Cadmium Removal from aqueous solution by magnetized and polydopamine surface functionalized single-walled carbon nanotubes

Document Type : Research Article

Authors

1 Environmental Sciences Department, Hakim Sabzevari University, Sabzevar, Iran

2 Assistant Professor, Environmental Sciences Department, Hakim Sabzevari University, Sabzevar, Iran

3 Associated professor, Department of Chemistry, Payame Noor University, Tehran, Iran

Abstract

Pollution of water by heavy metals such as cadmium is becoming a serious ecological and public health hazard due to their toxic effects even at very low concentrations. Thus, the removal of heavy metals from wastewater is very important for controlling environmental pollution. The purpose of this study was removal of cadmium from aqueous solution by polydopamine surface functionalized and magnetized single-walled carbon nanotubes (SWCNTs/Fe3 O4 @PDA). In present study, the effects of experimental parameters such as adsorbent dosage, initial metal ion concentration and pH of solution on adsorption Cd (II) in batch system were fully studied. Also, to characterize the adsorbent, SEM and FT[1]IR analyses were utilized. The results showed that with increasing adsorbent dose and pH the adsorption percentage of cadmium increased and the optimum pH for cadmium removal was determined as pH=7. The results of fitting the data to the isotherm models showed that the Langmuir (R2 =0.99), Freundlich (R2 =0.97), Temkin (R2 =0.97) and Dubinin-Radushkevich (R2 =0.96) models logically described the data. The maximum adsorption capacity (qm) was obtained by Langmuir model as 186.48 mg/g which indicates a good absorption capacity of this adsorbent. The obtained experimental adsorption capacity (qe exp.) 120.72 mg/g was close to qe2 obtained by pseudo-second-order (PSO) kinetic model (121.95 mg/g). Therefore, it can be concluded that SWCNTs/Fe3 O4 @PDA adsorbent can be used as a new adsorbent in optimum conditions for removal of cadmium ions from aqueous solutions.

