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ABSTRACT:  The hanger systems of the footbridges are used in two vertical and inclined forms. Both 
systems have their advantages and disadvantages. The inclined hangers are more prone to slackness and 
fatigue phenomenon, and are stressed too much. There is no much slackness, fatigue phenomenon and 
overstress in the vertical system, but this system is more prone to vertical vibration at low frequencies 
than inclined ones. In recent years, a new modification has been made to eliminate deficiencies in the 
inclined hanger system. In the modified system, the slackness phenomenon has been removed completely 
and the force variations of two adjacent hangers have been reduced significantly. In this study, modeling 
and analysis of the footbridge were performed with CSI Bridge software and the disadvantages of the old 
modified hanger system are eliminated by proposing a new modified hanger system. A modal analysis 
was also carried out to compare the dynamic characteristic such as natural modes and frequencies on a 
footbridge with the vertical, inclined, old modified, and new modified hanger systems. Results showed 
that the new modified hanger system was improved compared with the old one in the terms of vertical 
vibration mode so that the new system had no vertical frequency in the pedestrian vertical frequency 
range.
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1- Introduction
For the structural safety verification of footbridges, and 

for the comfort guarantee of its users, it is fundamental to 
consider the effect of human-induced vibrations, particularly 
vibrations due to pedestrian traffic should be within acceptable 
limits for users.

Footbridges (such as Millennium Bridge, London; and 
Solférino Bridge, Paris) have proven sensitive to vibration 
caused by humans. In recent years, increasing vibration 
problems have shown that footbridges should no longer be 
designed exclusively for static loads. An important source of 
dynamic excitement on footbridges is pedestrian excitation. 
Footbridge vibration can lead to problems with serviceability, 
as it can affect pedestrians’ comfort and emotional reactions. 
Breakdown or even harm due to human actuated dynamic 
powers has happened very rarely [1].

Footbridges intended for human occupants are susceptible 
to vibrations because of one or more natural frequencies 
inside the scope of typical human activities such as walking, 
running, bouncing, or jumping and may suffer from severe 
serviceability problems with vibration, particularly in the 
lateral direction. The excessive lateral vibration of many 
footbridges around the world, such as the Millennium Bridge 
in London and the M - Bridge in Tokyo, has demonstrated 
this phenomenon.

Slim suspension footbridges always have four primary 
types of vibration modes: lateral, torsional, vertical, and 
longitudinal modes. The lateral and torsional modes are 
frequently combined and gotten to be two sorts of coupled 
modes: lateral-torsional modes or torsional-lateral modes. 
Such slim footbridges also have different lateral and vertical 
dynamic performances. Damping has a noteworthy effect on 
the vertical vibration but only a small impact on the lateral 
one. Huang [2]. investigated the dynamic characteristics of 
slender suspension footbridges. Huang proposed a suspension 
footbridge model with pre-tensioned reverse profiled cables. 
Ivana Štimac Grandić [3]  paper presented an extensive state 
of art in the field of pedestrian load models and vibration 
comfort criteria for pedestrian bridges. Samadi and Zamani 
Ahari [4] conducted a series of analyses on a suspension 
footbridge as a case study under both actual human loads and 
the simplified loads suggested by the code and the results were 
compared. They found out that in the same crowd loading, the 
actual human loading created greater vertical accelerations 
compare to EUR 23984 EN method results. Kratochvíl and 
Križan [5] studied the dependence of the increasing dynamic 
response on the number of synchronized pedestrians crossing 
the footbridge. They concluded that a Synchronized group 
of people going in the frequency identical to the natural 
frequency of structure could excite vibration of the structure 
in the corresponding mode shape.
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Based on harmonic load models, Pedestrian effects are 
generally characterized. The first harmonic’s dominant 
contribution leads to the following critical range for natural 
frequencies fi:
• 1.25 Hz ≤ fi ≤ 2.3 Hz (for vertical and longitudinal vibrations)
• 0.5 Hz ≤ fi ≤ 1.2 Hz (for lateral vibrations)

In some cases, natural frequencies lie in an interval 
susceptible of excitation by the second harmonic of pedestrian 
excitement. In these situations, if the effects of the second 
harmonic of pedestrian loads are considered relevant, the 
critical range expands to:

1.25 Hz ≤ fi ≤ 4.6 Hz (for vertical and longitudinal 
vibrations)

Pedestrian bridges - with natural frequencies fi in the 
critical range – need to be the object of a dynamic evaluation 
to pedestrian excitation. The second harmonic of pedestrian 
loads does not affect lateral vibrations. (Table 1 shows the 
first and second harmonics of pedestrian loads)

The critical range of natural frequencies is primarily 
based on the empirical study of the step frequencies fs of 
pedestrians. In order to be consistent with the Eurocodes 
standards, the characteristic values fs,5%, slow and fs,95%, fast used 
are primarily based on the 5th and 95th percentile values [6].

