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ABSTRACT:  Estimating the compressive strength of concrete before fabricating, has been one of the 
most important challenges because designing a mixture proportion by experimental methods needs expert 
workers, consumes energy, and wastes materials. Therefore, in this study, the influences of materials and 
the age of samples on the compressive strength of fly ash concrete are investigated, and a novel method 
for predicting the compressive strength is presented. To this end, the water cycle algorithm and genetic 
algorithm are utilized, and their outcomes are compared with the classical regression models. Various 
performance indicators are used to gauge the accuracy of the models. By analyzing the results, it is 
comprehended that the water cycle algorithm is the most accurate model according to all performance 
indicators. Besides, the outcomes of the water cycle algorithm and genetic algorithm are by far better 
than those of classical methods. The mean absolute error of water cycle algorithm, genetic algorithm, 
linear regression, partial-fractional regression, and fractional regression are 3.01, 3.12, 5.47, 9.70, 
and 5.37 MPa for training data and 2.90, 3.44, 5.47, 9.70, and 5.37 MPa for testing data respectively. 
Furthermore, the water cycle algorithm is the only algorithm whose mean absolute error of testing data 
is less than that of training data. At last, it was concluded that the mixture with less than 35% fly ash 
(weight of the binder) had maximum amounts of compressive strength. Also, the compressive strength of 
concrete decreased significantly as the amount of fly ash increased more than this definite level.
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1- Introduction
The cement considered as the global anthropogenic e-CO2 

emissions through the more than 5-7% of CO2 emission 
and utilizing a significant amount of energy by the cement 
industry [1, 2]. Furthermore, about 1.5 tons of Raw materials 
along with 3000-4300 MJ of fuel energy and 120-160 kWh 
of electrical energy are needed for producing each ton of 
cement [2]. Based on the aforementioned concepts, utilizing 
some strategies to reduce cement consumption should be of 
concern. This can lead to preserving the environment, Raw 
materials, fuel, and energy with the reduction of pollution 
emitted during the process of cement production. To this 
end, the researchers have been interested in utilizing the 
waste materials and by-products of industries as cement 
replacement [3, 4]. 

Based on the aforementioned concepts, supplementary 
cementitious materials (SCM) have been extensively used in 
the concrete industry to improve the mechanical properties 
and durability of the concrete. By these materials, the more 
economical profit can be gained by replacing a substantial 
part of the Portland cement by cheap natural pozzolans or 
industrial by-products. SCMs are known as eco-friendly 
materials because the CO2 emissions are considerably reduced 
by decreasing the amount of cement in mixture proportions. 

Moreover, industrial and societal by-products and wastes can 
be utilized as construction materials [5]. As such, Fly ash as the 
most valuable SCMs is commonly used cement replacement 
material in recent years. Up to 50% of cement can be replaced 
with fly ash, and it is competent to use in precast elements and 
reinforced cement concrete construction. The appropriate use 
of fly ash can prevent expansion due to alkali-silica reaction 
(ASR) in concrete. The use of fly ash will, by far increase the 
service life of structures exposed to chloride environments. It 
is also fruitful to enhance the long term strength of concrete 
structures [6, 7].

One of the most important issues regarding the fabrication 
of a suitable concrete mixture containing SCMs is finding a 
suitable mixture design. As reported by some researchers, a 
direct correlation exists between the amounts of materials 
in mixture proportion and properties of concrete [8, 9]. In 
previous decades, experimental tests were conducted to find 
the appropriate mixture design. Nonetheless, considering the 
required several expert workers takes a long time, and wastes 
irreproducible materials, an experimental method would 
not be an appropriate procedure designing the convenient 
environment-friendly concrete. Moreover, the appropriate 
mixture design may not be found by this technique. Therefore, 
a wide range of computational approaches has been taken to 
recognize the optimal mixture design of different sorts of 
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concretes and to predict their characteristics. To this end, 
Adaptive neuro-fuzzy inference system (ANFIS), extreme 
learning machine model, artificial neural network (ANN), 
hybrid artificial neural network, various kinds of regressions, 
deep learning theory, M5P model are the commonly used 
methods to find the relation between inputs and output(s) 
in modeling the systems in many engineering applications 
especially concrete mix design [8-12].