Keywords

Main Subjects


[1] G. Zeng, X. Li, J. Huang, C. Zhang, C. Zhou, J. Niu, Micellar-enhanced ultrafiltration of cadmium and methylene blue in synthetic wastewater using SDS, J. Hazard. Mater. 185 (2011) 1304–1310. doi:10.1016/j. jhazmat.2010.10.046.
[2] J. Deng, X. Zhang, G. Zeng, J. Gong, Q. Niu, J. Liang, Simultaneous removal of Cd ( II ) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent, Chem. Eng. J. 226 (2013) 189–200. doi:10.1016/j.cej.2013.04.045.
[3] T. Lebeau, D. Bagot, K. Jezequel, B. Fabre, Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium: effects of Cd, pH and techniques of culture, Sci. Total Environ. 291 (2002) 73–83.
[4] M. Iqbal, A. Saeed, S.I. Zafar, Hybrid biosorbent: an innovative matrix to enhance the biosorption of Cd (II) from aqueous solution, J. Hazard. Mater. 148 (2007) 47–55.
[5] Ihsanullah, A. Abbas, A.M. Al-Amer, T. Laoui, M.J. Al-Marri, M.S. Nasser, et al., Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications, Sep. Purif. Technol. 157 (2016) 141–161. doi:10.1016/j.seppur.2015.11.039.
[6] H. Qiu, L. Lv, B. Pan, Q. Zhang, W. Zhang, Q. Zhang, Critical review in adsorption kinetic models, J. Zhejiang Univ. Sci. A. 10 (2009) 716–724. doi:10.1631/jzus.A0820524.
[7] T. Liu, Z.-L. Wang, L. Zhao, X. Yang, Enhanced chitosan/Fe 0-nanoparticles beads for hexavalent chromium removal from wastewater, Chem. Eng. J. 189 (2012) 196–202.
[8] V.K. Gupta, S. Agarwal, T.A. Saleh, Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes, Water Res. 45 (2011) 2207–2212. doi:10.1016/j. watres.2011.01.012.
[9] H. Liu, L. Chang, W. Liu, Z. Xiong, Y. Zhao, J. Zhang, Advances in mercury removal from coal-fired flue gas by mineral adsorbents, Chem. Eng. J. 379 (2020) 122263. doi:https://doi.org/10.1016/j.cej.2019.122263.
[10]Y. He, X. Wang, K. Wang, L. Wang, A triarylamine-based fluorescent covalent organic framework for efficient detection and removal of Mercury(II) ion, Dye. Pigment. 173 (2020) 107880. doi:https://doi. org/10.1016/j.dyepig.2019.107880.
[11]H. Liu, X. Xie, H. Chen, S. Yang, C. Liu, Z. Liu, et al., SO2 promoted ultrafine nano-sulfur dispersion for efficient and stable removal of gaseous elemental mercury, Fuel. 261 (2020) 116367. doi:https://doi. org/10.1016/j.fuel.2019.116367.
[12]Z. Zhang, K. Xia, Z. Pan, C. Yang, X. Wang, G. Zhang, et al., Removal of mercury by magnetic nanomaterial with bifunctional groups and core-shell structure: Synthesis, characterization and optimization of adsorption parameters, Appl. Surf. Sci. 500 (2020) 143970. doi:https:// doi.org/10.1016/j.apsusc.2019.143970.
[13]A. Afkhami, T. Madrakian, A. Amini, Z. Karimi, Effect of the impregnation of carbon cloth with ethylenediaminetetraacetic acid on its adsorption capacity for the adsorption of several metal ions, J. Hazard. Mater. 150 (2008) 408–412.
[14] S.S. Ghasemi, M. Hadavifar, B. Maleki, E. Mohammadnia, Adsorption of mercury ions from synthetic aqueous solution using polydopamine decorated SWCNTs, J. Water Process Eng. 32 (2019) 100965. doi:https:// doi.org/10.1016/j.jwpe.2019.100965.
[15] S.H. SHESHMANI, F.M. ARAB, R. AMINI, IRON (III) HYDROXIDE/ GRAPHENE OXIDE NANO COMPOSITE AND INVESTIGATION OF LEAD ADSORPTION, J. Appl. Res. Chem. 6 (2013) 17–23.
[16]J. Liebscher, R. Mrówczyński, H.A. Scheidt, C. Filip, N.D. Hădade, R. Turcu, et al., Structure of polydopamine: a never-ending story?, Langmuir. 29 (2013) 10539–10548.
[17]Z. Zhou, R. Liu, Fe 3 O 4@ polydopamine and derived Fe 3 O 4@ carbon core–shell nanoparticles: Comparison in adsorption for cationic and anionic dyes, Colloids Surfaces A Physicochem. Eng. Asp. 522 (2017) 260–265.
