
AUT Journal of Civil Engineering

AUT J. Civil Eng., 5(1) (2021) 17-36
DOI: 10.22060/ajce.2020.17389.5627

The nonlinear dynamic analysis of elasto-plastic behaviour of the single-curved FGM 
shells under impact load
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ABSTRACT:  Functionally graded materials (FGM) are some kind of composite materials that due 
to the continuity of mixture of constituent materials, have more effective mechanical properties than 
composites which leads to eliminating interlayer stress concentration. The most application of these 
materials is in thin structures such as plates and shells. This research presents a Tamura-Tomota-Ozawa 
based model to obtain the elastoplastic behavior of Functionality graded materials under impact loads. 
Also, based on this model, the ceramic phase of FGM was considered as an isotropic elastic material 
and the metal phase was considered as an elastoplastic material. Several parametric studies have been 
conducted to assess different aspects of such material behavior. The results show that the maximum 
displacement of the shell has increased by increasing the volume fraction index and the thickness ratio, 
and it has decreased  by increasing the aspect ratio. It was also observed that the thickness ratio(32%), 
volume fraction index(30%), aspect ratios(23%) and shell curvature (16%) parameters affect the 
maximum displacement of the shell. The elasto-plastic response of FGM shells is similar to homogeneous 
shells and the TTO model can describe the mechanical behavior of FGM shells beyond the elastic range 
where the FGM response is mainly governed by the plastic region of the metal phase.
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1- Introduction
Functionally graded materials are new and advanced 

materials with nonhomogeneous structures. The mechanical 
properties of these materials vary smoothly and continuously 
from one surface to another, and these changes are caused by 
a smooth change in the volume fraction of their constituent 
materials.

Functionally graded materials are usually made of ceram-
ic and metal materials. Because; the structural material of the 
ceramic has low heat transfer coefficient and high resistance 
to temperature, which can withstand high heat, and on the 
other hand, another structural material, ie metal, provides the 
flexibility required. It is noteworthy that due to continuous 
changes in mechanical properties, the discontinuity problems 
which exist in composite structures are not created in func-
tionally graded materials. In Fig. 1, the schematic view of a 
functionally graded material consists of two materials A and 
B is shown [1]. 

Christy et al. [2] Studied the static and dynamic behavior 
of thin plate by the Applied Element Method (AEM). Ashok 
and Jeyaraj [3] investigated a finite element analysis of ta-
pered laminated composite plates with ply drop-off has been 
carried out to study the static deflection and normal stress pat-
terns developed under non-uniform heating. Bever and Du-
wez [4], provided functionally gradient materials that their 
mechanical properties in local coordinate directions change 

with a specific slope. Based on this theory, a national research 
on functionally graded materials began in 1984, looking for a 
way to produce heat-resistant materials at the Japan National 
Aerospace Laboratory by Kozumi et al. [5], and by providing 
a spherical FGM shell for the tip of the rocket in 1992 was 
completed.

Shahraki et al. [6] analyzed the effective parameters on the 
free vibrations of Functionally Graded plates with opening and 
stiffener. Sridhar and Prasad [7] conducted the experimental 
investigation on functionally graded reinforced concrete 
(FGRC) beams using hybrid fiber engineered cementitious 
composites (HYFECC). Horgan and Chan [8] obtained the 
equations of a hollow FGM cylinder in a plane strain state 
with a power-law distribution of elastic modulus in the radial 
direction using lame equations and the distribution of stress. 
Shahraki et al. [9] concerns about the effect of opening and 
stiffener on the geometric nonlinear dynamical behavior of 
single-curved FGM shells under the blast loads. 