Various kinds of regressions and multiple regressions 
have been used to predict the compressive strength of 
concrete as one of the most important mechanical properties 
and the overall quality of concrete to design optimal mixture 
characteristics [9-14]. However, their accuracy may not be 
ideal. ANNs are also the conventional tools that help the 
researchers to predict the mechanical properties, workability, 
and durability properties of concrete before casting it. Despite 
they are powerful and trustable methods, they are considered 
black-box tools. That is to say, generating practical equations 
are usually infeasible. On the other hand, the number of 
hidden layer nodes and neurons along with biases and 
weights are calculated by trial and error to achieve suitable 
performance [15, 16]. 

Fly ash concretes known as high long-term compressive 
strength mixtures. Therefore, several efforts have been 
made to predict the compressive strength of this type of 
concrete with new machine learning methods. Regarding the 
Prediction of the characteristics of fly ash concretes, Taehwan 
Kim et al. utilized a particle Model and a new classification 
approach to analyze fly ash particle characterization for 
predicting concrete compressive strength [17]. Moreover, the 
prediction of compressive strength of concrete with fly ash as 
sand replacement material was considered in the Rajamane 
investigation [18]. With the help of ANN and ANFIS, the 
compressive strength of fly ash concretes was predicted in 
previous studies [19, 20]. 

Regarding all the above concepts, although common 
techniques are capable of predicting the compressive strength 
of fly ash concretes, their accuracy may not be perfect 
moreover, because the concrete compressive strength test is 
generally conducted at 7 or 28 days of curing. Ergo, most 
research studies applied machine learning methods to predict 
the strength of concrete after 28-days of curing. On the flip 
side, as the fly ash substantially affects the compressive 
strength of concrete over long ages, previously developed 
prediction methods cannot be efficient for the design of fly 
ash concrete. To the best of the authors’ knowledge, there 
is no machine learning prediction approach of concrete’s 
compressive strength considering the age of casted concrete. 
Therefore, this research aimed to propose a predictive 
relationship between concrete strength and mix design 
parameters considering the age of specimens employing a 
new machine learning method. To this end, several techniques 
containing linear regression (LR), fractional regression (FR), 
partial fractional regression (PFR), Genetic algorithm (GA), 
and Water cycle algorithm (WCA) were used in this study. 
Comparative study of the application of these methods to the 
design of fly ash concrete has also been carried out.

2- Methodology
This study aimed to find the relation
between the compressive strength of fly ash concrete and 
the amounts of materials used in the mixture design. This 
relation helps to find the appropriate mixture proportion 
before casting the concrete. To reach the objective of this 
research, 239 experimental data are used which are extracted 
from international published articles [21, 22]. The age of 
samples (day), their components (kg/m3) including cement, 
fly ash, water, superplasticizer, coarse aggregate, and fine 
aggregate, and the ratios of water to the binder, fly ash to 
the binder, superplasticizer to binder, fine aggregate to total 
aggregate, coarse aggregate to binder are considered as the 
inputs of model and compressive strength is the output of the 
model. The inputs and output of the problem have various 
ranges. Thus, they ought to be scaled in the same range. In 
these situations, all the data are usually scaled between 0 
and 1. However, in this study, logarithmic equations can be 
selected by algorithms, and the amount of 0 is unable to use in 
these modes. Ergo, drawing on Eq. (1) all the data are scaled 
between 0.1 and 0.9 [23].
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respectively. The standard deviation, maximum, minimum, 
and average amount of rough data used in this study are 
presented in Table 1.
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Table 1. Standard deviation, maximum, minimum, and average amount of data
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(WCA) and genetic algorithm (GA) are opted for introducing the equation of compressive strength of fly ash concrete 
because they are one of the most powerful algorithms that have been suitably qualified for solving integer problems. 
To make the model more authentic, 8000 different modes are considered for each input, and 400 various functions 
can be selected as the final equation. Accordingly, there are more than 4.39×1054 feasible solutions in the feasible 
region.  

