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ABSTRACT:  In recent years, a number of space structures have been destroyed or collapsed completely 
due to snow load, external wind load, sudden earthquake impacts and improper traditional design. Not 
considering uncertainties in materials and external loads can be the main reason in this regard. Therefore, 
effort has been made in the present study to examine the effects of reliability and sensitivity among 
random variables and performance functions on the failure probability of single-layer space domes. 
In order to determine the appropriate and efficient method for reliability analysis in space domes, 
the reliability analysis was carried out according to approximation (FORM, SORM) and simulation 
(Importance Sampling, Monte Carlo) methods. The modulus of elasticity, yield stress, external loads, 
node coordinates, and cross-section of members were considered as random variables to be used in two 
limit state functions (displacement and ultimate stress). Results of the FORM, SORM, MCS, and IS 
methods show that in space structures with many random variables, FORM yields good solutions, and 
sensitivity analyses of the random variables show that the results depend on the type of the limit state 
functions; a change in the limit state functions will also change the sensitivity. For instance, the values of 
the sensitivity of the cross-section random variable for the stress and displacement limit state functions 
are 61% and 8.6%, respectively.
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1. INTRODUCTION
Buildings such as industrial halls, exhibition centers, 

airport terminals, and shopping malls are large span structures 
that generally have flat or low-slope light weight steel roofs. 
Nowadays, domes are increasingly used compared to the other 
structural forms due to their beauty, appropriate behavior 
against external loads, low weight and cost-effectiveness. 
However, structural failures or even catastrophic collapses due 
to improper design, underestimated design loads, unexpected 
extreme loads, improper manufacturing, poor workmanship, 
and so on are reported worldwide [1–4] a reason for which 
is neglecting uncertainties in materials and external loads 
on the structure [5]. A proper structure design should first 
incorporate such uncertainties [6]. Although many papers 
have focused on the optimization, buckling characteristics, 
seismic behavior assessment and failure mechanisms of 
these structures, few studies have examined the sensitivity 
of the solution random variables and correlation among the 
responses of long-span space structures [7-8-9]. In recent 
years, some reliability aspects of space structures have been 
studied [10]. In the design of some engineering structures, 
some geometric and physical parameters are considered 
constant while most of them are not so and behave as a 
random variable. The sensitivity analysis is usually aimed to 
identify the parameters that affect the structures’ probabilistic 

analysis; those with negligible effects on the structure 
response can be assumed constant to reduce the calculations 
volume and time. Correlation among random variables and 
performance functions can lead to a profound understanding 
of the mechanical properties of space structures and the 
relationships among performance functions [6]. The present 
study aimed to evaluate the reliability and sensitivity analysis 
between random variables and performance functions of 
single-layer space domes. First, the reliability index was 
calculated using four reliability methods. The modulus of 
elasticity, yield stress, external loads, node coordinates, and 
cross-sectional area of members were considered as random 
variables. Two limit state functions, one based on displacement 
and other based on stress limitation were regarded in this 
research. Second, the sensitivity of performance functions 
was investigated to identify the impact of different types of 
random variables and the different positions of the members.

2. RELIABILITY
2.1. Limit state function

The limit state function indicates the boundary between 
the desirable and undesirable performance of the structure, 
represented by a mathematical function. Generally, this limit 
state is between the strength and load on the structure, with 
the following expression:
 (1)( ),g R S R S= −



N. Shabakhty et al., AUT J. Civil Eng., 4(3) (2020) 367-376, DOI:   10.22060/ajce.2019.16504.5594

368

where R is the structure strength and S is the external load. 
Function g divides the space into Rs (safe area) and Rf (rupture 
area) [11].
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 (2)

In the reliability context, failure does not necessarily 
mean the structure rupture; it may rather mean that certain 
constraints are achieved or passed through the structure. 
Accordingly, limit state functions in single-layer space domes 
are defined as follows.

2.2. Displacement limit state function 
The displacement limit state function is:
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where ( ) i Xδ  is the displacement of node i, n is total 
number of nodes in the structure, aδ  is the permissible 
displacement of node i (with limits δH = H/300 and δV = 
D/360 in the horizontal and vertical directions, respectively 
recommended by [12]), and D and H are the diameter and 
height of the space dome, respectively. 

