of dimensionless critical axial load with tapering parameter of metal-ceramic FG beam with 

Aluminum root for property distribution through the longitudinal direction as power law and exponential law as well 
as homogeneous beam: (a) Simply supported member, (b) Cantilever member. 
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 for both type of property distribution 
similar to the results of beam with Zirconia root (Fig. 5).  In 
contrast to ceramic-metal FG beam, the non-dimensional 
critical axial load of metal-ceramic member with aluminum 
root diminishes with increasing the power- law index (m) 
from 1 to 3. This phenomena can be explained by the fact that 
the percentage content of aluminum increases over the beam 
axis and this component has got lower shear and Young’s 
modulus as compared to Zirconia and as a result weaker and 
more unstable beam is acquired. As is reflected in this figure, 
homogenous beam from Aluminum and FG beam having 
properties according to polynomial volume fraction law with 
m=1 have the normalized critical load with the smallest and 

largest values, respectively. Moreover, the presented outcomes 
also reveal that FG double-tapered Timoshenko beams 
with Al root and having properties according to power law 
with m=2, m=3 and exponential volume fraction law are 
intermediate stable.

5- CONCLUSIONS
In the present article, the finite difference method with 

second order accuracy is applied to investigate the critical 
buckling loads of non-prismatic axially functionally graded 
Timoshenko beams having two different end supports: 
hinged-hinged and clamped-free. In this regard, a new second 
order differential equation in terms of angle of rotation is 
obtained by uncoupling the system of differential equations 
governing the stability behavior of Timoshenko beam. The 
impact of width and/or height tapering ratios, axial variation 
of material properties and boundary conditions on linear 
buckling resistance of ceramic-metal and metal-ceramic 
Timoshenko beams are comprehensively surveyed. From the 
numerical examples, it could be concluded that by discretizing 
the considered member into 40-50 divisions the critical loads 
of AFG non-uniform members can be determined with a very 
good accuracy. It can be stated that the effects of width and/
or height tapering ratios play important roles on the linear 
stability capacity of AFG tapered beam. It is also observed 
that, for ceramic-metal beams, buckling resistance increases 
with increase of functionally graded material content for both 
power-law (m) and exponential (
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E0 and E1 represent values of Young’s modulus of the constituent materials.  signifies a dimensionless 

parameter defining the gradual variation of the material property along the longitudinal direction. In the 

case of an isotropic and homogenous material  equals zero. The above expression is adopted in several 

papers [14, 18, 20-22]. The lowest normalized buckling load parameters (Pnor) for different non-uniformity 

ratios () are arranged in Table 3. Moreover, Fig. 4 illustrates the variation of buckling loads of E-FG 

double tapered Timoshenko beam with respect to the taper ratio () and the gradient parameter () for 

hinged-hinged and fixed-free members. 

Table 3: The lowest normalized critical buckling load parameter (Pnor) for exponential FGM double 
tapered Timoshenko beam for various tapering ratios and two different end conditions 

Tapering 
ratio () 

Simply Supported Fixed-Free 
Gradient Parameter () Gradient Parameter () 

-1 -0.5 0.5 1 -1 -0.5 0.5 1 
0.0 2.0422 2.9172 4.8096 5.5514 1.1122 1.4304 2.1587 2.5556 
0.2 1.3179 1.9546 3.6757 4.5921 0.7828 1.0410 1.6704 2.0300 
0.4 0.7378 1.1250 2.3712 3.2222 0.4861 0.6744 1.1779 1.4872 
0.6 0.3222 0.5014 1.1584 1.6996 0.2385 0.3490 0.6881 0.9236 
0.8 0.0792 0.1258 0.3105 0.4828 0.0636 0.1001 0.2360 0.3518 

As can be seen in Fig. 4, the variation of stability behavior for the cantilever is similar to those for the 

hinged-hinged beam, but the latter beam is obviously more stable than the former. Moreover, for any value 

of gradient parameters the corresponding buckling load for the beam having constant cross-section is the 

highest and that for tapered beam with the tapering ratio (0.9) is the lowest. It is found from Fig. 4 that the 

variation of non-homogeneity parameter has a significant influence on the linear stability behavior of both 

beams under different circumstances. It can also be stated that the critical buckling load parameters 

corresponding to the first mode are increased as the gradient parameter increases. The above-mentioned 

statement is reasonable due to the fact that Young’s moduli rises as the value of inhomogeneous constant 

increases over zero (), and the gradient parameter under zero () indicates Young’s moduli decreases 

(see Eq. (31)).  

) property distribution. In 
the case of ceramic-metal beam, it can be stated that FG beams 
having properties according to polynomial volume fraction 
law is more stable than beams having properties according to 
exponential law. Linear stability strength decreases with an 
increase of power law index for metal/ceramic beams with 
varying cross-section.
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