To assess the accuracy of the model, 6 parameters including mean absolute error (MAE), mean square error (MSE), 
root mean square error (RMSE),  percentage of data which their error are fewer than 5 Mega-Pascal (PE5), coefficient 
of determination (R2), and correlation coefficient (R) are used as performance indicators. The equations of these 
performance indicators are as follows: 
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where 𝐸𝐸𝐸𝐸𝑃𝑃𝑖𝑖, 𝐸𝐸𝐸𝐸𝑃𝑃𝑖𝑖, 𝑃𝑃𝑃𝑃𝐸𝐸𝑖𝑖, 𝑃𝑃𝑃𝑃𝐸𝐸𝑖𝑖, and 𝑛𝑛 are the results of experimental data, the average of results of experimental 
data, predicted data, the average of predicted data, and the number of samples in the order given. 
The data are divided into two groups. 200 data randomly are considered as training data utilizing to make the model. 
Moreover, the remaining data (39 samples) are used to gauge the reliability of the results and validation of the model. 
On the other hand, the three different kinds of traditional regressions are applied, and the outcomes of algorithms and 
traditional regressions are compared for both training and testing data. The flowchart of the methodology is 
demonstrated in Figure 1. 
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The data are divided into two groups. 200 data randomly 
are considered as training data utilizing to make the model. 
Moreover, the remaining data (39 samples) are used to gauge 
the reliability of the results and validation of the model. On the 
other hand, the three different kinds of traditional regressions 
are applied, and the outcomes of algorithms and traditional 
regressions are compared for both training and testing data. 
The flowchart of the methodology is demonstrated in Fig.1.

3- Modeling the compressive strength of fly ash concrete 
As previously mentioned, conventional methods may 

be unable to consider various modes and several functions 
to predict the compressive strength of fly ash concrete. In 
contrast, heuristic and meta-heuristic algorithms can be 
qualified for deliberating several modes for each input and 
complicated functions. In this study, 12 inputs are available, 
and their relation with the compressive strength of fly ash 
concrete is investigated. To improve the accuracy of the 
model and to reduce the error, 20 different functions and 400 
positive and negative constant values are chosen for each 
input, and the modes of each input are the multiplication of 
the functions and the numbers. That is to say, 20 different 
functions including logarithmic functions with different 
basics, trigonometric functions (sin, cos, tan, and cot), 
different types of radical functions, exponential functions, and 
the combination of these functions are chosen as the forms of 
each variable, and these functions are assigned to each input. 
Moreover, for each variable, a coefficient is selected among 
400 alternatives, and it is multiplied by the selected function 
of the input. Hence, 8000 possible modes are available for 
each input, and the algorithms opt for one of them to find the 
ideal correlation. Alternatively, 400 functions are considered 
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2. Methodology 
This study aimed to find the relation between the compressive strength of fly ash concrete and the amounts of 

materials used in the mixture design. This relation helps to find the appropriate mixture proportion before casting the 
concrete. To reach the objective of this research, 239 experimental data are used which are extracted from international 
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However, in this study, logarithmic equations can be selected by algorithms, and the amount of 0 is unable to use in 
these modes. Ergo, drawing on Eq. (1) all the data are scaled between 0.1 and 0.9 [23]. 

𝑆𝑆𝑖𝑖 = 0.1 + (0.9 − 0.1) × 𝑖𝑖 − 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
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where 𝑖𝑖 is the rough data, 𝑆𝑆𝑖𝑖  is the scale value of data, 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, and 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 are the maximum and minimum rough data 
values, respectively. The standard deviation, maximum, minimum, and average amount of rough data used in this 
study are presented in Table 1. 

 
Table 1. Standard deviation, maximum, minimum, and average amount of data 

Variables Abbreviation Minimum Maximum Average Standard 
deviation 

Input Variable      
Cement                        (kg/m3) CE 134.7 505 232.5 55.235 
Fly ash                         (kg/m3) FL 59 200.1 123.3 28.088 
Water                           (kg/m3) WA 142 221.4 174.5 17.515 
Superplasticizer           (kg/m3) SU 0 20 8.8 3.315 
Coarse aggregate         (kg/m3) CO 801 1098 997 70.209 
Fine aggregate             (kg/m3) FI 630 905.9 811.4 59.603 
Age                                (days) AG 3 100 37.2 30.694 

Water to binder ratio WAB 0.27 0.7 0.5 0.005 
Fly ash to binder ratio FLB 0.1 0.55 0.35 0.008 