2.3. The ultimate limit state function 
When the structure of the single-layer space domes is 

placed under the external load, the internal force, mainly 
a type of axial force, is created on its members. Therefore, 
when the axial stress on the structure members is higher than 
the yield stress or critical axial buckling stress, the failure of 
structure occurs and its limit state function is given by the 
following expressions.
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( )min ,a cr yσ σ σ=   

where σi is the stress in the ith member and σa is the 
allowable stress determined based on the AISC-ASD  Code 
[13]. The yield stress in tensile members is found as follows:

y yFσ =  (5)

The allowable compressive stress is found based on two 
possible buckling failure modes as follows:

A: Non-elastic buckling ( i cCλ < ):

2

21
2

i
cr y

c

F
C
λσ

 
= − × 
 

 (6)

B: Elastic buckling ( i cCλ ≥ ):
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where E is the modulus of elasticity, Fy is the steel yield 
stress, i

i
i

kL
r

λ =  is the member slenderness ratio, Li and ri are 
the length and radius of gyration of the ith member, respectively, 
Cc is the critical slenderness (for lean, intermediate and 
obese members), and ki is the ith member’s effective length 
coefficient (1 for truss members). According to AISC, the 
maximum slenderness ratio for members under tension and 
compression is limited to 300 and 200, respectively [13]. Since 
all coefficients in the reliability analyses equal 1, the failure 
probability (Pf) is estimated as follows:
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where fX(x) is the joint probability density function 
for all random variables. Pf is found by integrating fX(x) in 
the failure area g (X) ≤ 0; since this is a hard task requiring 
multiple integrations (and is sometimes impossible) in large 
practical problems, use should be made of approximate or 
simulation methods [14]. The structural reliability is an 
important indicator to evaluate the structural performance 
[15].  The reliability analysis are divided into two analytical 
and simulation method. The analytical methods are easy to 
use and their calculations have low cost in terms of time, while 
their accuracy is in doubt for some issues. The simulation 
methods have time-consuming calculations although they 
can be used for every structural model or limit state function. 

3. SIMULATION METHODS
Simulation is often used as an effective and accurate 

method to assess the structure reliability and compare 
different related methods. While other methods cannot 
estimate the reliability, simulation methods well estimate 
the failure probability of structures with complex limit state 
functions and high variables if the number of samples is large 
enough. In the Monte Carlo method, since the number of the 
generated samples is theoretically unlimited (N∞), Pf is found 
as follows [16]:
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where ( )iI X  is the failure index defined for each 
simulation as follows:
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To calculate Pf, some independent random samples (N 
in number) are generated from each random variable. If NH 
shows all the points lying in the failure zone, we will have:

H
f

NP
N

≅  (11)

According to this method, a large number of samples should 
be generated to achieve high accuracy, especially when the 
probability of failure is small. Therefore, the different methods 
of variance reduction are presented to reduce the high cost of 
computing in this method [16]. The IS (importance sampling 
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method) is an advanced MCS (Monte Carlo Method) used 
to estimate Pf and find its zones. To generate and simulate 
samples, use is made of a novel probability density function 
hV (V) as the importance sampling density function instead 
of the principal probability distribution function of variables. 
Therefore, the simulation results should be used as weight 
functions to estimate the importance density function. 
Accordingly, Pf is modified as follows:

( ) ( )
( ) ( )x

f V
VD

f V
P I V h V dx

h V
  =  
  

∫ ∫  (12)

where I(V) is an index function the value of which is 1 
for points in the failure zone; otherwise, it is 0. Hence, hV (V) 
is an appropriate importance density function. An unbiased 
estimate of Pf is as follows:
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where Vi (random sample) is generated using importance 
distribution function hV (Vi), and fx(Vi) is the variables’ 
principal probability distribution function [17].

4. ANALYTICAL APPROXIMATION RELIABILITY 
METHODS 

One of the most used first-order methods was presented 
in 1974 and its most important feature is the invariance of the 
reliability index for different shapes of a limit state function 
under the same mappings for random variables [18].  In this 
method, random variables are transferred from the design 
space to the normal standard space with a zero mean and 
variable standard deviations, and the reliability index is 
obtained as the minimum geometric distance between the 
origin and the transferred limit state function. Hasofer-Lind 
[19] defined the design point as one on the limit state function 
(g = 0) with the least distance from the origin in the normal 
standard space; it is also known as the maximum failure 
probability point (MPP) (Fig. 1). 

