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ABSTRACT:  This study intends to determine the most appropriate distribution for modeling travel 
time variability. It also aims to explore the effects of the time of day and the length of the analysis 
time interval on the type of the best-fit probability distribution function. To this end, four analysis time 
intervals of different lengths ranging from five minutes to three hours are considered. Subsequently, for 
each analysis time interval, travel time data collected at different times of day are fitted to 12 common 
probability distribution functions. The Akaike Information Criterion is then used to evaluate the goodness 
of fitting and to rank the probability distribution functions. The results of this study indicate that the 
Gaussian mixture distributions are superior to single distributions to represent travel time distribution. In 
addition, single probability distribution functions can model the distribution of travel time observations 
when the length of the time interval is short. Among single probability distribution functions, the burr 
distribution provides the best fit to the travel time data. The results of this research also show that the 
type of the best-fit probability distribution function does not change significantly over the time of day.
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 1. INTRODUCTION
The travel time is considered as one of the most important 

traffic information to travelers [1]. Accurate travel times help 
travelers to navigate to their destination more effectively 
and help traffic operators to make real-time decisions more 
appropriately [2]. It also plays a key role in travelers’ decisions 
[3]. As a result, travel time has been widely used as an 
important factor in project appraisal [4].

 Travel time on a road is not constant. It varies from day-
to-day and across different times of day [5]. Travel time is 
subject to random variations owing to demand fluctuations 
and supply uncertainty [6]. Travel demand uncertainty is 
mainly caused by day-to-day demand variation and travelers’ 
behavior uncertainty [7]. The supply uncertainty is due to 
different disturbances on the road (e.g., traffic incidents, work 
zone activities, adverse weather conditions) affecting the road 
capacity [8].

It is increasingly recognized that travelers consider not 
only travel time but also its variability in their choice situations 
such as mode, departure time and route choice to arrive on-
time at their destinations [9]. Several studies such as Li et 
al. (2010) [10] and Asensio and Matas (2008) [11] reported 
that travelers are willing to pay not only for the reduction in 
travel time but also for the reduction in travel time variability. 

Furthermore, travel time variability has important practical 
applications in transportation engineering. It is commonly 
considered as a major indicator of roadway performance and 
service quality [12]. Travel time variability also serves as a 
major factor in dynamic congestion pricing, where the time-
varying toll is determined based on the traffic congestion level 
[13]. To ensure on-time arrival, the variability in travel time 
is also considered in the design of route guidance systems, 
transit networks and logistic systems [14, 15]. 

Owing to broad real applications of travel time variability, 
a considerable number of studies have been conducted to 
model travel time variability. Modeling travel time variability 
has been, and remains, a primary concern to researchers and 
practitioners in the field of transportation engineering. One 
of the most common approaches for modeling travel time 
variability is to describe travel time as a random variable. 
Modeling travel time as a random variable requires the 
determination of the probability distribution function (PDF) 
of travel time and estimation of its parameters. 

To date, several studies have been conducted to determine 
the distribution of travel time using real data. For example, 
Herman and Lam (1974) [16] fitted several continuous 
probability distributions to real travel time data collected 
in Detroit. They suggested the Gamma distribution for 
representing travel time variability. Emam and AI-Deek 
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(2006) [17] indicated that the lognormal distribution 
can be a reasonable representation of an empirical travel 
time distribution. The lognormal distribution was also 
recommended by Rakha et al.  (2006) [18], Faouzi and 
Maurin (2007) [19], Lu and Dong  (2018) [20], Rahman et al.  
(2018) [21] , Chen et al. (2018) [22] and Rajabi-Bahaabadi et 
al. (2019) [23] for modeling travel time variability. Weifeng et 
al. (2013) [24] collected travel times of several expressways in 
Shanghai, China. They found that travel time variability can 
be represented by a Beta distribution.  Susilawati et al. (2013) 
[25] and Taylor (2017) [26] proposed the Burr distribution 
for modeling travel time variability. Recent studies showed 
that mixture distributions provide a better fit to travel time 
observations compared to single probability distributions 
[27-29]. For example, Guo et al. (2010) [27] fitted travel 
time data to several single and mixture distributions. They 
indicated that the lognormal mixture distribution provides 
the best fit to travel time data under moderate to congested 
traffic conditions. Ma et al. (2016) [28] found that the 
normal mixture models are superior to single probability 
distributions to model travel time variability. Recently, Yang 
and Wu (2016) [29] applied mixture distributions to model 
travel time variability. The results of their study showed that 
mixture models outperformed the single alternatives in terms 
of goodness of fit. 