Superplasticizer to binder ratio SUB 0 0.06 0.03 0.000 
Fine to total aggregate ratio FIT 0.37 0.51 0.45 0.001 

Coarse aggregate to binder ratio COB 1.6 3.76 2.85 0.182 

Output variable      
Compressive Strength (MPa) CS 8.49 66.42 31.2 13.394 

 
In this research, by the advantages of heuristic and meta-heuristic algorithms, a novel regression is developed, 

finding the correlation between inputs and output of the model with a high level of accuracy. Water cycle algorithm 
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Fig. 1. Flowchart of process.  

to find the best combination of inputs. Moreover, several 
individual constants belong to functions that can be used in 
their equations. 

3.1. Genetic algorithm
A genetic algorithm (GA) is a heuristic algorithm that 

performs optimization searches in the feasible region to find 
better solutions. It was inspired by Darwinian principles of 
natural selection, and it was developed by John H. Holland 
[24, 25]. In the genetic algorithm, each data is assigned to 
a chromosome that contains given genes, and each gene 
represents a feature of data. The population is constituted 
by chromosomes, and in each iteration, new populations are 
generated by some process operators including selection 
operators, mutation operators, and crossover operators. 
Afterward, novel and previous populations are compared 

based on fitness value (objective function), and the best 
chromosomes are survived. Ultimately, the best solution 
is reported as a genetic algorithm solution [26, 27]. In this 
study, tournament selection, random selection, and roulette 
wheel selection operators are chosen as selection operators, 
and in each selection, one of them is chosen randomly. 
On the other hand, a two-point (double point) crossover is 
utilized to cover more data. After running the algorithm, the 
genetic parameters are adjusted and calibrated. The number 
of population, number of iterations, crossover percentage, 
mutation rate, and mutation percentage are considered 500, 
6000, 0.8, 0.1, and 0.2, respectively. The algorithm is coded 
in MATLAB, it is run 10 times and the best result is notified 
as to the solution of the genetic algorithm. The flow chart 
of the genetic algorithm used in this study is illustrated in 
Fig. 2.
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Fig. 2. Flowchart of genetic algorithm.

 

 

3.2. Water cycle algorithm
The water cycle algorithm (WCA) is a meta-heuristic 

algorithm that intelligently looks into the feasible solutions 
to spot optimal or near-optimal solutions. It was inspired by 
the water cycle in the environment and how water flows from 
streams and rivers to the seas [28-30]. In this method, all of 
the data are considered raindrops. The most valuable data is 
associated with the sea, and good data are considered rivers. 
Besides, the remaining data are considered streams that flow 
to rivers and sea. When the distances of streams and rivers or 
rivers and sea become less than a given amount, it is rained, 
and new raindrops are generated [28-30]. In this paper, the 
water cycle algorithm is coded in MATLAB, and tuning is 
performed for the parameters of the algorithm. The number of 
raindrops, number of iterations, number of rivers and sea, and 
the evaporation condition constant are considered 500, 6000, 
8, and a random number fewer than 0.1 which is changed 
in every iteration. The algorithm is run 10 times, and the 
best solution is reported. The flow chart of the water cycle 
algorithm adjusted to solve this problem is displayed in Fig.3.

3.3. Regression
For evaluation of heuristics algorithms, the accuracy of 

the GA and WCA are compared with the classical regression 
models. Regressions are statistical tools that find the 
relationships between the inputs and output(s) variables. 
The structure of regression models should be defined in 
advance. Thus, these predetermined structures may reduce 
the accuracy of the model [31]. Linear regression (LR), 
fractional regression (FR), and partial fractional regression 
(PFR) are the most advantageous regressions which have 
proven useful for many engineering applications [50-54]. 
Hence, these regressions are utilized to achieve the aims 
of this study. Similar to GA and WCA models, the data are 
scaled between 0.1 and 0.9 to enhance the exactness and 
accuracy of the model. The structure of linear regression, 
fractional regression, and partial fractional regression used in 
this study are shown in Eqs. (8), (9), and (10), respectively. In 
this investigation, Microsoft Office Excel and MATLAB are 
applied to predict the compressive strength of fly ash concrete 
by classical regressions.
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Fig. 3. Flowchart of water cycle algorithms.
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where xi and zj represent the value of inputs and the 
amounts of fractional variables. ai, bj, and  are the amounts 
of constants achieved by models. Also, n and m are the 
numbers of input variables and the fractional variables in the 
order given.