Analysis of elastoplastic FG structures has been drawn 
considerable attention from researchers in recent years. In 
this line of works, a composite model proposed by Tamura 
et al. [10] is widely adopted in evaluating the effective 
elastoplastic properties of FGM. Nie and Zhong [11] derived 
the solutions for stress distribution of curved elastoplastic FG 
beams subjected to pure bending. As far as the elastoplastic 
constitutive model was concerned, Tamura et al. [12] defined 
the rule of mixtures for metal alloy named TTO model, which 



M. Shahraki et al., AUT J. Civil Eng., 5(1) (2021) 17-36, DOI: 10.22060/ajce.2020.17389.5627

18

was extended to ceramic/metal system by Bocciarelli [13] to 
describe the elastoplastic behaviors of FGMs. Meanwhile, 
an inverse analysis procedure based on indentation tests was 
proposed by Nakamura et al. [14] to identify the constitutive 
parameters of FGMs. With this model, some literature were 
reported concerning thermal stress responses [15, 16] and 
fracture performances of FGMs [17, 18] Qiang et al. [19] 
concerns an elastic–plastic cohesive zone model for metal–
ceramic interfaces and the corresponding nonlinear finite 
element implementation for general boundary value problems 
that accounts for nonlinear traction separation constitutive 
relation including fine-scale mechanisms of the bonded 
interfaces failure.

In this paper, mechanical properties of FGM material in 
two elastic and plastic regions were obtained. Modeling and 
Verification of the model were performed then the mechanical 
and geometrical properties of the single curved shell were 
investigated and their influence on the response of the shell 
was calculated. It was observed that the ratio of thickness and 
curvature had the greatest and least effect on the response, 
respectively.

2-  Basics and concepts
The Cartesian coordinate system (x, y, z) of the single 

curved FGM shell can be located at the mid-surface or top 
of the shell. The z-axis is along with the shell’s thickness and 
down in the z-direction is considered to be positive, and the 
y-axis is positioned along the length of the shell and perpen-
dicular to the x-axis (Fig. 2). The shell displacement along the 
thickness direction is indicated by w.

According to Fig. 2, the volume fraction of ceramic mate-
rial is as follows
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In Eq. (1), n is the volume fraction index, h is the shell thickness and α is the distance of the center coordinates from the 
upper surface of the shell. For example, if the location of the coordinates is on the upper [20] or on the center [21] surface 
of the shell, the value of α is zero and 0.5h, respectively. In this study, the value of α is considered to be 0.5h . 
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In Eq. (1), n is the volume fraction index, h is the shell 
thickness and α is the distance of the center coordinates from 
the upper surface of the shell. For example, if the location of 
the coordinates is on the upper [20] or on the center [21] sur-
face of the shell, the value of α is zero and 0.5h, respectively. 
In this study, the value of α is considered to be 0.5h.

2.1. Effective material properties
Based on Eq. (4), the constituent materials of the shell 

vary smoothly along with the thickness in such a way that the 
inner surface is metal-rich and the outer surface is ceramic-
rich.
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Where Vc and Vmare the volume fractions of ceramic and 
metal constituents, respectively, the material properties of the 
FGM shell varies in the thickness direction (z) and, according 
to equation (4), it can be determined by a function of volume 
fraction of the constituent materials [22].
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Where the subscripts m and c stand for the metal and ce-
ramic constituents, respectively. From Eqs. (5) ,(6) and (7), 
for a single curved FGM shell, the modulus of elasticity E, 
the Poisson ratio υ ,and the mass density ρ , vary in thick-
ness and can be expressed as
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 are considered for 
the analysis [23]. The values   of 0n =  and ∞=n  corre-
spond to ceramic-rich and metal-rich shells, respectively. The 
variation of the volume fraction index ( / 0.5)nz h + , in the 
thickness direction for various values   of n, is shown in Fig. 3.