The distance between this point and the origin shows the 
reliability index and provides the possibility of estimating 
Pf using Pf = Φ (-β). Therefore, calculating the design point 
requires the use of an optimization algorithm as follows:  
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where Ui is the value of the ith random variable in the 
standard normal space and n is the number of random 
variables. The general optimization method or point search 
algorithm with the maximum Pf presented by Hasofer-Lind 
& Rackwitz-Fessler (HLRF) [19] is used to solve Eq. (14). 
Using the first-order algorithm is usually an appropriate 
method for linear limit state functions located near the 
design point. Since first-order reliability algorithms do 
not yield accurate safety index estimations when the limit 
state has great curvature, use is made of second-order 
reliability methods where a second curved surface is used 
to approximate the limit state function at the design point. 
When a curved surface curvature conforms to that of 
the limit state function, Pf in the 2nd order approximation 
method is found as follows:
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where k is the curvature of the limit state function at the 
maximum failure probability point (MPP) [20].

5. SENSITIVITY ANALYSIS 
5.1. Sensitivity analysis with respect to the mean and standard 
deviation of random variables

Since numerous random variables in the reliability analyses 
of space structure problems increase the computational costs 
and time, the sensitivity analysis is a solution to identify 
important random variables that are effective in reliability 
analyses; other less important ones can be considered as 
deterministic variables. Hence, the sensitivity analysis can 
be used to estimate a structure safety with low cost. In the 
reliability method, Pf is related to the safety index and is found 
as follows: 

( )1fP β= −Φ  (16)

where Pf is the failure probability and Φ (β) is the normal 
cumulative distribution function. The reliability sensitivity 
related to random variables’ mean and standard deviation is 
thus found as follows [21]:
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Accordingly, the sensitivity analysis is aimed to identify 
the random variables with small effects on the reliability 
index to reduce the calculations. If a problem is simplified 
by ignoring the uncertainty of xi, the percent error obtained 
from the reliability index estimation is found as follows [22]:

( )
1

2 2100% 1 1 100%medain distribution
i
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error β β α
β

−   −
= × = − − ×  

  
 (18)

where βDistribution and βMedain are the problem reliability 
indices found by assuming xi to be once random and once 
deterministic at the mean point, respectively.

Fig. 1. Hasofer-Lind reliability index [19] 

 

 

 

 

 

 

 

 

 

  

Fig. 1. Hasofer-Lind reliability index [19]
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5.2. Sensitivity analysis of the random variables
In this method, the sensitivity of the reliability index is 

calculated by creating a small turmoil in random variables. In 
fact, first-order estimation methods present the importance 
factor (αi

2) as a derivative of a linearized limit state function. 
These importance factors are actually the same as the 
conductor cosine vector in the search process which should 
satisfy the following equation:

2 2 2
1 2 1iα α α+ + + =  (19)

( )2 2 2
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Since αi physically means the relative contribution of each 
random variable to Pf, the one with the highest sensitivity 
coefficient in the above equation has the greatest effect on the 
reliability index. In fact, αi indicates the sensitivity coefficient 
of the reliability index at the point with the highest Pf resulted 
from defining the reliability index (β) as the distance of the 
limit state function from the MPP (g (U) = 0) to the origin in 
the normal standard space [23].

6. NUMERICAL RESULTS
6.1.  A 24-member space dome

A 24-member single-layer space dome with 866 cm span 
and 82.16 cm height (Fig. 2) has been used for the reliability 
evaluation and sensitivity analyses [24]. Fig. 2 shows the 
geometric characteristics of the structure, number of nodes, 
number of members, concentrated loads and supporting 
conditions. The members of the structure are classified into 
three groups and the modulus of elasticity is considered 

221000KN
cm  and yield stress is regarded 221KN

cm . This dome 
is carrying concentrated loads at all nodes except at supports, 
node 1 (-40KN), and nodes 2-7 (-20KN). Displacement is 
1.40 cm in all directions and elasticity modulus, yield stress, 
applied loads, coordinates of nodes 1-7 in all directions, 
and members’ section areas are random variables. Table 1 
shows the variables’ statistical characteristics including the 
probability distribution, mean and standard deviation.

