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ABSTRACT:  Plastic concrete is an engineering material, which is commonly used for construction 
of cut-off walls to prevent water seepage under the dam. This type of concrete shows great promise 
to satisfy the requirements of the strength, stiffness and permeability for remedial cut-off wall 
construction. This paper aims to explore three hybrid machine learning algorithms including Artificial 
Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro-Fuzzy Inference System 
(ANFIS) optimized with Particle Swarm Optimization (PSO) to predict the compressive and splitting 
tensile strength of plastic concretes. To this end, data were collected from different sources and data gaps 
were covered by extra experimental tests and finally, 387 data for compressive strength and 107 data 
for splitting tensile strength were gathered for modeling. This study shows that ANN-PSO is superior 
to SVM-PSO and ANFIS-PSO in case of predicting compressive as well as splitting tensile strength 
of plastic concretes. The coefficient of determination (R2) in case of ANN-PSO for both training and 
testing sets is more than 0.95. Results of this study can be used to predict the compressive and splitting 
tensile strength of plastic concretes with regards to constituent materials and specimen geometry of 
plastic concrete.
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1. INTRODUCTION
Water tightness and seepage control are important 

considerations in the design and construction of dams. 
Various methods exist to prevent the seepage of water from 
dams. In this regard, the construction of cut-off walls is one of 
the most common ways to prevent water seepage under a dam. 
Based on the rigid diaphragm of cut-off walls in their simplest 
structural form, any deformation of earth embankment may 
lead to its rupture. The importance of rupture considerations 
greatly returns to decreasing flow efficiency of the cut-off 
walls and consequently compromising the safety of dams. 
On the other hand, deformations of earth embankments 
due to fluctuations in impounded reservoir  level or seismic 
activity can cause to develop cracks in concrete cut-off 
wall [1]. As a solution for this issue, engineers  have used 
plastic concrete with similar deformation characteristics 
to dam embankment soils [2]. Plastic  concrete  consists  of  
aggregate,  cement, water,  and  bentonite  clay  which mixed  
at  a  high  water  cement  ratio  to  produce  a  ductile  material  
than  conventional structural concrete [3]. It is worth noting 
that bentonite has so far, been defined and used for sealing 
purposes in civil and hydraulic engineering for a long 
period of time [4-12]. Plastic concrete must be strong and 
watertight and have stiffness comparable to the surrounding 

soil. Satisfying strain-compatibility between the wall and 
surrounding soil will moderate the likelihood of overstressing 
the wall and will allow the wall and soil to deform without 
separating [13]. This type of concrete shows great promise 
to satisfy the requirements of the strength, stiffness and 
permeability for remedial cut-off wall construction [14]. It 
has a higher formability, but lower strength and permeability 
that result from the usage of clay slurry in the concrete mix 
design [3]. Due to the importance of mechanical properties of 
plastic concrete and its direct impact on the quality of the cut-
off walls implementation, numerous laboratory studies have 
been allocated to it by researchers[15-20]. 

Compressive and splitting tensile strength are two 
important parameters for quality control of concretes. Several 
factors can affect the compressive as well as tensile strength of 
plastic concretes including properties of concrete materials, 
mixing ratio, curing time and geometry of samples. Usually 
at the site of dam construction and during production of 
plastic concrete, samples taken from various mixers should 
be tested by specialized equipments and expert personnel and 
this is of a great importance. But due to special circumstances 
in workplace such as construction problems, storage and 
curing process of a large number of concrete samples and the 
necessity of faster awareness of the sample’s resistance in order 
to amend the used ratios make this process encounter with 
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difficulties and clearly require more time and significant cost. 
Therefore, a relatively accurate and comprehensive estimate 
(in the desired confidence level) of compressive strength and 
tensile strength of concrete provides the needed tool for a 
correct decision.