Pedestrian suspension bridges may have inclined or 
vertical hanger systems that transfer forces from the deck 
to the main cables. Because of the damping role, inclined 
hangers act better than vertical ones against dynamic and 
lateral loads. However, inclined hangers require changes 
in their systems to achieve an optimum system due to the 
slacking under the excessive tension force and also due to 
early fatigue compared to vertical hangers [7]. 

For this reason, modification on the inclined hangers’ 
system was recommended by Barghian and Moghadasi 
for the first time to achieve an optimal system [8]. In the 
proposed modified hanger system, the slackness phenomenon 
was completely removed and force variations of two adjacent 
hangers were significantly reduced compared to the inclined 
ones. Also, Moghadasi et al. investigated a footbridge with 
the modified hanger system under human harmonic loads 
[9, 10]. Moghadasi and Moghadasi [11] in another paper 
analyzed a suspension footbridge with inclined hangers with 
two boundary conditions, once with fixed support and another 
with support relying on a soil material in order to investigate 
soil effects on their structural responses because they consist 
of considerable flexibility and also geometrically nonlinear 
members such as main cables and hangers.

To modify the only inclined hangers, Moghadasi and 
Barghian added a link (member) between two adjacent 
inclined hangers in a case study footbridge (Soti Ghat 
footbridge in Nepal).

The new modified hanger system was studied based 
on removing slackness and overstress phenomenon by the 
authors. They formulated the length and the height of the 
added member between two adjacent inclined hangers in 
different footbridges [12]. In the following parts, the term 
“old modification” refers to the Moghadasi’s and Barghian’s 
hangers’ modification; while the term “new modification” 

refers to the Mehrgan’s and Barghian’s present hangers’ 
modification.

In this study, the advantages of the old modified hanger 
system were maintained by using a new modification on 
the hanger system, while its disadvantages were removed. 
The disadvantage of old modification was eliminated by 
considering modal analysis. Also, the dynamic features on 
a footbridge with vertical, inclined, old modified, and new 
modified hangers’ systems were compared. The results 
showed that in comparison with vertical, inclined, and old 
modified hanger systems, the new modified hanger system 
was significantly improved.

2- Analytical model
In this paper, four suspension footbridges with vertical, 

inclined, old and mew modified hanger systems were 
analyzed. As a case study, the data of the Soti Ghat pedestrian 
bridge in Nepal were used. Similar properties were used in 
four bridges. The spans were stiffened by two longitudinal 
pipe-shaped beams. The diameter of the main cables was 
set to 120 mm and the hangers to 26 mm. At every specified 
distance of the deck, there was also a transverse beam forming 
pinned connections between the longitudinal beams. The deck 
of each bridge was stiffened by two horizontal pipe-shaped 
braces laterally. The towers comprised steel pipes, braced 
laterally by diagonal braces. In the bridge models, steel (with 
the Young modulus of 2×1011 N/m2, and the density of 7850 
kg/m3) was chosen for all members. For main cables and 
hangers, the following values were used: fy = 1.18×109 N/m2, 
fu = 1.57× 109 N/m2 and the density of 7850 kg/m3 where fy 
and fu are yield stress and tensile strength, respectively. The 
amount of pre-stressed load of cables was considered based 
on the weight of cables, sag, and axial stiffness in cables. The 
views of vertical and inclined hanger systems of the Soti Ghat 
Bridge are shown in Fig.1 and 2.

2.1.Verification of the footbridge model
The Soti Ghat bridge was modeled by Barghian and 

Moghadasi [8] using SAP2000 software. They considered 
different load patterns to analyze the bridge statically. To 
verify the present model, the same load patterns were applied 
to the present model using CSI Bridge software, and identical 
or very close results were obtained. Here, only two of the 
graphs are shown (Fig.3 ad 4). 

The error between the amount of curves in reference [8] 
and the present study was less than 5%.

2.2. Modifying the inclined hanger system arrangement to 
improve its efficiency

The vertical hangers have usually been used in most 
pedestrian bridges and a few of them have been built with 
inclined hangers. The new model of hanger systems has been 
presented to remove the defects of both vertical and inclined 
hangers. In this model, a horizontal member is added between 
two adjacent inclined hangers as shown in Fig.5, so that the 
distribution of load between two adjacent hangers is done by 
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Fig. 1. Soti Ghat pedestrian suspension bridge model with vertical hangers’ system [12]

Fig. 2. Soti Ghat pedestrian suspension bridge with inclined hangers’ system [12]

Fig. 3. The vertical displacements of the deck in footbridges with different hanger systems 
subjected to load pattern D
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the added member. The cross-section and material used in the 
added member are the same as that used in hangers. 