2.2. Plastic behaviour of the FGMs
The linear elastic response of FGMs obeys Hooke’s law 

and their elastic properties evaluated approximately by mi-
cromechanics models for conventional composites (section 
2.1). However, the elastoplastic behavior of metal/ceramic 
FGMs can be described by using the intermediate law of mix-
ture, adapted for FGMs by Williamson et al. [24]. According 
to the TTO model, each layer in the FGM shell is treated as 
an isotropic composite for which the uniaxial stress σ  and 
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Fig. 1. Schematic representation of FGM composed of two phases A and B [1].
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The TTO model introduces an additional parameter q as 
follows
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The parameter q is the ratio of stress to strain transfer be-
tween two phases. The value of q depends on the constituent 
material properties and the microstructural interaction in the 
FGM. For example, the constituent elements have the equal 
stress distribution for q of 0 and the equal strain distribution 
for q of +∞, respectively. Since the appropriate value of q de-
pends on the type of base materials, it should be determined 
numerically or/and experimentally. For example, a value of 
q= 91.6 GPa, q= 4.5 GPa has been used for an Al/SiC FGM 
[25], and for a TiB/Ti FGM [18], respectively. For applica-
tions involving plastic deformation of ceramic/metal FGM, 
the TTO model assumes that the composite yields once the 
metal constituent yields. Accordingly, the yield stress Yσ  , of 
the composite may be obtained as follows

4 
 

respectively. The variation of the volume fraction index ( / 0.5)nz h+ , in the thickness direction for various values of n, 
is shown in Fig. 3. 
 

 
Fig. 3. Distribution of the volume fraction ( / 0.5)nz h + . 

 
2-2- Plastic behaviour of the FGMs 
The linear elastic response of FGMs obeys Hooke’s law and their elastic properties evaluated approximately by 
micromechanics models for conventional composites (section 2.1). However, the elastoplastic behavior of metal/ceramic 
FGMs can be described by using the intermediate law of mixture, adapted for FGMs by Williamson et al. [24]. According 
to the TTO model, each layer in the FGM shell is treated as an isotropic composite for which the uniaxial stress and 

strain are related to the average uniaxial stresses m and c and strains m and c of the constituent materials. 

 

c c m mV V  = +  (8) 

 

(9) c c m mV V  = + 
 

The TTO model introduces an additional parameter q as follows 
 

(10) , 0c m

c m

q q 
 
−

=   
−

 

 
The parameter q is the ratio of stress to strain transfer between two phases. The value of q depends on the constituent 
material properties and the microstructural interaction in the FGM. For example, the constituent elements have the equal 
stress distribution for q of 0 and the equal strain distribution for q of +∞, respectively. Since the appropriate value of q 
depends on the type of base materials, it should be determined numerically or/and experimentally. For example, a value 
of q= 91.6 GPa, q= 4.5 GPa has been used for an Al/SiC FGM [25], and for a TiB/Ti FGM [18], respectively. For 
applications involving plastic deformation of ceramic/metal FGM, the TTO model assumes that the composite yields 

once the metal constituent yields. Accordingly, the yield stress Y , of the composite may be obtained as follows 

0( ) (1 )m c
Y m m m

c m

q E EV V V
q E E

 
 +

= + − + 
 (11 ) 

Where 0 denotes the yield stress of the metal phase. The above equation indicates that the yield stress of the composite 

depends on the yield stress of metal, the volume fraction of the metal, Young’s modulus of the constituent phases, and 
the parameter q. The following parametric equations determine the stress–strain ( ) − curve for the FGM. 

00

0

( ) ( )
( )

nc m m c m

Y c Y c m Y

V E q V E E
q E q E E

  
   

+
= +

+ +
 (12) 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Vo
lu

me
 f

ra
ct

io
n 

(V
=(

z/h
+0

.5
)^

n)

(z/h)

n=0

n=0.2

n=0.33

n=0.5

n=1

n=2

n=3

n=5

n=∞

 (11)

Where 
0σ  denotes the yield stress of the metal phase. The 

above equation indicates that the yield stress of the composite 
depends on the yield stress of metal, the volume fraction of 
the metal, Young’s modulus of the constituent phases, and the 
parameter q. The following parametric equations determine 
the stress–strain ( )σ ε−  curve for the FGM.
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Where 0 0 / mEε σ=  is the yield strain of the metal. Fig. 
4 shows the schematic of the stress–strain curve of the FGM 
described by the TTO model.