In recent decades, various methods of data mining in 
civil engineering, especially in predicting the compressive 
and splitting tensile strength of different types of concrete, 
have attracted the attention of many researcher [21-23]. At 
the beginning of the use of data mining, machine learning 
methods, such as neural network prediction models, were 
preferred. This preference can be attributed to no need of 
neural networks for a predetermined mathematical model 
for their computations and tolerating experimental noise 
(inaccuracies) far better than other predicting methods 
[24]. However, as time passed other methods such as Fuzzy 
Polynomial Neural Networks (FPNN), Probabilistic Neural 
Networks (PNN), Adaptive Probabilistic Neural Network 
(APNN) and GMDH-type Neural Network were developed to 
increase the accuracy, speed and improving the performance 
of neural networks [25-29], but until now the largest share of 
literatures are allocated to artificial neural network method 
[30-36]. In addition to ANN, many researchers have used 
other machine learning methods, such as support vector 
machine (SVM) and adaptive neuro-fuzzy inference system 
(ANFIS), in their comparative researches[37, 38]. However, 
the SVM and ANFIS previously were used individually in 
many researches, and their high potential in the process of 
prediction has been approved in the past [39, 40]. Sobhani et 
al. (2013) compared ANN method with an optimized SVM to 
predict the compressive strength of no-slump concrete. The 
results showed the superiority of SVM modeling in terms of 
optimization speed in comparison with ANN method [38]. 
Also, Motamedi et al. (2015) worked on an ANFIS computing 
technique to predict the unconfined compressive strength of 
the pulverized fuel ash-cement-sand mixture. The analysis 
was based on countering the uncertainties in the system. 
In such circumstances, the results confirmed the ability of 
ANFIS method [41]. On the other hand, hybrid methods 
can be considered as a combination of ANN, SVM and 
ANFIS with evolutionary search procedures or optimization 
algorithms. Hybrid methods with optimization algorithms 
play an important role in purpose of identification the defects 
in the structure and compressive and splitting tensile strength 
of concrete [42-45].

Besides several research works in the field of prediction of 
compressive and splitting tensile strength of different types of 
concretes by using of machine learning methods, still lack of 
a research based on machine learning methods, in which the 
properties of plastic concrete is assessed  is observable. In this 
paper, after the establishment of a comprehensive database 
for compressive and tensile strength of plastic concrete, three 
methods of ANN, SVM and ANFIS have been optimized in 
accordance with PSO algorithm to predict the compressive 
and splitting tensile strength of plastic concrete and finally 
their accuracy will be compared with respect to the training 
and testing sets.

2. MATERIALS AND METHODS
Among many machine learning methods for predicting 

numeric values that described in literature, it is still unclear 
which method has the best predicting performance. 
Performance of each method is dependent on the application 
area and can be changed by it [46]. In this study, the prediction 
of compressive and splitting tensile strength of plastic 
concrete were evaluated based on three hybrid machine 
learning methods including hybrid ANN-PSO, SVM-PSO, 
and ANFIS-PSO .

2.1. Particle Swarm Optimization
Flocking behavior of birds is the inspiration of an iterative 

computational method with worldwide reputation in 
numerical optimization problems which is known as particle 
swarm optimization (PSO)[47]. Popularity of this method 
originates from its efficiency and tractability in gradient free 
optimization algorithms especially on problems in which 
the gradient is too challenging, computationally expensive, 
or even  impossible to derive. The procedure of optimizing 
starts by leading a randomly  initialized population of 
candidate solutions (particles) around the  problem’s search-
space. Position and velocity are key features of a particle that 
actually is being defined by them. According to the algorithm 
iterations, this model is expected, not guaranteed, to end up 
with global near-optima solution with a reasonable degree of 
accuracy. The behavior of particles is shown mathematically 
in the following equations:
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where )(txi  represents the position vector of the i th 

particle at time t , and )(tvi  is its corresponding velocity 

vector. ipbest  is the previous best known position of the i th 
particle and gbest  designates the entire swarm or each particle 
neighbor’s best known position. 1c  and 2c  are the acceleration 

parameters, and 1r  and 2r  are random numbers regenerated 
in each iteration with uniform distribution ranged in [0, 1]. 
Besides, w  that is known as the inertia coefficient indicates 
the particle momentum in its present direction, and defines 
the trade-off between exploration and convergence speed. As 
can be seen in Eq. (3), after the calculation of velocity for each 
particle the position is being updated. During the iteration 
process, the range of permissible velocities are usually being 
restricted and dampened due to obtaining a better exploration 
and eliminating the fluctuations caused by large velocities.