The above-mentioned studies on modeling the travel time 
distribution tend to yield inconsistent overall results. Sated 
more explicitly, different probability distributions have been 
proposed to model travel time variability. The difference 
between the types of proposed distributions may be due to 
several reasons such as time of day, road type and the length 
of the analysis time interval. To the best of our knowledge, 
no empirical study has been carried out to identify how the 
length of the analysis time interval might change the travel 
time distribution. Furthermore, few attempts have been 
made to examine the effect of the time of day on the travel 
time distribution. Accordingly, the present study intends to 
explore the effects of the time of day and the length of the 
analysis time interval on the type of the best-fit probability 
distribution function.

The remainder of the paper is organized as follows. In the 
next section, the methodology of the research is presented. 
Subsequently, the real travel time dataset is described in 
Section 3. The results of fitting travel time data to several 
common distributions are presented in Section 4. Finally, the 
paper is concluded with some suggestions for future research.

2. METHODOLOGY
The Statistical distributions can be divided into two general 

groups: 1) single probability distributions and 2) mixture 
probability distributions. Single probability distributions are 
unimodal distributions such as the normal distribution while 
mixture distributions are multimodal statistical distributions 
that are created from the convex combination of several 
single distributions. Suppose that ( )kp x  represents a single 
statistical distribution. The probability density function of a 
mixture distribution with k single distribution is defined as 

[30]:
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In the above equation, kw  is a positive value representing 
the weight of kth distribution. As the mixture distribution is 
the convex combination of several single distributions, the 
sum of the weights is equal to one. In other words
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Based on the above equations, it can be concluded that a 
single distribution such as the normal distribution is a special 
case of a mixture distribution in which k is equal to one. 

In this study, 11 single distributions including birnbaum-
saunders (BS), burr, rician, gamma, logistic, lognormal (LN), 
generalized extreme value (GEV), t-location-scale (TLS), 
nakagami (NK), normal and weibull are considered. The 
parameters of single distributions are estimated by the well-
known maximum likelihood estimation (MLE) method. 
Furthermore, Gaussian mixture distribution is considered as 
a special case of mixture distributions. The Gaussian mixture 
distribution is composed of several normal distributions. To 
estimate parameters of the Gaussian mixture distribution, the 
expectation–maximization (EM) algorithm is employed [31]. 

To select the most appropriate distribution, the Akaike 
Information Criterion (AIC) is used. The AIC is a measure of 
the relative goodness of fit of a statistical model. It means that 
the change in the AIC value between two models estimated 
with the same data set can be used to identify the model that 
better fits the data [32]. The smaller the value of AIC, the 
better the model. The AIC is defined as follows:

2 2 ,pAIC n LL= −                          (3)

where pn  is the number of estimated parameters in the 
model and LL  represents the maximized log-likelihood for 
the estimated model. 

As the AIC is only a measure of the relative goodness of 
fit, the Kolmogorov–Smirnov test (K-S test) is used to test 
whether travel time observations come from a hypothesized 
distribution. If the p-value of the test if greater than 0.01, then 
it can be concluded that travel time observations come from 
the hypothesized distribution at 99 % confidence level.

As mentioned earlier, the Statistical distributions can 
be divided into two general groups: 1) single probability 
distributions and 2) mixture probability distributions. Single 
distributions are unimodal while mixture distributions are 
multimodal. If the distribution of travel time observations is 
unimodal, then single distributions are more likely to fit travel 
time observations. To test the unimodality of the distribution 
of travel time observations, Hartigan’s dip test [33] was used. 
The null hypothesis H0 for the dip test is that the distribution 
is unimodal. If the p-value is greater than 0.01, the null 
hypothesis is not rejected at 99 % of confidence level.
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3. DESCRIPTION OF THE STUDY AREA
 The case study site is a freeway section that connects Karaj 

to Tehran, two major cities in Iran. The length of the section 
is about 20 km. The freeway is a major commuting corridor in 
Iran. Its average annual daily traffic (AADT) is approximately 
100,000 vehicles. It is instrumented with Bluetooth sensors 
that can record time stamps and the media access control 
(MAC) addresses of Bluetooth-enabled devices. Vehicle 
travel time can be estimated by matching the MAC addresses 
recorded by the sensors. In this paper, a 1-min aggregation 
level was used for travel times. Travel time data used in this 
study were collected from January 1, 2016 to June 21, 2017. 
The workday data from 5:00 AM to 11:00 AM were used 
because traffic patterns are similar during workdays. 