In order to evaluate of elasto-plastic behaviour of FGM, 
can use TiB / Ti (FGM) that studied by Jane et al. [18]. The 
metal and ceramic material properties used in FGM are given 
in Table 1 and the stress–strain curve of Titanium is shown in 
Fig. 5. The comparison of the obtained stress–strain curves of 
FGM are given in Fig. 6. There is a good agreement between 
the TTO model and research studies by Jane et al. [19].

3-  Modeling procedure 
In this work, the commercial finite element software CAE 

is used, and the method is explicit and dynamic to analyze 
single curved FGM shells under impact loading. The shells 
meshed with four-node shell elements [26[. For this purpose, 
a shell with a=b=1 (Fig. 1) has been analyzed with a nonlin-
ear dynamic response. The parameters of the shells including 
volume fraction index, thickness ratio, aspect ratio, and cur-
vature were investigated.The type of the FGM is selected as 
ceramic-metal (Al-SiC). The mechanical properties of these 
materials such as Young’s modulus, density, and Poisson ratio 
are given in Table 2 [20]. Also, the stress-strain curves of Al 
and SiC are shown in Fig. 7 [20].

3.1. Determining the number of FGM shell layers
In this study, an equivalent homogenous laminated 

approach is used for modeling FGM shells. In the used 
approach, the thickness of the shells is divided into a finite 
number of homogenous layers and the equivalent effective 
material properties of these layers are defined of section 2 
within the layer as [23];
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To determine the number of FGM layers, some conver-
gence analysis for the FGM shell (Fig. 1) with R/a=4, volume 
fraction index n=1, thickness h=6 mm and 20×20 mm mesh 
size under impact load with maximum overpressure (P0) 50 
kPa based on Eqs. (15), (16) and (17) were performed [23].  
Forthe shell response to move out of the elastic zone into the 
plastic zone, we need a high implementation rate force. that 
impact load with P0=1 MPa by Friedlander function Eq. (18) 
can pass through the elastic zone and into the plastic zone. 
Figures 15, 18, 21, and 23 show that the response enters the 
plastic zone after some time. It is also seen in Fig. 26 that 
the stress and strain created in the shell under this load have 
passed the yield point of the FGM.
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Where P0 is the maximum overpressure on the shell surface, Ps is the distribution of the load on the shell surface, Pt is the 

distribution of the load in the time domain, , is a waveform parameter, t is elapsed time and tp is loading duration. In 

all analyses, tp is considered as 20 ms and , is considered as 2 [23]. 
After analyzing the maximum central displacement, 14 layers were used as the appropriate state for the analysis of the 
FGM shell. The convergence analysis results for FGM are shown in Fig. 8. 
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To determine the number of FGM layers, some convergence analysis for the FGM shell (Fig. 1) with R/a=4, volume 
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kPa based on Eqs. (15), (16) and (17) were performed [23].  Forthe shell response to move out of the elastic zone into the 
plastic zone, we need a high implementation rate force. that impact load with P0=1 MPa by Friedlander function Eq. (18) 
can pass through the elastic zone and into the plastic zone. Figures 15, 18, 21, and 23 show that the response enters the 
plastic zone after some time. It is also seen in Fig. 26 that the stress and strain created in the shell under this load have 
passed the yield point of the FGM. 
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all analyses, tp is considered as 20 ms and , is considered as 2 [23]. 
After analyzing the maximum central displacement, 14 layers were used as the appropriate state for the analysis of the 
FGM shell. The convergence analysis results for FGM are shown in Fig. 8. 
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Where P0 is the maximum overpressure on the shell sur-
face, Ps is the distribution of the load on the shell surface, Pt is 
the distribution of the load in the time domain, ,α  is a wave-
form parameter, t is elapsed time and tp is loading duration. In 
all analyses, tp is considered as 20 ms and ,α  is considered 
as 2 [23].

After analyzing the maximum central displacement, 14 
layers were used as the appropriate state for the analysis of 
the FGM shell. The convergence analysis results for FGM 
are shown in Fig. 8.
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Fig. 7. The true stress–strain diagrams of Al and SiC phases [20].