2.2. Artificial Neural Network (ANN) 
The simulation of important features of the human 

nervous system is being used in a modeling tool that is known 
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as Artificial Neural Network (ANN). It is notable that the past 
experiences play substantial rule in solving the problems 
by this method. Analogous to a human brain, an ANN 
uses many simple computational elements, named artificial 
neurons, connected by variable weights [48]. An artificial 
neuron is shown in Fig. 1. By training the ANN, reaching to 
a specific target with a particular input is being possible. The 
comparison of the output and the target enables this method 
to be trained and this will continue until the ANN output 
matches the target. Several pairs of inputs and targets are 
needed to train an ANN efficiently.

One kind of ANN method that is helpful in solving special 
problems with requirements like recognition of complex 
patterns and performing nontrivial mapping function is the 
feed-forward back-propagation neural network architecture 
that can be seen in Fig. 2 [49]. 

The training of aforementioned algorithm involves two 
steps [50, 51]:

· Forward Phase. During this phase, the free parameters of 
the network are being fixed. The propagation of input signal 
take place through the network layer by layer. This phase ends 
up with the computation of an error signal.

.iii yde −=  (4)

Where id  is the desired response, and iy  is the actual 
output produced by the network in response to the input ix .

· Backward Phase. The backward direction for propagation 
of the error signal e  through the network during this phase 
is the reason of this algorithm’s name. During this phase, 
the error e is being minimized in a statistical by applying 
adjustments to the free parameters of the network.

Other method for training a neural network is meta-
heuristic optimization method. In this technique weight and 
bias parameters of Artificial Neural Network are determined 
in such a way which RMSE of the observed and predicted 
values by using artificial neural network is minimized. In 
this research in order to determining the optimal amount of 
weight and bias parameters, the PSO algorithm was applied. 
Hybrid ANN-PSO flowchart is shown in Fig. 3.

2.3. Support vector machine (SVM)
The support vector machine (SVM) technique was first 

presented by Vapnik [52]. Due to reducing the upper bound 
generalization error in comparison with local training 
error, developments based on statistical machine learning 
development and structural risk minimization was applied 
to it. It is a common technique previously used in machine 
learning methodologies [53].

The SVM method has several advantages compared 
to other soft computing learning algorithms which are 
as follows: (1) by applying a high dimensional spaced set 
of kernel equations, which discreetly include non-linear 
transformation, makes linearly separable data indispensable 
and no need to assumption of functional transformation; 
and (2) The convex nature of the optimal problem makes this 
technique unique.

Eq. (5) to (8), represent the SVM functions in accordance 

with Vapnik’s theory. n
iii dxR }{ −=  is used to assume a set of 

data points, where ix  indicates the input space vector of the 
data sample and id   is indicative of the target value and n   is 
data size. The equations according to SVM estimates are as 
follow:
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Where )(xφ  indicates the high dimensional space 
characteristic that maps the input space vector x  while 
w  and b  are a  normal vector and scalar, respectively. 

In addition, ),(1

1
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i
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 stands for the empirical error, risk. 

Factors b  and w  are measured by minimizing a regularized 
risk equation followed by the introduction of positive slack 

variables iξ  and *
iξ that indicate the upper and lower excess 
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Fig. 1. Summation and transfer function of a typical artificial neuron. 

  

hidden layer

1 M

1 L

1 i N

Bias
unit

Bias
unit

Input layer

Output layer

w

h
jiw

h
j

h
pjnet

o
pknet

o
ko

kjw

1px pix pNx

1py pky pMy

)( h
pj

h
j netf

)( o
pk

o
k netf

 

Fig.2. A feed-forward back-propagation network architecture with one hidden layer. 

  

Fig. 1. Summation and transfer function of a typical artificial 
neuron.

Fig.2. A feed-forward back-propagation network architecture 
with one hidden layer.