4. RESULTS
 The main purpose of this section is to determine the 

most appropriate distributions for modeling travel time 
variability at different times of the day. As mentioned earlier, 
the second purpose of the study is to examine how the length 
of the analysis time interval may affect the type of travel time 
distribution. In this regard, in order to obtain a better view of 
the travel time data, a descriptive analysis of the data is first 
provided. Subsequently, four analysis time intervals including 
1) three-hour interval, 2) one-hour interval 3) fifteen-min 
interval and 4) five-min interval are considered. At different 
times of day and for each analysis time interval, twelve 
probability distribution functions are initially fitted to travel 
time data. Finally, the candidate distributions are then ranked 
based on the AIC values.

Fig. 1 shows a box plot of the travel time data at different 
hours during the study period (5:00-11:00 AM). From Fig. 
1, it can be seen that the mean and the standard deviation 
of travel time at different hours are not constant. In this 
study, the Kruskal-Wallis test [34] was used to examine the 
hypothesis of equality of average travel times. Also, Levene’s 
test [35] was used to examine the hypothesis of equality of 

standard deviations. The results of these two tests show that 
at 95% confidence level, the means of travel times, as well 
as travel time variances, are not equal at different intervals. 
This implies the stochastic and time-dependent nature of 
travel time. Furthermore, according to Fig. 1, the peak period 
occurs during 7:00-8:00 AM. This may be due to the fact that 
commuters depart their origin (Karaj) for a work trip over 
this period. 

In order to find the most appropriate distribution for 
modeling travel time variability, the study period (5:00 AM 
to 11:00 AM) was divided into several analysis time intervals 
with varying length. More explicitly, the study period is 
divided into two analysis intervals with the length of 3 hours, 
six 1-hour intervals, twenty-four 15-minute intervals and 
seventy-two 5-minute intervals. Then, for each analysis time 
interval, candidate distributions were fitted to travel time 
data collected during each interval. The value of the Akaike 
Information criterion was then used to rank probability 
distributions. The smaller the value of AIC, the better the fit of 
the distribution to the data. Therefore, for each time interval, 
the distribution with the smallest value of AIC is given the 
rank 1, the one with the second smallest value of AIC is given 
the rank 2, and so on up to the distribution with the largest 
value of AIC, which is assigned the rank 12. Fig. 2 illustrates 
the average rank of the candidate probability distributions 
for three-hour, one-hour, fifteen-min and five-min intervals. 
As can be seen in Fig. 2, on average, the Gaussian mixture 
distribution has the best fit to the travel time data for all 
analysis time intervals. Among single distributions, the burr 
distribution has the best fit to travel time data.

To answer the question whether travel time observations 
come from the fitted distributions, the Kolmogorov-Smirnov 
test (K-S test) was used. Here, the null hypothesis is that 
the data comes from a given distribution. In contrast, the 
alternative hypothesis is that the data does not follow a given 
distribution. In this study, the null hypothesis is accepted if 
the p-value is greater than 0.01. For each interval length, Table 

 
Fig. 1. Box plot of travel time data at different hours during the study period (5:00-11:00 AM) 

  
Fig. 1. Box plot of travel time data at different hours during the study period (5:00-11:00 AM)
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1 shows the percentage of intervals in which the K-S test is 
passed. As can be seen from Table 1, the Gaussian mixture 
distribution has the best fitting performance for different 
interval lengths. For example, for 5-min intervals, the 
Gaussian mixture distribution passed the K-S test in 71 of 72 
intervals (98.6 %). It can also be seen from Table 1 that single 
distributions only passed the K-S test in some intervals when 
the interval length is 5 minutes. Furthermore, among single 
distributions, the burr distribution has the best fit to travel 
time data. For example, the burr distribution passed the K-S 
test in 27 intervals out of 72 intervals with 5 minutes length.

One possible reason that the Gaussian mixture has the 
best fit to travel time data can be attributed to the fact that 
travel time data are multimodal. To test this hypothesis, 
Hartigan’s dip test was applied. Table 2 shows the percentage 
of intervals in which the Hartigan’s dip test is passed. The 

results of this test confirm that the distributions of travel 
time observations at all three-hour and all one-hour 
intervals are multimodal at 99% confidence level. For 15-
min intervals, the travel time distribution is unimodal in 5 
out of 24 intervals (20.8%). Furthermore, the proportion of 
unimodality cases is 52.7% for 5-min intervals. According to 
the results of the Hartigan’s dip test, it can be concluded that 
travel time distributions are usually multimodal; however, 
as the length of the analysis time interval becomes shorter, 
travel time distributions are more likely to be unimodal. 
Therefore, single probability distributions (unimodal 
distributions) such as the burr distribution can model the 
distribution of travel time observations only when the length 
of time interval is short. 

