[1]M. Moeinaddini, A.E. Sari, A.R. Bakhtiari, A.Y.-C. Chan, S.M. Taghavi, D. Connell, et al., Sources and Health Risk of Organic Compounds in Respirable Particles in Tehran, Iran, Polycycl. Aromat. Compd. 34 (2014) 469–492.
[2]M.J. Mohammadi-Zadeh, A. Karbassi, N. Bidhendi, M. Abbaspour, A. Padash, An Analysis of Air Pollutants Emission Coefficient in the Transport Sector of Tehran, Open J. Ecol. 7 (2017) 309–323.
[3]Y. Feng, W. Zhang, D. Sun, L. Zhang, Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and support vector machine data classification, Atmos. Environ. 45 (2011) 1979–1985.
[4]M. Boznar, M. Lesjak, P. Mlakar, A neural network-based method for short-term predictions of ambient SO2 concentrations in highly polluted industrial areas of complex terrain, Atmos. Environ. Part B. Urban Atmos. 27 (1993) 221–230.
[5]A. Chakraborty, Rohit; Saha, Upal; Singh, A. K.; Maitra, Association of atmospheric pollution and instability indices: A detailed investigation over an Indian urban metropolis, Atmos. Res. 196 (2017) 83–96.
[6]S. Golbaz, M. Farzadkia, M. Kermani, Determination of Tehran air quality with emphasis on air quality index ( AQI ); 2008-2009, Iran Occup. Heal. 6 (2010) 62–68.
[7]M.G. Lawrence, The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications, Bull. Am. Meteorol. Soc. 86 (2005) 225–233.
[8]R.C. Miller, Notes on Analysis and Severe Storm Forecasting Procedures of the Air Force Global Weather Centre, (1972) 184.
[9] forecast hourly O3 and NO2 levels in the Bilbao area, Environ. Model. Softw. 21 (2006) 430–446.
[10]W.C. Wang, K.W. Chau, C.T. Cheng, L. Qiu, A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series, J. Hydrol. 374 (2009) 294–306.
[11]M.T. Hagan, M.B. Menhaj, Training feed forward networks with the Marquardt algorithm, IEEE Trans. Neural Networks. 5 (1994) 989–993.
[12]K.P. Moustris, I.C. Ziomas, A.G. Paliatsos, 3-day-ahead forecasting of regional pollution index for the pollutants NO2, CO, SO2, and O3 using artificial neural networks in Athens, Greece, Water. Air. Soil Pollut. 209 (2010) 29–43.
[13]S.A. Abdul-Wahab, W.S. Bouhamra, Diurnal Variations of Air Pollution From Motor Vehicles in Residential Area, Int. J. Environ. Stud. 61 (2004) 73–98.
[14]W. Chen, H. Tang, H. Zhao, Diurnal, weekly and monthly spatial variations of air pollutants and air quality of Beijing, Atmos. Environ. 119 (2015) 21–34.
[15]P.W. Summers, The seasonal, weekly, and daily cycles of atmospheric smoke content in central Montreal, J. Air Pollut. Control Assoc. 16 (1966) 432–438.
[16]A.B. Safavi SY, Study of effective geographical factors the air pollution in Tehran city, Geogr Res J. 58 (2006) 99–112.
[17]A. Afzali, M. Rashid, B. Sabariah, M. Ramli, PM10 pollution: Its prediction and meteorological influence in PasirGudang, Johor, in: IOP Conf. Ser. Earth Environ. Sci., 2014: p. 012100.
[18]H.K. Elminir, Dependence of urban air pollutants on meteorology, Sci. Total Environ. 350 (2005) 225–237.
[19]G. Latini, R.C. Grifoni, G. Passerini, Influence of meteorological parameters on urban and suburban air pollution, Adv. Air Pollut. 11 (2002) 1–10.
[20]I.G. McKendry, Evaluation of Artificial Neural Networks for Fine Particulate Pollution (PM10 and PM2.5) Forecasting, J. Air Waste Manage. Assoc. 52 (2002) 1096–1101.
[21]C. Dueas, M.C. Fernandez, S. Caete, J. Carretero, E. Liger, Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast, Sci. Total Environ. 299 (2002) 97–113.
[22]M.. Grundström, H.W. Linderholm, J.. Klingberg, H. Pleijel, Urban NO2 and NO pollution in relation to the North Atlantic Oscillation NAO, Atmos. Environ. 45 (2011) 883–888.
[23]J.L. Pearce, J. Beringer, N. Nicholls, R.J. Hyndman, N.J. Tapper, Quantifying the influence of local meteorology on air quality using generalized additive models, Atmos. Environ. 45 (2011) 1328–1336.
[24]A.M. Jones, R.M. Harrison, J. Baker, The wind speed dependence of the concentrations of airborne particulate matter and NOx, Atmos. Environ. 44 (2010) 1682–1690.
[25]P. Perez, J. Reyes, Prediction of maximum of 24-h average of PM10 concentrations 30 h in advance in Santiago, Chile, Atmos. Environ. 36 (2002) 4555–4561.
[26]T. Y. Pai, H. H.H. M. Lo, T. J. Wan, L. Chen, P. S. Hung, H. H.H. M. Lo, et al., Predicting air pollutant emissions from a medical incinerator using grey model and neural network, Appl. Math. Model. 39 (2015) 1513–1525.
[27]D. Chen, T. Xu, Y. Li, Y. Zhou, J. Lang, X. Liu, et al., A hybrid approach to forecast air quality during high-PM concentration pollution period, Aerosol Air Qual. Res. 15 (2015) 1325–1337.
[28]N. Haizum, A. Rahman, M. Hisyam, M. Talib, Forecasting of Air Pollution Index with Artificial Neural Network, J. Teknol. Sciences Eng. 63 (2013) 59–64.
[29]S. Nigam, R. Nigam, S. Kapoor, Forecasting Carbon Monoxide Concentration Using Artificial Neural Network Modeling, IJCA Proc. Int. Conf. Curr. Trends Adv. Comput. ICCTAC 2013. ICCTAC (2013) 35–40.
[30]P. Wang, Y. Liu, Z. Qin, G. Zhang, A novel hybrid forecasting model for PM10 and SO2 daily concentrations, Sci. Total Environ. 505 (2015) 1202–1212.
[31]M. Shakerkhatibi, N. Mohammadi, K.Z. Benis, A.B. Sarand, Using ANN and EPR models to predict carbon monoxide concentrations in urban area of Tabriz, 2 (2015) 117–122.