A. Tavana Amlashi et al. , AUT J. Civil Eng., 4(1) (2020) 37-54, DOI:   10.22060/ajce.2019.15026.5517

40

deviation (Wu and Wang, 2009):
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where 
2

2
1 w  is the regularization term, C  represents 

the error penalty feature utilized to control the trade-off 
between the empirical error (risk) and regularization term, ε  
represents the loss function associated with the approximation 
accuracy of the trained data point, and the number of factors 

in the training data set is defined as l . 
The following generic function is being used to obtain 

optimality constraints and the Lagrange multiplier that are 
the requirements of solving Eq. (8):
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Fig. 3. Flowchart of ANN-PSO. 

  

Fig. 3. Flowchart of ANN-PSO.
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)()() ,( xjxxxK ii ϕϕ= in Eq. (8), refers to the kernel function, 

which is dependent on the two inner vector ix  and jx  in the 
feature space )( ixϕ and          , respectively. In this study, Radial 
Bias Function (RBF), was considered as kernel function which 
is defined as follows: 

 (9)

Where ix  and jx  are vectors of features computed 
from training or test samples in the input space. It should be 
noted that the accuracy of support vector machine has highly 

dependent on the selection of its three factors, including γ , 

ε  and C . In order to achieving high accuracy in predictions, 
the PSO algorithm was employed to obtain the optimal values 
of these three factors.

Computational flowchart for hybrid SVM-PSO is 
represented in Fig. 4.

2.4. Adaptive neuro-fuzzy inference system (ANFIS)
This model was firstly presented by Jang [54] and is in fact 

a fuzzy Sugeno model. The most striking feature of ANFIS is 
its approximation and actually it is capable of approximating 
any real continuous function on a compact set to any degree 
of accuracy [55]. The other advantages of this model include 
facilitation of learning and adaptation of adaptive systems 
which is actually one of the reasons of using this model. Two 
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Fig. 4. Flowchart of SVM-PSO. 
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fuzzy if–then rules are considered as follow to present the 
ANFIS architecture. These rules are on the basis of Sugeno 
model’s first order [56]:

1 1

1 1 1 1

 1 :  If    is    and    is ,
 then .
Rule x A y B

f p x q y r= + +
 

(10)

2 2

2 2 2 2

 2 :  If    is    and    is ,  
then .
Rule x A y B

f p x q y r= + +  
(11)

where x  and y  are the inputs, iA  and iB  are the fuzzy 
sets,       are the outputs within the fuzzy region specified by 
the fuzzy rule, ip , iq  and ir  are the design parameters that 
are determined during the training process . Fig. 5 shows the 
corresponding equivalent ANFIS architecture.

As can be seen in Fig. 5, the adaptive neuro fuzzy inference 
system architecture is consist of five layers which contains 
several nodes in each layer. The input signals of current layer 
are being fed by output signals from the nodes of the previous 
layer.  In fact after manipulation by the node function in the 

current layer, the output will be served as input signals for 
the subsequent layer. Fig. 6 shows the first-order of Takagi–
Sugeno fuzzy model with two rules and two input parameters. 

The output of the i th node in layer l  is denoted as ilO ,  and 
the function of nodes in a layer is similar. The output is the 
weighted average of the individual rule outputs and is itself a 
crisp value. 

The first layer is known as fuzzy layer. Each node of 
this layer is an adaptive one with the ability of making the 
membership grade of a fuzzy set with the help of their 
Gaussian membership function.
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Where ia  and ic  are premise parameters. Also, X and Y  
are the inputs to node i  and         and         are the linguistic 
labels associated with the node function. 

Every node in layer 2 is a fixed node, marked by a circle, 
labeled Π , representing the firing strength of each rule, and 
is calculated by the fuzzy ‘and’ connective of ‘product‘ of the 
incoming signals, that is, Π -norm operation:

 ).()(,2 YBXAwO kjii µµ ×==
 

(14)

The output signal iw  denotes the firing strength of the 
associated rule.

In layer 3, every node is a fixed node labelled N, 
representing the normalized firing strength of each rule. The
i th node calculates the ratio of the i th rule’s firing strength 

to the sum of the rules’ firing strengths using Eq. (15):
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The outputs of this layer are called normalized firing 
strengths.