4- Results and discussion
In this study, the prediction of compressive strength of 

fly ash concrete is investigated. The age of samples, their 
ingredients including cement, fly ash, water, superplasticizer, 
coarse aggregate, and fine aggregate, and five ratios including 
water to binder, fly ash to the binder, superplasticizer to the 
binder, fine aggregate to total aggregate, coarse aggregate to 
binder are considered as the input variables and compressive 
strength is the output of the model. The model is solved by 
the genetic algorithm and water cycle algorithm, and their 
outcomes are compared with linear regression, fractional 
regression, and partial fractional regression. 

Even though considering the age of the samples as the 
input variable may deteriorate the accuracy of the model, it 
should be scrutinized in predicting the compressive strength 
of fly ash concretes. Therefore, 239 data which are the 
results of compressive strength experimental test 3, 14, 28, 
56, and 100 days after making the samples are used in this 
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investigation. These data are randomly categorized into two 
groups, including training data and testing data. MAE is 
considered as the objective function, and it is tried to reduce 
the error of prediction models. After solving the models, they 
are compared with classical regressions based on performance 
indicators. Mean absolute error (MAE), mean square error 
(MSE), root mean square error (RMSE),  percentage of 
data which their error are fewer than 5 Mega-Pascal (PE5), 
coefficient of determination (R2), and correlation coefficient 
(R) are the performance indicators used to evaluate and to 
compare the models.

The genetic algorithm and water cycle algorithm are 
compared in the same condition. That is to say, the number 
of populations and the number of iterations are considered 
the same, they are run 10 times, and the best-achieved 
solutions are compared with each other. Drawing on results, 
3.12, and 3.01 are the best solutions introduced by GA 
and WCA, respectively. Hence, it can be comprehended 
that the performance of GA and WCA for training data is 
approximately the same. However, the performance of WCA 
is a bit (0.11 MPa) better than that of GA. 

The resulted equations of water cycle algorithm, genetic 
algorithm, linear regression, fractional regression, and partial 
fractional regression which predict the compressive strength 
of fly ash concrete trained by training data are displayed in 
Eqs. (11) to (15) in the order named.
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2 2
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where CE, FL, WA, SU, CO, FI, AG, WAB, FLB, SUB, 
FIT, COB, and fc’ are the scaled values of cement, fly ash, 
water, superplasticizer, coarse aggregate, fine aggregate, age, 
water to binder ratio, fly ash to binder ratio, superplasticizer 
to binder ratio, fine aggregate to total aggregate ratio, coarse 
aggregate to binder ratio, and compressive strength of fly 
ash concrete, respectively.

As can be perceived from Eqs. (11) and (12), the water 
cycle model does not include the scaled value of coarse 
aggregate to binder ratio. Moreover, the scaled value of the 
fine aggregate does not exist in the genetic algorithm model. 
These are because of the flexibility of the models. The 
heuristic algorithms can select between several alternatives, 
and it helps to find better answers. Nevertheless, the classical 
models can find the relation between input variables and 
output(s) variables by utilizing predetermined structures, and 
it may decrease the accuracy of these models.

Table 2 provides information about the accuracy of 
the models. As can be seen, data are sorted into training 
and testing data and the amounts of mean absolute error 
(MAE), mean square error (MSE), root mean square error 
(RMSE),  percentage of data which their error are fewer than 
5 Mega-Pascal (PE5), coefficient of determination (R2), and 
correlation coefficient (R) are calculated for them.

The mean absolute error of models is illustrated in Fig. 4. 
Regarding this figure and Table 2, the water cycle algorithm 
is the most reliable and trustful model followed by genetic 
algorithm, linear regression, partial-fractional regression, and 
fractional regression. The MAE of the water cycle algorithm 
is 3.01 and 2.90 for training and testing data respectively. In 
other words, the average error of this algorithm for predicting 
the compressive strength of fly ash concrete is less than 3 
MPa (2.90), which can be overlooked. In addition, the 
performance of the genetic algorithm can be acceptable, 
and its MAE for testing data is 3.44 MPa. Conversely, the 
average absolute error of all regression models is more than 
5.3 MPa for testing data they may not be allowable. Needless 
to say, fractional regression is the worst model, and its MAE 
for testing data is equal to 9.70 MPa. Thus, it is not logical 
to apply this model for the prediction of the compressive 
strength of concrete.