6.1.1. Comparing the reliability index determination methods 
Since a challenge in determining the reliability in space 

structures is the high number of random variables which 
increase the computational time, this section is aimed 
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Fig. 2.  The geometry and loading of the 24-member space dome [24] 

Table 1. random variables of the 24-member diamatic space dome 

R. V. Description Distribution Mean 
Coefficient of 

variation 
𝑨𝑨𝟏𝟏 (i=1~6) Cross-sectional area Lognormal 19 cm2 5% 
𝑨𝑨𝟐𝟐(i=7~12) Cross-sectional area Lognormal 13 cm2 5% 

𝑨𝑨𝟑𝟑(i=13~24) Cross-sectional area Lognormal 14 cm2 5% 
𝑬𝑬(i=1~24)  modulus Lognormal 21000 𝑘𝑘𝑘𝑘 𝑐𝑐𝑐𝑐2⁄  5% 

𝑭𝑭𝒚𝒚 Yield strength Lognormal 21 𝑘𝑘𝑘𝑘 𝑐𝑐𝑐𝑐2⁄  5% 
𝑷𝑷 Concentrated loads Lognormal 𝑃𝑃2 = 20 kN 10% 
   𝑃𝑃1 = 40 kN  

𝒙𝒙(𝒊𝒊) . 𝒚𝒚(𝒊𝒊). 𝒛𝒛(𝒊𝒊)  
(i=1~7) 

Nodal coordinates in the x, y 
and z directions 

normal As is 1 cm 

 

  

Table 1. Random variables of the 24-member diamatic space dome

Fig. 2.  The geometry and loading of the 24-member space dome [24]



371

N. Shabakhty et al., AUT J. Civil Eng., 4(3) (2020) 367-376, DOI:   10.22060/ajce.2019.16504.5594

to select from among the FORM (first-order reliability 
method), SORM (second-order reliability method), ISM 
(importance sampling method), and MCS (Monte Carlo 
Sampling) the one which is the fastest and the most accurate 
in reliability analysis. To specify the failure mode, use should 
be made of such limit state functions as the fatigue, fracture, 
displacement, and ultimate limit state function; the one used 
in this research for reliability analysis is the displacement 
function because the space structure vertex node has the most 
varying displacement:

( ) ( )3
1 1

a

X
g X

δ
δ

= −                                                               (21)

where ( )3   Xδ is node 1 displacement in direction z and 
aδ  = 1.4 cm is maximum allowable  displacement of the 

24-member space structure. Table 2 indicates the results. 
All reliability computations are implemented in a computer 
which configuration is as follows:

the Intel (R) Core i5 CPU M480 @2.67GHz. 
As shown, FORM is the fastest among the proposed 

methods because it only takes 0.36 seconds to calculate the 
reliability index for this structure; however, its error is 3.86% 
compared to the MCS method. Next is SORM yields better 
results than FORM because it uses a parabolic surface to 
approximate the limit state function; however, its calculation 
time increases significantly with an increase in the number 
of random variables because it requires a second order 
derivative. The ISM error is considerably lower than those of 

the FORM and SORM although it requires much time (943 
sec) to calculate the reliability index. Finally, the MCS method 
takes 3489 sec (more than all other methods) to determine 
the reliability index. It can be concluded, in general, that 
since simulation methods are quite time-consuming and are 
not cost-effective in space structures with a large number of 
random variables, it is preferable to use the FORM and SORM 
approximation methods to determine the reliability index. A 
comparison of the two methods can reveal that their reliability 
indexes are close and time consumed in FORM is less than 
SORM, FORM can be used to continue the work.

6.1. 2. Investigating the effect of limit state functions on the 
reliability index evaluation

Effort has been made in the present study to investigate the 
effects of different limit state functions on the reliability index 
of structural members. If the displacement limit state function 
(for the vertex node) and ultimate limit state functions for 
members of groups one, two, and three of the structure are g1, 
g2, g3, and g4, respectively, the reliability analyses results of the 
24-member truss (Fig. 3) show that their reliability indices are 
1.48, 4.59, 7.37, and 10.18, respectively. Since g1 has the lowest 
reliability index, it is the critical limit state function because 
the failure probability is high. Therefore, displacement limit 
state function is an important function for the 24-member 
structure and there is no need to consider other functions.