Based on Section 2, the stress-strain curves of single 
curved FGM shells with 14 continuous layers for three vol-
ume fraction indexes, n=0.5, 1, and 2 are shown in Figs.9 to 
11.
3.2. Meshing the FGM shell

In order to determine the mesh sizes, elements with vari-
ous dimensions were used and the effects of the mesh sizes 
were investigated. Hence, in the single curved FGM shell 

with a curvature of k=0.25 (radius 4m), the thickness of 
h=6mm, volume fraction index n=1, under the impact load 
with P0=50 kPa and uniformly distributed step load Eq. (17) 
and simple boundary condition, several convergence analyses 
were conducted. The obtained maximum displacements are 
shown in Fig. 12. As seen from Fig. 12, 10 × 10 mm mesh 
size are suitable for acceptable maximum displacement re-
sults. Fig. 13 shows the geometry and mesh of the FGM shell.

Table 2. Mechanical properties of FGM shell constituent materials [20].
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Fig. 8. Number of single curved FGM shell layers.

Fig. 9. The stress-strain curve of single curved FGM shell with 14 layers (n=0.5).

Table 3. Material properties of FGM shell [27].
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Fig. 13. Geometry and mesh of the single curved FGM shell. 

4- Validation of modeling 
The validity of the analysis was considered by results provided by Hajului et al. [27]. They Reviewed the nonlinear 
dynamic response of FGM cylindrical shells under uniform pressure q (t) = 1500 sin (600t).  
These shells are with the ratios of R/h = 500, L / R = 80 (R is the radius, h is the thickness and L is the length of the shell) 
and have simple support with two volume fraction indexes (n = 0, 2). The properties of the materials are given in Table 
3. 
To verify this mechanism a finite element software, CAE (computer-aided engineering), has been utilized. The central 
displacement-time history is displayed in Fig. 14 and the maximum central displacement for the two volume fraction 
indexes is shown in Table 4. It can be seen that modeling results have an acceptable accuracy compared to the reported 
values obtained from the reference [27]. 
 

Table 3. Material properties of FGM shell [27]. 

Poisson’s ratio Density (kg/m3) Young’s modulus (GPa) Materials 
0.2981 4429 105.6960 Titanium(Ti–6Al–4V) 
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Fig. 14. Central displacement-time history of the FGM cylinder shell for the present solution and reference [27]. 

Table 4. Comparisons of results in the present solution and reference [27]. 
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Fig. 11. The stress-strain curve of single curved FGM shell with 14 layers (n=2).

Fig. 10. The stress-strain curve of single curved FGM shell with 14 layers (n=1).
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Fig. 12. Maximum displacement in convergence analyses of single curved FGM shell.

Fig. 13. Geometry and mesh of the single curved FGM shell.

4- Validation of modeling
The validity of the analysis was considered by results pro-

vided by Hajului et al. [27]. They Reviewed the nonlinear 
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is the radius, h is the thickness and L is the length of the shell) 
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= 0, 2). The properties of the materials are given in Table 3.
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, R/h=300, 
R/a=4, and b/a=1 under impact load with P0=1 MPa by The 
Friedlander function Eq. (18) have been analyzed. The maxi-
mum displacement-time history is displayed in Fig. 15. It is 
observed from Fig. 15 that by increasing the volume frac-
tion index, the vibration amplitude and frequency of the FGM 
shell, decreased and increased, respectively. Also, as shown 
in Fig. 15, by increasing the volume fraction index, the maxi-
mum displacement increases; in such a way that the highest 
displacement occurs in the metal-rich shell (  )and the 
least displacement occurs in the ceramic-rich shell(  )
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Fig. 14. Central displacement-time history of the FGM cylinder shell for the present solution and reference 
[27].

Fig. 15. Maximum displacement-time history of FGM shells with various volume fraction indexes.