Eq. (16), represents the node function of layer 4 and 
indicates the contribution of the i th rule towards the overall 
output. It should be mentioned that all the nodes in this layer 
are of an adaptive kind of nodes. 
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Fig. 7. Flowchart of ANFIS-PSO. 
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Fig. 6. First-order Takagi–Sugeno fuzzy model with two rules and two input parameters [43]. 
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ability of making the membership grade of a fuzzy set with the help of their Gaussian membership 
function. 
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Where ia  and ic  are premise parameters. Also, X and Y  are the inputs to node i  and Ai  and Bi  
are the linguistic labels associated with the node function.  

Every node in layer 2 is a fixed node, marked by a circle, labeled  , representing the firing 
strength of each rule, and is calculated by the fuzzy ‘and’ connective of ‘product’ of the incoming 
signals, that is,  -norm operation: 
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The output signal iw  denotes the firing strength of the associated rule. 
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The outputs of this layer are called normalized firing strengths. 
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Where iw  is the output of layer 3 and ip , iq  and ir  
are the parameter sets. The parameters of layer 4 are known 
as consequent parameters. The minimization of the errors 
between the NF inference system outputs and desired results 
is the key function of these consequent parameters.

Layer 5 has a single node that is a fixed one labeled Σ  , and 
marked by a circle. Eq. (17), calculates the incoming signals 
and these outputs can be indicated by this fixed node. 
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In this study, among the different forms of Fuzzy 
membership functions, Gaussian membership function was 
selected to build the ANFIS architectureare. As researches 
conducted by Takagi and Sugeno (1985), the parameters of 
the membership functions are being adjusted by the ANFIS 
architectureare [56]. In this paper, ANFIS employs the PSO 
method due to the characteristic of being less computationally 
expensive for a given size of network topology. Computational 
flowchart for hybrid ANFIS-PSO is shown in Fig. 7.

2.5. Evaluation of models performance
In the present study, the performance of the ANN-PSO, 

SVM-PSO and ANFIS-PSO was evaluated according to the 

following statistical indicators:
(1)Root Mean Square Error (RMSE)
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(18)

(2) Coefficient of determination (R2)

 

(19)

where N  is the size of observations vector, ix  is the x  
value for observation i , iy  is the y  value for prediction i , 

x  is the mean x  value, y  is the mean y  value, xσ  is the 

standard deviation of x , and yσ  is the standard deviation of 
y .

2.6. Dataset
After collecting data from different research sources and 

after taking into account the mean and standard deviation of 
the data, laboratory program with the aim of filling gaps in the 
data range, was designed.  Reference, number and variation 
range of collected data for compressive and tensile strength 

Table 1. Data sources for compressive strength database. 
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where N  is the size of observations vector, ix  is the x  value for observation i , iy  is the y  value 
for prediction i , x  is the mean x  value, y  is the mean y  value, x  is the standard deviation of x

, and y  is the standard deviation of y  . 

2.6. Dataset 
After collecting data from different research sources and after taking into account the mean and 

standard deviation of the data, laboratory program with the aim of filling gaps in the data range, 
was designed.  Reference, number and variation range of collected data for compressive and tensile 
strength are given in Tables 1 and 2, respectively: 
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are given in Tables 1 and 2, respectively:
Statistical characteristics for each of data set attribute are 

presented in Tables 3 and 4.
The shape and dimension of each class for compressive 

and tensile strength are given in Tables 5 and 6, respectively.

3. APPLICATION AND RESULTS
3.1. ANN-PSO method

In this study, the ANN toolbox of MATLAB was employed 
to assess ANN method. The main feature of this toolbox can 

be attributed to allocate initial weights and biases randomly in 
each run. In order to train ANN, 30%, 10% and 60% of records 
were considered as testing, cross validating, and training set, 
respectively. Before running the ANN method in MATLAB, 
the training and testing data were normalized between 0 and 
1. With the aim of preventing the negative effects of random 
allocation of initial weights and biases on the performance of 
the trained ANN, a code was developed in MATLAB. This 
code actually handles the trial and error process automatically 
to determine the optimum architecture of ANN. After the 

 

 

 

Table 2. Data sources of splitting tensile strength database. 
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Table 2. Data sources of splitting tensile strength database.