Fig.5 gives details about the root mean square error of the 
model for training and testing data. Whatever the amount of 
RMSE is closer to 0, it is comprehended that the accuracy of 
the model is better. Concerning Fig.5 and Table 2, the most 
reliable model is relevant to the water cycle algorithm with 
the RMSE of 3.76 and 3.88 for training and testing data in 
the order given. Furthermore, the next valuable model is the 
genetic algorithm, and its RMSE is equal to 4.29 and 5.01 
for training and testing data, respectively. In addition, linear 
regression and partial-fractional regression are the next 
authentic models, and their performance based on RMSE is 
approximately the same. The RMSE of linear regression and 
partial-fractional regression are nearly 5.4 and 6.7 for training 
and testing data in the order named. Concerning the results, 
fractional regression is the inaccurate model, and it may not 
be capable of finding the relation between the compressive 
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Table 2. The amounts of performance indicators of models for training and testing data.

Fig. 4. Mean absolute error of the models.

strength of fly ash concrete and its proportions. According 
to RMSE, the accuracy of the water cycle algorithm is much 
better than classical regressions.

The coefficient of determination of the models (R2) 
is the other performance indicator used in this study to 
compare the results of the various model. If the coefficient 

of determination of a model is greater than the others, it 
is concluded that it provides the best prediction model 
among all alternatives. The coefficient of determination 
of the models is indicated in Fig.6 and Table 2. As can 
be seen, the most amount of coefficient of determination 
is related to water cycle algorithm, followed by genetic 
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superplasticizer to binder ratio, fine aggregate to total aggregate ratio, coarse aggregate to binder ratio, and 
compressive strength of fly ash concrete, respectively. 

As can be perceived from Eqs. (11) and (12), the water cycle model does not include the scaled value of coarse 
aggregate to binder ratio. Moreover, the scaled value of the fine aggregate does not exist in the genetic algorithm 
model. These are because of the flexibility of the models. The heuristic algorithms can select between several 
alternatives, and it helps to find better answers. Nevertheless, the classical models can find the relation between input 
variables and output(s) variables by utilizing predetermined structures, and it may decrease the accuracy of these 
models. 

Table 2 provides information about the accuracy of the models. As can be seen, data are sorted into training and 
testing data and the amounts of mean absolute error (MAE), mean square error (MSE), root mean square error 
(RMSE),  percentage of data which their error are fewer than 5 Mega-Pascal (PE5), coefficient of determination (R2), 
and correlation coefficient (R) are calculated for them. 
 

Table 2. The amounts of performance indicators of models for training and testing data. 

Method 
 

Data 
 

MAE 
(MPa) 

PE5 
(%) 

MSE 
(MPa2) 

RMSE 
(MPa) 

R 
 

R2 

 

WCA 
Training data 3.01 83.5 14.11 3.76 0.96 0.92 

Testing data 2.90 79.49 15.03 3.88 0.94 0.89 

GA 
Training data 3.12 81.5 18.43 4.29 0.95 0.90 

Testing data 3.44 71.79 25.06 5.01 0.92 0.85 

Linear 
regression 

Training data 4.36 64 29.50 5.43 0.92 0.84 

Testing data 5.47 56.41 46.12 6.79 0.87 0.75 

Fractional 
regression 

Training data 7.90 39 94.54 9.72 0.70 0.49 

Testing data 9.70 25.64 141.91 11.91 0.28 0.08 

Partial-fractional 
regression 

Training data 4.34 63 28.76 5.36 0.92 0.84 

Testing data 5.37 56.41 44.96 6.70 0.87 0.75 
 

 
The mean absolute error of models is illustrated in Figure 4. Regarding this figure and Table 2, the water cycle 

algorithm is the most reliable and trustful model followed by genetic algorithm, linear regression, partial-fractional 
regression, and fractional regression. The MAE of the water cycle algorithm is 3.01 and 2.90 for training and testing 
data respectively. In other words, the average error of this algorithm for predicting the compressive strength of fly ash 
concrete is less than 3 MPa (2.90), which can be overlooked. In addition, the performance of the genetic algorithm 
can be acceptable, and its MAE for testing data is 3.44 MPa. Conversely, the average absolute error of all regression 
models is more than 5.3 MPa for testing data they may not be allowable. Needless to say, fractional regression is the 
worst model, and its MAE for testing data is equal to 9.70 MPa. Thus, it is not logical to apply this model for the 
prediction of the compressive strength of concrete. 
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Fig. 5. Root mean square error of the models.