6.1. 3. Sensitivity analysis of the 24-member dome
Since random variables involved in the reliability 

Table 2.  Comparison of several methods for determining reliability index 

MCS(1000000) ISM SORM FORM  

𝟏𝟏. 𝟒𝟒𝟒𝟒𝟒𝟒𝟏𝟏 
𝟑𝟑𝟒𝟒𝟑𝟑𝟗𝟗 

---- 

1.4376 
943 

0.81% 

1.4436 
0.57 
2. % 

1.4811 
0.36 

3.86% 

β 
Time (s) 

Error 

 

  

Fig. 3. Effects of limit state functions on the reliability 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 2.  Comparison of several methods for determining reliability index

Fig. 3. Effects of limit state functions on the reliability
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evaluation of large-scale space structures are numerous, 
computations are time-consuming and costly. To reduce 
time and increase accuracy, the structure usually undergoes 
some sensitivity analyses prior to reliability analyses. In the 
sensitivity analysis, the variables with a very low impact on 
the reliability of the structure are considered as a deterministic 
parameter, leading to a reduction in the computational cost. 
First, we will examine the reliability sensitivity to the random 
variables (Fig. 4) and then discuss it based on their mean 
and standard deviation. Members’ section areas, modulus of 
elasticity, yield stress, external centralized loads and nodes’ 
coordinates in the x, y, and z analysis, the highest sensitivity 
will be related to loads, node   1 variations in the vertical 
direction,

modulus of elasticity, and members’ section areas in group 
one, respectively. Since the maximum displacement occurs in 
node   1 (vertex), g1 is more sensitive to node   1 and its connected 
members. If g2 is used, the reliability will be most sensitive to 
loads and section areas of members of group 3 because they 
have larger lengths, smaller section areas, larger stresses, and 
more tendency to buckling than other members; its sensitivity 

to yield stress and modulus of elasticity in group 3 members 
stands next. The reliability index sensitivity is examined in 
relation to the variables’ mean and standard deviation (Table 
3). Percent error obtained from the reliability index estimation 
is calculated by Eq. (18) in Section 5.1 (Table 3). Results 
indicate that among the 27 random variables, the highest 
sensitivity is associated with loads and vertical coordinate 
variations of node 1 (dome vertex); if these are considered 
as deterministic variables, the reliability estimations will be 
quite erroneous (about 47% and 23%, respectively), and if 
other variables are deterministic, the error will be negligible. 

6.1. 4. The effect of changing the coefficient of variation on the 
reliability index

Although most of the previous studies have assumed the 
structure node coordinates to be constant parameters, since 
members in space structures are numerous, variations in the 
coordinates of the member-connected nodes are quite possible 
during construction/installation and should be considered in 
the reliability analyses. The present study has considered the 
nodes coordinates as random variables and has examined the 
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Fig. 4.  Sensitivity coefficient of reliability relative to random variables 
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Table 3.  sensitivity analysis relative to the mean and standard deviation 

 
 ∂β

∂σx
 

∂β
∂μx

 R. V. 

𝟏𝟏. 𝟓𝟓𝟓𝟓 
𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎 
𝟎𝟎. 𝟓𝟓𝟑𝟑 
𝟏𝟏. 𝟓𝟓𝟓𝟓 

𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎 
𝟎𝟎. 𝟓𝟓𝟑𝟑 
𝟎𝟎𝟑𝟑. 𝟎𝟎 
𝟎𝟎. 𝟎𝟎𝟎𝟎 
𝟎𝟎. 𝟎𝟎𝟎𝟎 
𝟎𝟎𝟓𝟓. 𝟎𝟎 
𝟎𝟎. 𝟎𝟎𝟏𝟏 
𝟎𝟎. 𝟎𝟎𝟎𝟎 
𝟎𝟎. 𝟎𝟎𝟒𝟒 

−4.74 × 10−2 
−9.55 × 10−4 
−1.57 × 10−2 
−4.28 × 10−5 
−5.91 × 10−7 
−1.05 × 10−5 
−2.59 × 10−1 
−1.88 × 10−9 