Table 3. Statistical characteristics of the compressive strength data set attributes. 
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Table 3. Statistical characteristics of the compressive strength data set attributes.

 

Table 4. Statistical characteristics of the splitting tensile strength data set attributes. 
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Table 4. Statistical characteristics of the splitting tensile strength data set attributes.
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evaluation of neurons of hidden layer by program, the best 
ANN architecture with the minimum RMSE of the testing set 
was chosen.

A neural network with two hidden layer was used for 
both compressive and splitting tensile strength model with 
different architecture. In order to having a proper prediction 
accuracy 8-51-5-1 architecture for compressive strength 
model and 8-20-29-1 architecture for splitting tensile strength 
model was chosen. In these two architectures, 51 and 20 are 
the number of neurons in the first hidden layer and 5 and 29 
are the number of neurons in the second hidden layer.

In both models the hyperbolic tangent sigmoid transfer 
function (tansig) in hidden layers and linear transfer function 
(Purelin) in output layer was used. Also the Levenberg-
Marquardt algorithm [71, 72] was used to train the neural 
network.

Then, according to the best architecture obtained for 
each case, the PSO optimization algorithm was used to find 
the best weights and biases. Considered parameters for PSO 
algorithm are given in Table 7.

The performance of ANN-PSO for predicting compressive 
and splitting tensile strength using training and testing sets, is 
demonstrated in Fig.s 10 and 11, respectively. Also, the RMSE 
and R2 values for each model are given in Table 8.

As can be seen in the Table 8, the coefficient of 
determination (R2) between observed and predicted values 
of compressive strength for training and testing sets is 0.989 
and 0.956, respectively. This parameter in case of the splitting 
tensile strength for training and testing sets is 0.999 and 0.968, 
respectively. In general, it is observed that ANN method can 
predict compressive and splitting tensile strength with R2 
more than 0.95. It is also visible that the accuracy of ANN 
method in prediction of splitting tensile strength is more than 
its accuracy in predicting of compressive strength.

3.2. SVM-PSO method
In order to train SVM-PSO, 30%, 10%, and 60% of 

dataset records were considered as testing, cross validating 
and training set, respectively. The PSO parameters for 
optimization of SVM parameters are given in Table 9. The 

optimal values of γ , ε  and C  by using the PSO algorithm 
are given in Table 10.

Fig.s 10 and 11 illustrate the performance of SVM-PSO 
method for predicting compressive and splitting tensile 
strength based on training and testing sets, respectively. Also, 
the RMSE and R2 values for each model are given in Table 11.

Table 11 shows that the coefficient of determination (R2) 
of predicted values for compressive strength using SVM-PSO 
method in case of training and testing data by is 0.996 and 
0.921, respectively. This parameter in case of the splitting 
tensile strength for training and testing data is 0.999 and 
0.936, respectively. As evidence, the accuracy of SVM-PSO 
method is case of training set is very high, however, due to 
reduced amounts of R2 in case of testing set in comparison 
with training data, it can be concluded that this method has 
fewer generalization capability than artificial neural network. 
Also it is evidence that similar to ANN-PSO method, the 
accuracy of SVM-PSO method in prediction of splitting 
tensile strength is more than its accuracy in predicting of 
compressive strength.

3.3. ANFIS-PSO method
In the application of ANFIS-PSO method, 30%, 10%, and 

60% of records were considered as testing, cross validating and 
training set, respectively. Optimum Architecture of ANFIS 
in terms of number of rules was determined by assessing 
different architectures using ANFIS toolbox of MATLAB and 
the optimum number of rules was determined as 10 in both 
compressive and splitting tensile strength models. ANFIS-
PSO procedure was then employed to determine the optimum 
parameters of membership functions. Table 12 shows the PSO 
parameters for optimization of this method.

Fig.s 12 and 13 represent the performance of ANFIS-
PSO method for predicting compressive and splitting tensile 
strength of training and testing set, respectively. Also, the 
RMSE and R2 values for each model are given in Table 13.