Table 4. Comparisons of results in the present solution and reference [27].
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The maximum displacements of the shell with different vol-
ume fraction indexes (n) on the MN path (Fig. 2) are shown 
in Fig. 16. By varying the volume fraction index, the location 
of the maximum displacement of the shell changes; in such a 
way that by increasing the volume fraction index, the maxi-
mum displacement location moves toward the shell’s center.

5.2. Single curved FGM shell with various thickness ratios (R/h) 
To investigate the effect of shell thickness ratio, sever-

al single curved FGM shells with seven different thickness 

ratios of R/h=60, 100, 150, 300, 600, 900, 1500, b/a=1, R/
a=4 and with three volume fraction indexes of n=0.5, 1, and 
2 under impact load with P0=1 MPa by Friedlander func-
tion Eq. (18) have been analyzed. As shown in Fig. 17, the 
maximum displacement of the FGM shell has decreased by 
increasing the thickness ratio. Also, the maximum displace-
ment-times history of FGM shells for n=2 are shown in Fig. 
18. It is observed that by increasing the R/h ratio, the vibra-
tion amplitude and frequency of the FGM shell, decreased 
and increased, respectively. The maximum displacements of 

Fig. 16. Maximum displacement of the FGM shells with various volume fraction indexes on the MN path.

Fig. 17. Maximum displacement with different shell thicknesses and three volume fraction indexes.
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the shells for n=1 with different thickness ratios (R/h) on the 
MN path (Fig. 2) are shown in Figs. 19. It can be seen that 
by reducing the thickness ratio, the maximum displacement 
location moves toward the shell’s center.

5.3. Single curved FGM shell with various aspect ratios (b/a)
In order to investigate the effect of shell aspect ratio (b/a), 

several single curved FGM shells with seven aspect ratios of 
b/a=0.2, 0.33, 0.5, 1, 2, 3, 5, R/h=300, R/a=4 and three vol-
ume fraction indexes of n=0.5, 1 and 2 under impact load 

with P0=1 MPa by Friedlander function Eq. (18) have been 
analyzed. As shown in Fig. 20, by increasing the aspect ratio, 
the maximum displacement of the FGM shell has increased 
at first and then remained almost constant. The maximum dis-
placement-time history of FGM shell for n=2 is shown in Fig. 
21; Also, the maximum displacements of the shells for n=1 
with different aspect ratios (b/a) on the MN path (Fig. 2) are 
shown in Figs 22. It can be seen that by increasing the aspect 
ratio, the maximum displacement location moves toward the 
shell’s center.

Fig. 18. Maximum displacement-time history of FGM shells with various thicknesses under impact load (n=2).

Fig. 19. Maximum displacement of the FGM shells with various thicknesses on the MN path (n=1).
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Fig. 20. Maximum displacement with different aspect ratios and three volume fraction indexes.

Fig. 21. Maximum displacement-time history of FGM shells with various aspect ratios under impact load (n=2).
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Fig. 22. Maximum displacement of the FGM shells with various aspect ratios on the MN path (n=1).

Fig. 23. Maximum displacement-time history of FGM shells with various curvatures under impact load (n=2).
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5.4. Single curved FGM shell with various curvatures (κ
In order to investigate the effect of curvature κ =1/R), 

several single curved FGM shells with eight curvature ratios 
of R/a= 0.8, 1.33, 2, 4, 8, 12, 20, ∞ (plan), R/h=300, b/a=1 and 
three volume fraction indexes of n=0.5, 1 and 2 under impact 
load with P0=1 MPa by Friedlander function Eq. (18) have 
been analyzed. The maximum displacement-times history of 
FGM shells for n=2 are shown in Fig. 23. It can be seen in 
Fig. 24 that by increasing the ratio of R/a, the maximum dis-
placements of the FGM shell has increased at first, and then 
it has decreased. For example, in FGM shells with n=0.5 and 
1, the peak displacement occurs in R/a=8, and FGM shells 
with n=2 the peak displacement occurs in R/a=4. Also, the 
maximum displacements of the shells for n=1 with different 
curvatures (k) on the MN path (Fig. 2) are shown in Fig 25. 
It can be seen that by reducing the curvature, the maximum 
displacement location moves toward the shell’s center.