0.00 
−5.08 × 10−1 
−4.97 × 10−5 
−1.49 × 10−4 
−1.43 × 10−2 

1.83 × 10−1 
3.15 × 10−2 
1.23 × 10−1 
1.66 × 10−4 
1.90 × 10−5 
8.23 × 10−5 
2.42 × 10−1 
3.6 × 10−5 

3.08 × 10−10 
5.86 × 10−1 

−5.79 × 10−3 
−1.01 × 10−2 
−9.82 × 10−2 

A1  
A2  
A3  
E1  
E2  
E3  
P 

X(1) 
Y(1) 
Z(1) 
X(2) 
Y(2) 
Z(2) 

Table 3. Sensitivity analysis relative to the mean and standard deviation
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variation coefficient change effects of important structural 
variables on the reliability index of space structures (Fig. 2). 
Initially, by assuming the load and node 1 coordinates in the 
vertical direction as deterministic, the structure reliability 
index was found to be 4.09. Then, the

load was taken equal to the mean (assuming the standard 
deviation to be zero) and node 1 coordinate variations 
coefficient in the vertical direction was increased from 1 to 
10% (same was done in the opposite direction). As shown in 
Fig. 5, an increase in this coefficient decreases the structure 
reliability index significantly and increases its Pf. As this 
coefficient reaches 10%, the reliability index becomes nearly 
0.31. Therefore, a space structure’s construction/installation 
requires more accuracy to minimize the node coordinates’ 
standard deviation to reduce Pf.

6.2. A 156- member space dome
In this example, a 156-member single-layer space dome 

with 20 m span and 8 m height (Fig. 6) is used
  for reliability evaluation and sensitivity analysis. The
 domes have been designed under 3 different load combinations
 as follows: The equipment load, which is concentrated and
 usually acts on the structure vertex vertically, is 10 kN  and
 the dead load, 0.20 2 /kN m  including the weights of the

members, joints, structure cover, and snow, is 0.83 2 /kN m
 . The elasticity modulus, yield stress, dead and snow loads,
 nodes’ coordinates in the Z-direction, and members’ cross
 sections are considered as random variables. The variables’
 statistical specifications (probability distribution, mean, and
 standard deviation) are provided in Table (4).  The structure
 consists of 61 nodes and 156 members, such that structural
 members are classified into four groups, and the tensile and
 compressive stress limitations of members are calculated in
 accordance with ASD-AISC regulations, in this example, for
 reliability analysis, the displacement limit state function is
 used for the head node of the space structure. The maximum

allowed displacement of nodes in all directions is 25 mm.
According to the results given in Table (5) It can be 

concluded, in general, that in space structures with numerous 
random variables, simulation methods are not cost-effective 
because they are quite time Consuming. Therefore, FORM 
and SORM approximation methods are preferable to find 
the reliability index. SORM yields better results than FORM 
because it uses a parabolic surface to approximate the limit state 
function; however, its calculation time increases significantly 
with an increase in the number of random variables because 
it requires a second order derivative. A comparison of the two 
methods can reveal that their reliability indexes are close and 
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FORM can be used to continue the work.
This section investigates the effects of the limit state 

functions of the nodes’ displacement and members’ stress 
on the reliability of the 156-member space dome. As shown 
in Fig. (6), members are of four groups with a known stress 
limit state function: g1 (displacement limit state function in 
the vertex node), g2 (stress limit state function in group 1 
members), g3 (stress limit state function in group 2 members), 
g4 (stress limit state function in group 3 members), and g5 
(stress limit state function in group 4 members). Considering 
the mentioned five limit state functions, the reliability index 
for the 156-member space dome is as follows:

( ) ( )1 2 3 4 5min , , , , 6.048,5.175,12.240,4.080,15.352 4.080β β β β β β= = =
    

(22)

It can be concluded, therefore, that the critical function 
for this structure is g4 (stress limit state function in group 3 
members) because its failure probability is more (its reliability 

 
Table 4. Statistical parameters of random variables 

R. V. Description Distribution mean COV 

Pd(kN/m2) Dead load Gauss 0.20 5% 
Ps(kN/m2) Snow load Gauss 0.83 30% 
E(kN/cm2) Young s modulus Lognormal 2.059e4 5% 