Table 13 shows that the values of R2 for prediction of 
compressive and tensile strength in case of training set by 
using ANFIS-PSO is 0.967 and 0.959, respectively. These 
values are much less in comparison with values obtained from 
ANN-PSO and SVM-PSO methods. In addition, it can also be 
seen that the values of R2 for predicted value of compressive 
and tensile strength in case of testing set is 0.899 and 0.932, 
respectively that are less than values obtained using ANN-
PSO and SVM-PSO methods. In general, it can be stated 
that ANFIS-PSO method does not have the possibility of 
predicting compressive strength with high accuracy.

4. COMPARISON OF ANN-PSO, SVM-PSO AND 
ANFIS-PSO 

In Table 14, the prediction results of the compressive 
and tensile strength of plastic concrete for the Overall data 

 

Table 5. Classification of specimens for prediction models of compressive strength. 
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Table 5. Classification of specimens for prediction models of 
compressive strength.

Table 6. Classification of specimens for prediction models of 
splitting tensile strength.
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Table 7. PSO parameters for ANN optimization. 

 

  

Table 7. PSO parameters for ANN optimization.
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Fig. 10. Performance of SVM-PSO model for prediction of compressive strength. 

  

Fig. 8. Performance of ANN-PSO model for prediction of compressive strength.
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Fig. 8. Performance of ANN-PSO model for prediction of splitting tensile strength. 

  

Fig. 9. Performance of ANN-PSO model for prediction of splitting tensile strength.

set by using six methods of ANN, ANN-PSO, SVM, SVM-
PSO, ANFIS and  ANFIS-PSO are given. As can be seen, 
among the evaluated methods in this paper, ANN-PSO 
method, compared to other methods, provides more accurate 
prediction of compressive and tensile strength of plastic 

concrete. Also, the better accuracy of SVM-PSO compared 
to accuracy of ANFIS-PSO is visible. In total, with respect 
to the assessment conducted in this paper, ANN-PSO 
method for predicting the compressive and tensile strength 
of plastic concrete is recommended and it can be expected 
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Table 8. The accuracy of ANN-PSO for non-normalized dataset. 
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Table 9. PSO parameters for SVM optimization. 
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Table 10. Optimal values of γ , ε  and C .
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Fig. 10. Performance of SVM-PSO model for prediction of compressive strength. 

  

Fig. 10. Performance of SVM-PSO model for prediction of compressive strength.

that the predicted values using this method has coefficient of 
determination (R2) more than 95 percent.

Fig. 14 demonstrates the predicted versus observed 
values of compressive strength of plastic concrete using three 
different hybrid machine learning methods. As can be seen, in 
most cases, the percentage of error in predicting compressive 
strength is less than 30 percent. Fig. 15 shows the predicted 
versus observed values of splitting tensile strength of plastic 
concrete using ANN-PSO, SVM-PSO, and ANFIS-PSO. 

It is evidence that in most cases the percentage of error in 
predicting splitting tensile strength is less than 20 percent.

5. SENSITIVITY ANALYSIS
In order to investigate the effect of different input parameters 

on the compressive and splitting tensile strength of plastic 
concrete, the Cosine Amplitude Method (CAM), was employed. 
In this method, the express similarity relation between the target 
values and the input parameters is used. In this method, all of 
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Table 11. The accuracy of SVM-PSO. 
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Fig. 11. Performance of SVM-PSO model for prediction of splitting tensile strength. 
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Fig. 12. Performance of ANFIS-PSO model for prediction of compressive strength. 

  

Fig. 12. Performance of ANFIS-PSO model for prediction of compressive strength.
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Fig. 13. Performance of ANFIS-PSO model for prediction of splitting tensile strength. 

  

Fig. 13. Performance of ANFIS-PSO model for prediction of splitting tensile strength.
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Fig. 14. Comparison of various predicted values of compressive strength for different models. 
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Fig. 15. Comparison of various predicted values of splitting tensile strength for different models. 