6- The stress-strain curve of the single curved FGM shell
The single curved FGM shells with R/h=300, b/a=1, R/

a=4, and with three volume fraction indexes of n=0.5, 1 and 
2 under impact load with P0=1 MPa by Friedlander function 
Eq. (18) have been analyzed, And it has been observed that 
maximum displacement occurs in the center of the shell, 
so the stress-strain curve in the center of the FGM shell is 
examined, It can be seen from Fig. 26 that with increasing 
volume index the FGM shell yield point has increased but the 
slope of the stress-strain curve decreases.

7- The effect of geometrical and mechanical parameters 
on the shell response

To determine the effect of each parameter (n, R/h, R/a, 
b/a) on the maximum displacement of the single curved 
FGM shell, the coefficient of determination (r) has been used, 
which indicates the strength of geometrical and mechanical 
variable effects on the shell response. For example, if r=0.75, 

it means that 75% of the changes in y can be explained by 
changes in the x parameter. The correlation coefficient ˆ( )xyρ  can be determined by Substitution of the mean values ( , )x y  
using Eqs. (19) and (20) and the standard deviation ( , )x yS S  using Eqs. (21) and (22) into Eq. (23). By using Eq. (24), the 
coefficient of determination (r) can be determined [28].
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Fig. 24. Maximum displacement with various curvatures and three volume fraction indexes.
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the maximum displacements of the shells for n=1 with different curvatures (k) on the MN path (Fig. 2) are shown in Fig 
25. It can be seen that by reducing the curvature, the maximum displacement location moves toward the shell's center. 
 

 
Fig. 23. Maximum displacement-time history of FGM shells with various curvatures under impact load (n=2). 

 
Fig. 24. Maximum displacement with various curvatures and three volume fraction indexes. 

 
Fig. 25. Maximum displacement of the shells with various curvatures on the MN path (n=1). 

 
6- The stress-strain curve of the single curved FGM shell 

The single curved FGM shells with R/h=300, b/a=1, R/a=4, and with three volume fraction indexes of n=0.5, 1 and 2 
under impact load with P0=1 MPa by Friedlander function Eq. (18) have been analyzed, And it has been observed that 
maximum displacement occurs in the center of the shell, so the stress-strain curve in the center of the FGM shell is 
examined, It can be seen from Fig. 26 that with increasing volume index the FGM shell yield point has increased but the 
slope of the stress-strain curve decreases. 
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Fig. 25. Maximum displacement of the shells with various curvatures on the MN path (n=1).

Where xi is the effective parameter (volume fraction in-
dex, curvature, thickness ratio, and aspect ratio) on the maxi-
mum displacement of the shell (y).

In these relationships, x can be substituted by each of the 
geometrical and mechanical parameters (n, R/h, R/a, b/a) 
that affect the maximum displacement of the FGM shell (y). 
m is the number of models that were considered for each pa-
rameter. The maximum displacements of the FGM shells with 

different values of mechanical and geometrical parameters 
were investigated in sections 4.3, 4.4, 4.5, and 4.6. Accord-
ing to Table 5, the effectiveness and coefficient of determina-
tion for each of the FGM shell parameters are shown. It can 
be seen that the R/h has the greatest effect on the maximum 
displacement of the single curved FGM shell. The effect of 
parameters relative to each other, on the maximum displace-
ment of the FGM shell, is shown in Fig. 27.

Fig. 26. The stress-strain curve of the single curved FGM shell under impact load (Friedlander).
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Fig. 27. The effect of each parameters on the maximum displacement of the single curved FGM shell.

Table 5. The coefficient of determination of the geometrical and mechanical parameters of the single curved FGM shell.
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Where xi is the effective parameter (volume fraction index, curvature, thickness ratio, and aspect ratio) on the maximum 
displacement of the shell (y) . 
In these relationships, x can be substituted by each of the geometrical and mechanical parameters (n, R/h, R/a, b/a) that 
affect the maximum displacement of the FGM shell (y). m is the number of models 
that were considered for each parameter. The maximum displacements of the FGM shells with different values of 
mechanical and geometrical parameters were investigated in sections 4.3, 4.4, 4.5, and 4.6. According to Table 5, the 
effectiveness and coefficient of determination for each of the FGM shell parameters are shown. It can be seen that the 
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Table 5. The coefficient of determination of the geometrical and mechanical parameters of 
the single curved FGM shell. 