Fig. 6. Coefficient of determination of the models.
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algorithm, linear regression, partial-fractional regression, 
and fractional regression, respectively and their values are 
equal to 0.92, 0.90, 0.84, 0.84, and 0.49 for training data 
and 0.89, 0.85, 0.75, 0.75, and 0.08 for testing data in the 

order given. Hence, the result of this part is in line with 
the other parts of this investigation, and the accuracy of 
the water cycle algorithm is considerably better than other 
models.
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Fig. 7. Error histogram of the models, (a): training data, (b): testing data.
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Figure 7. Error histogram of the models, (a): training data, (b): testing data. 
 

To analyze the effect of various amounts of fly ash on compressive strength, the average amount of materials used 
in samples are considered as the weights of materials in mixture proportion. Furthermore, the average amount of 
binder (355.8 kg/m3) is taken into account as the binder’s amount in mixture design. Therefore, by increasing the 
weight of fly ash, the weight of cement is reduced. Different amounts in the allowable range (between the minimum 
and maximum range in Table 1) are chosen as the amount of fly ash and the compressive strength in four different 
ages (14, 28, 56, and 90 days) are predicted. The water cycle algorithm is applied to estimate the compressive strength 
of fly ash concrete because it has the highest accuracy among all the models. The relation between the amount of fly 
ash and the compressive strength of fly ash concrete in different ages is shown in Figure 8. 
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The error histogram of the models for testing and training 
data is presented in Fig.7. A more detailed look at this figure 
reveals that 83.5% and 79.5% of the compressive strength 
values for training and testing data predicted by the water 
cycle algorithm have an error of less than 5 MPa. Moreover, 
the errors of all testing data estimated by the water cycle 
algorithm are less than 10 MPa. In contrast, other models are 
not competent to predict all the training data with an error of 
less than 10 MPa. Drawing on PE5, the water cycle algorithm 
is the most trustworthy model for predicting the compressive 

strength of fly ash concrete followed by genetic algorithm, 
linear regression, partial-fractional regression, and fractional 
regression with the PE5 of 83.5, 81.5, 64, 63, and 39 for 
training data and 79.5, 71.8, 56.4, 56.4, and 25.6 respectively. 
Likewise, the water cycle performs better than other models 
according to the percentage of data whose errors are more 
than 10 MPa. The genetic algorithm, partial-fractional 
regression, linear regression, fractional regression are the 
next fruitful model based on having the error of less than 10 
MPa and they include 7.7, 17.9, 20.5, and 41 percent testing 
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data which their error are more than 10 MPa. The result of 
PE5 and error histogram are consistent with the results of 
other performance indicators, and it is conceived that the 
performance of the water cycle algorithm is by far better than 
other models, especially classical regressions. Furthermore, 
the genetic algorithm is outweighed the common regression 
models.

To analyze the effect of various amounts of fly ash on 
compressive strength, the average amount of materials used in 
samples are considered as the weights of materials in mixture 
proportion. Furthermore, the average amount of binder 
(355.8 kg/m3) is taken into account as the binder’s amount 
in mixture design. Therefore, by increasing the weight of fly 
ash, the weight of cement is reduced. Different amounts in 
the allowable range (between the minimum and maximum 
range in Table 1) are chosen as the amount of fly ash and the 

compressive strength in four different ages (14, 28, 56, and 90 
days) are predicted. The water cycle algorithm is applied to 
estimate the compressive strength of fly ash concrete because 
it has the highest accuracy among all the models. The relation 
between the amount of fly ash and the compressive strength 
of fly ash concrete in different ages is shown in Fig.8.