[18]M.P. Gatabi, H.M. Moghaddam, M. Ghorbani, Efficient removal of cadmium using magnetic multiwalled carbon nanotube nanoadsorbents: equilibrium, kinetic, and thermodynamic study, J. Nanoparticle Res. 18 (2016) 1–17.
[19] S. Zhang, Y. Zhang, G. Bi, J. Liu, Z. Wang, Q. Xu, et al., Mussel-inspired polydopamine biopolymer decorated with magnetic nanoparticles for multiple pollutants removal, J. Hazard. Mater. 270 (2014) 27–34.
[20]E. Mohammadnia, M. Hadavifar, H. Veisi, Kinetics and thermodynamics of mercury adsorption onto thiolated graphene oxide nanoparticles, Polyhedron. 173 (2019) 114139. doi:https://doi.org/10.1016/j. poly.2019.114139.
[21]E.D. van Hullebusch, M.H. Zandvoort, P.N.L. Lens, Nickel and cobalt sorption on anaerobic granular sludges: kinetic and equilibrium studies, J. Chem. Technol. Biotechnol. 79 (2004) 1219–1227.
[22]R. Arasteh, M. Masoumi, A.M. Rashidi, L. Moradi, V. Samimi, S.T. Mostafavi, Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions, Appl. Surf. Sci. 256 (2010) 4447–4455.
[23]A.P. Stafussa, G.M. Maciel, A.G. Da Silva Anthero, M.V. Da Silva, A.A.F. Zielinski, C.W.I. Haminiuk, Biosorption of anthocyanins from grape pomace extracts by waste yeast: kinetic and isotherm studies, J. Food Eng. 169 (2016) 53–60. doi:10.1016/j.jfoodeng.2015.08.016.
[24]M. Taghavi, M.A. Zazouli, Z. Yousefi, B. Akbari-adergani, Kinetic and isotherm modeling of Cd (II) adsorption by L-cysteine functionalized multi-walled carbon nanotubes as adsorbent, Environ. Monit. Assess 187 (2015) 682.
[25]M. Hadavifar, N. Bahramifar, H. Younesi, M. Rastakhiz, Q. Li, J. Yu, et al., Removal of mercury(II) and cadmium(II) ions from synthetic wastewater by a newly synthesized amino and thiolated multi-walled carbon nanotubes, J. Taiwan Inst. Chem. Eng. 0 (2016) 1–9. doi:10.1016/j. jtice.2016.08.029.
[26] S. Salamat, M. Hadavifar, H. Rezaei, Preparation of nanochitosan-STP from shrimp shell and its application in removing of malachite green from aqueous solutions, J. Environ. Chem. Eng. 7 (2019) 103328. doi:https://doi.org/10.1016/j.jece.2019.103328.
[27]Y.S. Ho, G. Mckay, the Kinetics of Sorption of Divalent Metal Ions Onto Sphagnum Moss Peat, Water Res. 34 (2000) 735–742.
[28]X. Sun, H. Ou, C. Miao, L. Chen, Removal of sudan dyes from aqueous solution by magnetic carbon nanotubes: equilibrium, kinetic and thermodynamic studies, J. Ind. Eng. Chem. 22 (2015) 373–377.
[29]E. Mohammadnia, H. Mojtaba, H. Veisi, Adsorption of Cadmium (II) onto thiolated graphene oxide and kinetic investigations, Amirkabir J. Civ. Eng. (2018). doi:10.22060/ceej.2018.14660.5710.
[30]N.M. Mubarak, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, Rapid adsorption of toxic Pb (II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique, J. Environ. Sci. 45 (2016) 143–155.
[31]X. Wang, P.S. Lee, A polydopamine coated polyaniline single wall carbon nanotube composite material as a stable supercapacitor cathode in an organic electrolyte, J. Mater. Res. 30 (2015) 3575–3583.
[32]R. Mrówczyński, R. Turcu, C. Leostean, H.A. Scheidt, J. Liebscher, New versatile polydopamine coated functionalized magnetic nanoparticles, Mater. Chem. Phys. 138 (2013) 295–302.
[33]R. Gao, L. Zhang, Y. Hao, X. Cui, D. Liu, M. Zhang, et al., Novel polydopamine imprinting layers coated magnetic carbon nanotubes for specific separation of lysozyme from egg white, Talanta. 144 (2015) 1125–1132.
[34] S. Saadat, A. Karimi-Jashni, M.M. Doroodmand, Synthesis and characterization of novel single-walled carbon nanotubes-doped walnut shell composite and its adsorption performance for lead in aqueous solutions, J. Environ. Chem. Eng. 2 (2014) 2059–2067.