Parameters xi yi r Parameters xi yi r 
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0.2 -0.0445 

0.907 
 R/a 

0.8 -0.0010 

0.475 
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2 -0.0803 8 -0.0664 
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300 -0.0352 1 -0.0658 
600 -0.0657 2 -0.1105 
900 -0.0902 3 -0.1077 
1500 -0.1312 5 -0.1082 

   
Fig. 27. The effect of each parameters on the maximum displacement of the single curved FGM shell. 

8-  Conclusions 
The present study was conducted to analyze the elastoplastic behavior and the effect of mechanical and geometrical 
properties of the single curved FGM shells under impact load. The results of the nonlinear dynamic response for single 
curved FGM shells are summarized as follows: 
-In order to evaluate the effect of mechanical properties on the shell, the volume fraction index has been considered. The 
maximum displacement of the shell was increased by increasing the volume fraction index, in such a way that the 
maximum displacement occurred in the metal-rich shell ( n =  ) and the minimum displacement occurred in the ceramic-
rich shell ( 0n = ). The response of the other shells lay between these two extreme cases. Also, by increasing the volume 
fraction index, the maximum displacement location moves toward the shell's center. 
-By evaluating the geometrical properties of the single curved FGM shell, the maximum displacement of the shell was 
decreased by increasing the thickness ratio. Also by increasing the aspect ratio, the maximum displacement of the shell 
was increased and by increasing the curvature radius, the maximum displacement of the shell at first has increased and 
then decreased. The value of each geometrical property of the shell affects the location of the maximum displacement so 
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8-  Conclusions
The present study was conducted to analyze the elasto-

plastic behavior and the effect of mechanical and geometri-
cal properties of the single curved FGM shells under impact 
load. The results of the nonlinear dynamic response for single 
curved FGM shells are summarized as follows:

-In order to evaluate the effect of mechanical properties 
on the shell, the volume fraction index has been considered. 
The maximum displacement of the shell was increased by in-
creasing the volume fraction index, in such a way that the 

maximum displacement occurred in the metal-rich shell (
n = ∞  ) and the minimum displacement occurred in the 
ceramic-rich shell ( 0n =  ). The response of the other shells 
lay between these two extreme cases. Also, by increasing the 
volume fraction index, the maximum displacement location 
moves toward the shell’s center.

-By evaluating the geometrical properties of the single 
curved FGM shell, the maximum displacement of the shell 
was decreased by increasing the thickness ratio. Also by in-
creasing the aspect ratio, the maximum displacement of the 
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shell was increased and by increasing the curvature radius, 
the maximum displacement of the shell at first has increased 
and then decreased. The value of each geometrical property 
of the shell affects the location of the maximum displacement 
so that by decreasing the thickness ratio, aspect ratio. and 
curvature radius, the maximum displacement location moves 
toward the shell’s center.

-After considering the effect of mechanical and geometri-
cal properties of the shell on the maximum displacement, it 
was observed that the thickness ratio with the largest coef-
ficient of determination had the greatest effect on the shell 
response.

-According to the results, it can be seen that the elasto-
plastic response of FGM shells is similar to the response of 
the homogeneous shells. Therefore, the TTO model can be 
used to describe the mechanical behavior of the FGM shells 
beyond the elastic region, which governs the FGM response 
based on the plastic region of the metal phase
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-According to the results, it can be seen that the elastoplastic response of FGM shells is similar to the response of the 
homogeneous shells. Therefore, the TTO model can be used to describe the mechanical behavior of the FGM shells 
beyond the elastic region, which governs the FGM response based on the plastic region of the metal phase 
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