[1] A.M.J.J.O.C.P. Rashad, An exploratory study on high-volume fly ash concrete incorporating silica fume subjected to thermal loads, 87 (2015) 735-744.
[2] R. Feiz, J. Ammenberg, L. Baas, M. Eklund, A. Helgstrand, R.J.J.O.C.P. Marshall, Improving the CO2 performance of cement, part I: utilizing life-cycle assessment and key performance indicators to assess development within the cement industry, 98 (2015) 272-281.
[3] S. Ghavami, B. Farahani, H. Jahanbakhsh, F.J.A.J.O.C.E. Moghadas Nejad, Effects of Silica Fume and Nano-silica on the Engineering Properties of Kaolinite Clay, 2(2) (2018) 135-142.
[4] F.M. Nejad, M. Habibi, P. Hosseini, H.J.J.o.c.p. Jahanbakhsh, Investigating the mechanical and fatigue properties of sustainable cement emulsified asphalt mortar, 156 (2017) 717-728.
[5] B. Lothenbach, K. Scrivener, R.J.C. Hooton, c. research, Supplementary cementitious materials, 41(12) (2011) 1244-1256.
[6] M.H. Shehata, M.D.J.C. Thomas, C. Research, The effect of fly ash composition on the expansion of concrete due to alkali-silica reaction, 30(7) (2000) 1063-1072.
[7] R.J.C. Siddique, C. Research, Performance characteristics of high-volume Class F fly ash concrete, 34(3) (2004) 487-493.
[8] A. Behnood, V. Behnood, M.M. Gharehveran, K.E.J.C. Alyamac, B. Materials, Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm, 142 (2017) 199-207.
[9] F. Deng, Y. He, S. Zhou, Y. Yu, H. Cheng, X.J.C. Wu, B. Materials, Compressive strength prediction of recycled concrete based on deep learning, 175 (2018) 562-569.
[10] A. Behnood, E.M.J.J.o.c.p. Golafshani, Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves, 202 (2018) 54-64.
[11] B. Vakhshouri, S.J.N. Nejadi, Prediction of compressive strength of self-compacting concrete by ANFIS models, 280 (2018) 13-22.
[12] Z.M. Yaseen, R.C. Deo, A. Hilal, A.M. Abd, L.C. Bueno, S. Salcedo-Sanz, M.L.J.A.i.E.S. Nehdi, Predicting compressive strength of lightweight foamed concrete using extreme learning machine model, 115 (2018) 112-125.
[13] H.J.I.J.O.I. Naseri, Management, Technology, Cost Optimization of No-Slump Concrete Using Genetic Algorithm and Particle Swarm Optimization, 10(1) (2019).
[14] J.-S. Chou, C.-F.J.A.i.C. Tsai, Concrete compressive strength analysis using a combined classification and regression technique, 24 (2012) 52-60.
[15] D.-K. Bui, T. Nguyen, J.-S. Chou, H. Nguyen-Xuan, T.D.J.C. Ngo, B. Materials, A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete, 180 (2018) 320-333.
[16] H. Naderpour, A.H. Rafiean, P.J.J.O.B.E. Fakharian, Compressive strength prediction of environmentally friendly concrete using artificial neural networks, 16 (2018) 213-219.
[17] T. Kim, J.M. Davis, M.T. Ley, S. Kang, P.J.C. Amrollahi, B. Materials, Fly ash particle characterization for predicting concrete compressive strength, 165 (2018) 560-571.
[18] N. Rajamane, J.A. Peter, P.J.C. Ambily, c. composites, Prediction of compressive strength of concrete with fly ash as sand replacement material, 29(3) (2007) 218-223.
[19] I.B. Topcu, M.J.C.M.S. Sarıdemir, Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic, 41(3) (2008) 305-311.
[20] M.M. Khotbehsara, B.M. Miyandehi, F. Naseri, T. Ozbakkaloglu, F. Jafari, E.J.C. Mohseni, B. Materials, Effect of SnO2, ZrO2, and CaCO3 nanoparticles on water transport and durability properties of self-compacting mortar containing fly ash: Experimental observations and ANFIS predictions, 158 (2018) 823-834.
[21] I.-C.J.C. Yeh, C. research, Modeling of strength of high-performance concrete using artificial neural networks, 28(12) (1998) 1797-1808.
[22] I.-C.J.J.C.I.C.H.E. Yeh, Prediction of strength of fly ash and slag concrete by the use of artificial neural networks, 15(4) (2003) 659-663.
[23] J. Sobhani, M. Najimi, A.R. Pourkhorshidi, T.J.C. Parhizkar, B. Materials, Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models, 24(5) (2010) 709-718.
[24] J.R. Sampson, Adaptation in natural and artificial systems (John H. Holland), in, Society for Industrial and Applied Mathematics, 1976.
[25] H. Naseri, M.A.E.J.I.J.o.I. Ghasbeh, Management, Technology, Time-Cost Trade off to Compensate Delay of Project Using Genetic Algorithm and Linear Programming, 9(6) (2018).
[26] D. Neeraja, T. Kamireddy, P. Santosh Kumar, V. Simha Reddy, Weight optimization of plane truss using genetic algorithm, in: Materials Science and Engineering Conference Series, 2017, pp. 032015.
[27] Z. Aydın, Y.J.K.J.O.C.E. Ayvaz, Overall cost optimization of prestressed concrete bridge using genetic algorithm, 17(4) (2013) 769-776.
[28] H. Eskandar, A. Sadollah, A. Bahreininejad, M.J.C. Hamdi, Structures, Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems, 110 (2012) 151-166.
[29] A. Sadollah, H. Eskandar, A. Bahreininejad, J.H.J.S.C. Kim, Water cycle algorithm for solving multi-objective optimization problems, 19(9) (2015) 2587-2603.
[30] A. Sadollah, H. Eskandar, J.H.J.A.S.C. Kim, Water cycle algorithm for solving constrained multi-objective optimization problems, 27 (2015) 279-298.
[31] E.M. Golafshani, A.J.C. Behnood, C. Composites, Estimating the optimal mix design of silica fume concrete using biogeography-based programming, 96 (2019) 95-105.
[32] E.A. Ramalho, J.J. Ramalho, P.D.J.J.o.P.A. Henriques, Fractional regression models for second stage DEA efficiency analyses, 34(3) (2010) 239-255.
[33] E.A. Ramalho, J.J. Ramalho, J.M.J.J.o.E.S. Murteira, Alternative estimating and testing empirical strategies for fractional regression models, 25(1) (2011) 19-68.
[34] M. Mokhtari, s. Abedian, S.A. Almasi, Rockfall Susceptibility Mapping Using Artificial Neural Network, Frequency Ratio, and Logistic Regression: A Case Study in Central Iran, Taft County %J AUT Journal of Civil Engineering, (2019) -.
[35] A. Committee, I.O.f. Standardization, Building code requirements for structural concrete (ACI 318-08) and commentary, in, American Concrete Institute, 2008.
[36] M. Mirzahosseini, P. Jiao, K. Barri, K.A. Riding, A.H.J.E.C. Alavi, New machine learning prediction models for compressive strength of concrete modified with glass cullet, 36(3) (2019) 876-898.