[35]A.K.S. Deb, V. Dwivedi, K. Dasgupta, S.M. Ali, K.T. Shenoy, Novel amidoamine functionalized multi-walled carbon nanotubes for removal of mercury (II) ions from wastewater: Combined Experimental and density functional theoretical approach, Chem. Eng. J. 313 (2017) 899– 911.
[36]Y.Y.-S. Kim, J.J.-H. Cho, S.G. Ansari, H.-I.H. Kim, M.A. Dar, H.-K. Seo, et al., Immobilization of avidin on the functionalized carbon nanotubes, Synth. Met. 156 (2006) 938–943. doi:10.1016/j.synthmet.2006.06.003.
[37]W. Wu, L. Yang, F. Zhao, B. Zeng, A vanillin electrochemical sensor based on molecularly imprinted poly (1-vinyl-3-octylimidazole hexafluoride phosphorus)− multi-walled carbon nanotubes@ polydopamine– carboxyl single-walled carbon nanotubes composite, Sensors Actuators B Chem. 239 (2017) 481–487.
[38]Y.-B. Lin, B. Fugetsu, N. Terui, S. Tanaka, Removal of organic compounds by alginate gel beads with entrapped activated carbon, J. Hazard. Mater. 120 (2005) 237–241.
[39]M.H. Dehghani, M.M. Taher, A.K. Bajpai, B. Heibati, I. Tyagi, M. Asif, et al., Removal of noxious Cr (VI) ions using single-walled carbon nanotubes and multi-walled carbon nanotubes, Chem. Eng. J. 279 (2015) 344–352. doi:10.1016/j.cej.2015.04.151.
[40]C. He-Ying, L. Zhao-Xia, Q. Guo-Li, K. De-Guo, W. Si-Xin, L. Yun[1]Cai, et al., First-principles study of structures and electronic properties of cadmium sulfide clusters, Chinese Phys. B. 17 (2008) 2478–2483. doi:10.1088/1674-1056/17/7/022.
[41]A. Hutchison, D. Atwood, Q.E. Santilliann-jiminez, The removal of mercury from water by open chain ligands containing multiple sulfurs, J. Hazard. Mater. 156 (2008) 458–465. doi:10.1016/j.jhazmat.2007.12.042.
[42]G.D. Vuković, A.D. Marinković, M. Čolić, M.Đ. Ristić, R. Aleksić, A.A. Perić-Grujić, et al., Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes, Chem. Eng. J. 157 (2010) 238–248. doi:10.1016/j. cej.2009.11.026.
 [43]G. Bhanjana, N. Dilbaghi, K.-H. Kim, S. Kumar, Carbon nanotubes as sorbent material for removal of cadmium, J. Mol. Liq. 242 (2017) 966– 970. doi:10.1016/j.molliq.2017.07.072.
[44]M. Sanchez-Polo, J. Rivera-Utrilla, Adsorbent− adsorbate interactions in the adsorption of Cd (II) and Hg (II) on ozonized activated carbons, Environ. Sci. Technol. 36 (2002) 3850–3854.
[45]M.A. Salam, G. Al-Zhrani, S.A. Kosa, Simultaneous removal of copper (II), lead (II), zinc (II) and cadmium (II) from aqueous solutions by multi-walled carbon nanotubes, Comptes Rendus Chim. 15 (2012) 398– 408.
[46]H. Momenzadeh, A. Khosravi, A.R. Tehrani-Bagha, K. Gharanjig, Investigation of the effective parameters on reactive dye removal from aqueous solution using chitosan nanoparticles emulsion, J. Color. Sci. Tech. 5 (2011) 1–10.
[47]B. Kakavandi, R.R. Kalantary, A. Esrafily, A.J. Jafari, A. Azari, Isotherm, kinetic and thermodynamic of Reactive Blue 5 (RB5) dye adsorption using Fe3O4 nanoparticles and activated carbon magnetic composite, J. Color Sci. Technol. 7 (2013) 237–248.
[48]G. Crini, P.-M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature, Prog. Polym. Sci. 33 (2008) 399–447.
[49]B. Heibati, M. Ghoochani, A.B. Albadarin, A. Mesdaghinia, A.S.H. Makhlouf, M. Asif, et al., Removal of linear alkyl benzene sulfonate from aqueous solutions by functionalized multi-walled carbon nanotubes, J. Mol. Liq. 213 (2016) 339–344.
[50]M. Hadavifar, N. Bahramifar, H. Younesi, Q. Li, Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups, Chem. Eng. J. 237 (2014) 217–228. doi:10.1016/j. cej.2013.10.014.