  

Fig. 15. Comparison of various predicted values of splitting 
tensile strength for different models.
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data pairs are expressed in the common X-space. They would 
form a data array X defined as Eq. (20) [73]:

{ } x...xxxX n321 ++++=  (20)

Where xi, is a vector of the length of m and is shown in 
the Eq. (21).

 
(21)

Thus, each record of the dataset can be assumed as a 
point in the m-dimensional space and this point requires 
m-coordinates to be fully defined. Equation (22) can be used 
to compute the strength of the relationship between xi and xj:

 (22)

Regarding the CAM method, the strength of the 
relationship between compressive strength of plastic concrete 
and input parameters, and also splitting tensile strength of 
plastic concrete and input parameters were presented in Fig.s 
16 and 17, respectively. The results show that cement is the 
most influencing factor on the compressive and splitting 
tensile strength of plastic concrete. Also, silty clay is the least 
sensitive parameter.
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Regarding the CAM method, the strength of the relationship between compressive strength of 
plastic concrete and input parameters, and also splitting tensile strength of plastic concrete and 
input parameters were presented in Figures 16 and 17, respectively. The results show that cement 
is the most influencing factor on the compressive and splitting tensile strength of plastic concrete. 
Also, silty clay is the least sensitive parameter. 
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Fig. 16. Strength of the relationship between different parameters and compressive strength of plastic concrete. 
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Fig. 17. Strength of the relationship between different parameters and splitting tensile strength of plastic concrete. 
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of the relationship between xi and xj: 
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Regarding the CAM method, the strength of the relationship between compressive strength of 
plastic concrete and input parameters, and also splitting tensile strength of plastic concrete and 
input parameters were presented in Figures 16 and 17, respectively. The results show that cement 
is the most influencing factor on the compressive and splitting tensile strength of plastic concrete. 
Also, silty clay is the least sensitive parameter. 
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6. CONCLUSIONS
In this paper, three hybrid machine learning methods 

including ANN, SVM and ANFIS optimized with PSO were 
employed to predict the compressive as well as splitting 
tensile strength of plastic concrete. In these models, input 
data were considered as gravel (5-19 mm) in kg/m3, sand (0-5 
mm) in kg/m3, silty clay (particles smaller than 0.075 mm) 
in kg/m3, cement in kg/m3, bentonite in kg/m3, water in l/m3, 
curing time in days and class of shape and size of specimens 
(5 classes for compressive strength and 4 classes for splitting 
tensile strength). The following conclusions can be drawn 
from this study.

1. The optimum architecture of ANN for predicting 
compressive and splitting tensile strength of plastic concrete 
is 8-51-5-1 and 8-20-29-1, respectively. In these two 
architectures, 51 and 20 are the number of neurons in the first 
hidden layer and 5 and 29 are the number of neurons in the 
second hidden layer.

2. Coefficient of determination (R2) between observed 
and predicted values of compressive strength using ANN-
PSO, SVM-PSO and ANFIS-PSO methods in case of training 
set was obtained as 0.989, 0.996, and 0.967, respectively. This 
value for testing set was obtained as 0.976, 0.921 and 0.899 
using ANN-PSO, SVM-PSO and ANFIS-PSO, respectively.

3. Coefficient of determination (R2) between observed and 
predicted values of splitting tensile strength using ANN-PSO, 
SVM-PSO and ANFIS-PSO methods in case of training set 
was obtained as 0.999, 0.999, and 0. 957, respectively. This 
value for testing set was obtained as 0.968, 0.936 and 0.932 
using ANN-PSO, SVM-PSO and ANFIS-PSO, respectively.

4. Application of ANN-PSO is superior to SVM-PSO and 
ANFIS-PSO for predicting compressive and tensile strength 
of plastic concretes.

5.Developed ANN-PSO can be used to predict 
compressive strength as well as splitting tensile strength of 
plastic concrete with respect to constituent materials and 
geometry of plastic concrete specimen without any need of 
conducting experimental tests.

6.  The results of parametric analysis show that the cement 
is the most influencing factor on the compressive and splitting 
tensile strength of plastic concrete, while, silty clay is the least 
sensitive parameter.
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