Fy(kN/cm2) Yield strength Lognormal 23.536 5% 

A1(cm2) Cross-sectional area Lognormal 9.50 5% 
A2(cm2) Cross-sectional area Lognormal 6 5% 
A3(cm2) Cross-sectional area Lognormal 8 5% 
A4(cm2) Cross-sectional area Lognormal 5.5 5% 

Zi(cm) 
Nodal coordinates in z 

directions 
normal --- 3cm 

 

 

  

is less) than other functions. The sensitivity analyses results of 
g1 and g4 relative to such random variables as the members’ 
cross sections, elasticity modulus, yield stress, snow load, dead 
load, and nodes’ coordinates in the vertical direction for the 
156-member dome are provided in Table 6. Since the applied 
load and the structure shape are symmetrical, the sensitivity 
coefficient is equal for all nodes in a ring; hence, one node is 
selected from each ring to solve the space shortage problem. 
Z1 is node 1 (vertex node), Z2 is the node in ring 1 of the 
dome, Z7 is the node in ring 2, and Z19 is the node in ring 3. 
Results in Fig. 7 show that g1 (defined in node 1) is the most 
sensitive to random changes of node 1 coordinates (Z1) in 
the vertical direction, and then to the changes in the vertical 
coordinates of the nodes in ring 2 (Z2), snow load, cross 
section, and elasticity modulus of groups 1 and 3 members. 
It can be concluded, therefore, that g1 is more sensitive 
to physical and geometric parameters in groups 1 and 3 

 Table 5. Reliability indexes, time consuming and error of several reliability 
methods 

MCS(10e6) IS SORM FORM 
 

5.950 
15425 

..... 

5.991 
1285 

0.69% 

6.01 
28 

1.06% 

6.048 
12 

1.65% 

β 
Time (s) 

Error 

Table 4. Statistical parameters of random variables
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members. In the sensitivity analysis, if use is made of g4, the 
highest sensitivity would be to the snow load and to the cross-
sections of group 1 and 3 members. Since the latter are longer 
than others, their tendency towards buckling is more; hence, 
the dome sensitivity to cross section is more and the reliability 
can be increased with an increase in the cross section.  

7. CONCLUSIONS
Effort was made in the present research to study the 

effects of random variables and performance functions on 
the reliability, sensitivity and correlation, and the reliability 
index of a 24-member space dome was found using the 
FORM, SORM, MCS, and ISM. The random variables were 
the structure physical and geometric characteristics and two 
limit state functions (displacement and stress) were used for 
the analyses. Results are as follows:

1- In general, that in space structures with numerous 
random variables, simulation methods are not cost-effective 
because they are quite time consuming. Therefore, FORM 
and SORM approximation methods are preferable to find 
the reliability index. SORM yields better results than FORM 
because it uses a parabolic surface to approximate the limit state 
function; however, its calculation time increases significantly 
with an increase in the number of random variables because 
it requires a second order derivative. A comparison of the two 
methods can reveal that their reliability indexes are close and 
FORM can be used to continue the work.

2- With the displacement limit state function, the 
highest sensitivity belonged to the physical and geometric 
characteristics (first to the load and coordinate variations of 
node 1 (vertex) in the vertical direction and then to the cross-
section and elasticity modulus of group 1 members). An 
increase in the parameter uncertainty reduced the reliability 
and increased the Pf.

3- With the ultimate limit state function, the highest 
sensitivity belonged to such random variables as the load, 
cross-section of group 3 members, yield stress of group 3 
members, and coordinate variations of node 1 in the vertical 
direction, respectively. The reliability increased with a 
decrease in the standard deviation of these variables and with 
an increase in the cross-section and yield stress of group 3 
members.

4- Space domes are quite sensitive to node coordinates 
variations; an increase in the vertical direction will reduce 
their reliability nonlinearly. As the displacement limit state 
function was used in the reliability analyses, the nodes’ 
coordinate variations were the second most important factor 
after the load and the structure was most sensitive to such 
variations.

5- A change in the height-to-span ratio changed the 
performance function as well; for 24-member domes the 
displacement performance function is effective and 156- 
member domes the stress performance function is critical. 
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