Fig. 3 compares the empirical distribution of travel time data 
at one-hour intervals with the estimated mixture distributions. 

 
Fig. 2. The average rank of probability distributions for different analysis time intervals 

  
Fig. 2. The average rank of probability distributions for different analysis time intervals

 

Table 1. The percentage of intervals that fitted distributions passed the K-S test

Table 2. The results of Hartigan’s dip test
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As shown in Fig. 3, travel time distributions at each of the six 
analysis intervals were best described by Gaussian mixture 
distributions because they are able to model multimodality of 
travel time data by combining several probability distributions.

As mentioned earlier in the introduction section, this 
study also attempts to answer the question whether the type of 
best fitting distribution to travel time data changes at different 
times of the day. To this end, several probability distributions 
were fitted to travel time data at different times of the day. 

The results of our analysis showed that the type of the best-
fit probability distribution does not change at different times 
of the day. As an example, Fig. 4 shows the rank of each 
probability distribution at different times of the day. The 
length of the analysis time interval is equal to 15 min in Fig. 
4. As can be seen in Fig. 4, the Gaussian mixture distribution 
has the first rank at all 15-min intervals of the study period. 
Furthermore, at most times of day, the burr distribution has 
the second and the third rank.

Fig. 4 Rank of probability distribution functions at different times of day (15-min intervals)

 
Fig. 3. The probability density function of Gaussian mixture distribution with five components 

  
Fig. 3. The probability density function of Gaussian mixture distribution with five components

 

Fig. 4 Rank of probability distribution functions at different times of day (15-min intervals) 
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5. DISCUSSION AND PRACTICAL APPLICATIONS
Transportation systems such as dial-a-ride and delivery 

systems characterized by unreliable services lose their 
customers over time because such systems impose significant 
penalty costs to their customers. Several attempts have been 
made over the last two decades to provide customers and 
travelers with reliable services and to incorporate travel 
time variability into the design of transportation systems. 
The determination of travel time distribution is the first step 
for considering travel time variability. Although mixture 
distributions are leading candidates for representing travel 
time variability, almost all previous studies considered that 
travel time follows a single distribution to incorporate travel 
time variability into the design of transportation systems. This 
is due to the fact that some single probability distributions 
enjoy desirable properties that make incorporating travel 
time variability into the design of transportation systems 
easier and tractable. As a result, for designing transportation 
systems under travel time uncertainty, this paper suggests that 
the length of time intervals should be short (e.g., 5 minutes) 
because single distributions fail to represent travel time 
distributions for longer time intervals. 

 As mentioned in the introduction section, some previous 
studies proposed single distributions for representing travel 
time distribution. However, according to the results of this 
study, single distributions such as the burr distribution may 
not fit accurately to travel time observations for long time 
intervals; this may bias the estimation of travel time variability 
measures. As a result, for long intervals, it is recommended to 
use mixture probability distributions for the analysis of travel 
time variability.

6. CONCLUSION
Modeling travel time distribution is a preliminary step 

for considering travel time variability. In this paper, the 
effectiveness of a wide range of probability distributions for 
modeling travel time variability was investigated. Furthermore, 
the effects of time of day and the length of analysis interval on 
the distribution of travel time were studied. 

The results of this study showed that distributions of 
travel time observations at three-hour and one-hour intervals 
are multimodal at 99% confidence level. The proportion of 
multimodality cases is 47.3% and 79.2% for 5-min and 15-
min intervals, respectively. As the travel time distribution 
is usually multimodal, single probability distributions fail 
to describe travel time variability especially for long time-
intervals. Furthermore, based on the results of this study, 
the Gaussian mixture distribution provides a reasonable 
representation of observed travel time distributions. More 
specifically, the Gaussian mixture distribution passed the K-S 
test in 98.6%, 83.3%, 83.3% and 50% of cases when the length 
of time interval is five minutes, fifteen minutes, one hour and 
three hours, respectively. It worth mentioning that the burr 
distribution had the best fit to travel time data among single 
distributions. Finally, the results of this study showed that 
the best-fit probability distribution function does not change 
significantly over the time of day.

In this study, the fitting performance of the Gaussian 
mixture distribution, which formed from several normally 
distributed components, to travel time observations was 
examined. For future research, it is recommended to examine 
the ability of additional mixture models with non-normal 
components. Furthermore, future research can focus on 
testing the ability of additional single probablity distributions 
for modeling the travel time distribution.
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