Based on the results depicted in Fig.8, if the average 
amount of materials were considered as their weight in mixture 
proportioning, the maximum amount of compressive strength 
would be relevant to the mixtures whose amount of fly ash is 
less than or equal to 120 kg/m3. That is to say, using fly ash 
more than 35% of binder weight is not optimal, and it makes 
the compressive strength reduced. Nevertheless, according 
to ACI 318 [55], the minimum 28-day compressive strength 
of structural concretes is 2500 psi (17.23 MPa) for general 
elements and 3000 psi (20.68 MPa) for special moment 
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Fig. 8. The impacts of the amount of fly ash weight on compressive strength of concrete on the age of (a): 14, 
(b): 28, (c): 56, and (d): 90.
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Figure 8. The impacts of the amount of fly ash weight on compressive strength of concrete on the age of (a): 14, (b): 28, 
(c): 56, and (d): 90. 
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used in mixture design because their 28-days compressive strength of all of them is more than 3000 psi.  

Table 3 summarizes the recent works in concrete compressive strength prediction. According to this Table, the 
range of R for testing data varies from 0.73 to 0.98, with an average value of 0.88. Therefore, the coefficient of 
determination of the models presented in this study is more than 0.88, and it is acceptable. Furthermore, the mean 
absolute error and root mean square of WCA and GA are by far less than those of the other investigations. Hence, the 
accuracy of the model developed in this study is high, and the proposed models are trustable. 
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frames and special structural walls and all the amounts of 
fly ash in the allowable range can be used in mixture design 
because their 28-days compressive strength of all of them is 
more than 3000 psi. 

Table 3 summarizes the recent works in concrete 
compressive strength prediction. According to this Table, 
the range of R for testing data varies from 0.73 to 0.98, 

with an average value of 0.88. Therefore, the coefficient of 
determination of the models presented in this study is more 
than 0.88, and it is acceptable. Furthermore, the mean absolute 
error and root mean square of WCA and GA are by far less 
than those of the other investigations. Hence, the accuracy of 
the model developed in this study is high, and the proposed 
models are trustable.
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Table 3. Comparison of the obtained results with recent works.
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5- Summary and Conclusions
In this study, the impacts of fly ash concrete materials 

and the age of samples on their compressive strength 
are scrutinized, and a novel method for predicting the 
compressive strength of fly ash concrete is introduced. Water 
cycle algorithm and genetic algorithm are used to pursue the 
aims of this investigation, and their results are compared with 
the classical regression models, including linear regression, 
fractional regression, and partial-fractional regression. The 
obtained results can be summarized as follow: 
•	 Heuristic and meta-heuristic algorithms are competent 

to create complicated nonlinear equations with high 
accuracy to find the relation of inputs and output of this 
model. Nonetheless, classical methods like regressions 
may not be trustable because of their predetermined 
structures.

•	 The mean absolute errors of the water cycle algorithm 
and genetic algorithm are 3.01 and 3.12 MPa for training 
data and 2.90 and 3.44 MPa for testing data in the order 
given. These errors are acceptable and can be overlooked. 
Conversely, the mean absolute errors of linear regression, 
fractional regression, and partial-fractional regression are 
4.36, 7.90, and 4.34 for training data and 5.47, 9.70, and 
5.37 MPa for testing data, respectively. Therefore, the 
water cycle algorithm is the only algorithm whose mean 
absolute error of testing data is less than that of training 
data.

•	 The water cycle algorithm outweighs other models based 
on PE5. According to PE5, the most accurate model is 
the water cycle algorithm, followed by genetic algorithm, 
linear regression, partial-fractional regression, and 
fractional regression. Besides, the water cycle algorithm 
is the only algorithm whose error of prediction for all 
testing data is less than 10 MPa.

•	 The outcomes of the coefficient of determination criteria 
and root mean square error validate that the water cycle 
algorithm is the most accurate model, and it is consistent 
with the results of other performance indicators. 

•	 The influences of the age of samples can be taken into 
account in heuristic algorithm models, and the long-term 
features of concrete can be evaluated in advance. 

•	 The maximum amounts of compressive strength are 

related to the mixtures which the amount of fly ash is 
less than 35% of the weight of the binder. Increasing the 
amount of fly ash more than this definite level reduces the 
compressive strength of concrete considerably.
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