The old modified hanger system of the Soti Ghat 
footbridge is shown in Fig.6.

In the old proposed modified system, the constant length 
and height of 1m and 2m (L=1m, H=2m), were respectively 
employed for the added member. In this study the old modified 
system was improved with the changes in the arrangement of 
the hangers and position of the added member, the length of 
the added member was set to 1m by the following relations:

According to Fig.7(a) for a pair of arbitrary adjacent 
inclined hangers, the following linear equation can be written 
for AC line. 

(1)

Where, H, L, and Lb are the height of the added member, 
the length of the added member, and the length of the beam 
between two adjacent hangers, respectively.

Substituting the value of the added member height that is 
half the corresponding adjacent height of the hangers, gives 
the equation:

(2)

To apply the initial effect to the added member and to 

transfer the force between the hangers, the length obtained 
from Eq. (2) must be corrected. The minimum value for this 
correction is 20 cm for the Soti Ghat footbridge [12], in this 
study for a more accurate comparison, the value of 25 cm is 
considered.

 (3)

And the height of the added member was set variable. 
So that, the center height of two adjacent hangers was 
employed as a unique height for each added member (L=1m, 
H=variable). Fig.7(b) shows the view of a pair of the new 
modified hanger with the added member. The new modified 
hanger system is shown in Fig8.

3- 	 Harmonic load models
3.1. Equivalent number of pedestrians for streams 

Synchronous excitation can be caused by the combination 
of the high density of pedestrians and low natural frequencies 
within the frequency range of pacing rate. The crowded 
pedestrian loads were modeled as uniformly distributed 
loads on the entire bridge deck (simulating an equivalent 
number of pedestrians at fixed locations). For the modeling 
of a pedestrian stream consisting of n ‘random’ pedestrians, 
the idealized stream consisting of n ′ perfectly synchronized 
pedestrians should be determined (see Fig.9). The two 
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Fig. 4. The Shear force in stiffening beams in three hanger systems subjected to load pattern D
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Fig. 5. The specification of modified hangers’ system [12]

Fig. 6. Soti Ghat pedestrian suspension bridge model with old modified hangers’ system [9]
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streams are supposed to cause the same effect on a structure, 
but the equivalent one can be modeled as a deterministic load.

In Figure 8, n ′ , iQ  and ( )i xΦ  are the equivalent 
number of pedestrians on a loaded surface of the bridge deck, 
amplitudes of the loads, and vectors of modal displacements 
taken into consideration, respectively.

3.2. Application of load models
Harmonic load models were provided according to the 

certain traffic class. There are two different load models to 
calculate the response of the footbridge due to pedestrian 
streams depending on their density: the load model for 
density: , and the load model for density: 21 /d P m≥ , d, 
P, and m2 are the density of pedestrians, number of pedestrians 

and unit of surface, respectively. Both load models share a 
uniformly distributed harmonic load of ( ) 2 [ / ]P t N m   
that represents th sf e equivalent pedestrian stream. ( )P t  
can be calculated from:

(4)

where ( ) ( ).cos 2 . .sP t p f tπ=  is the harmonic 
load due to a single pedestrian [3], P  is the

 component of the force due 
to a single pedestrian with a walking step frequency , which 
is assumed equal to the footbridge natural frequency under 
consideration, n ′ is the equivalent number of pedestrians 

( ) ( ).cos 2 . . . .sP t p f t nπ ψ′=
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Fig. 8. Soti Ghat pedestrian suspension bridge model with new modified hangers’ system

Fig. 9. Equivalence of streams [6]
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Fig. 7. The shape of two adjacent hangers with added member
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Table 1. Parameters for the load model of pedestrian traffic

on the loaded surface S, where S is the area of the loaded 
surface. Also, ψ is the reduction coefficient taking into 
account the probability that the footfall frequency approaches 
the critical range of natural frequencies under consideration. 
The amplitude of the single pedestrian load P, the equivalent 
number of pedestrians n ′ (95th percentile), and reduction 
coefficient sψ ′ are defined in Table 1 [6], considering the 
excitation in the first harmonic or second harmonic of the 
pedestrian load.

Equivalent number n ′  of pedestrians on the loaded surface 

for load model of:

If density 2 10.8 .1 /  : n = nd P m
S
ξ′<

If density 2 1.851 /  : nd P m n
S

′≥ =

Where ξ  is the structural damping ratio and n is the number 
of pedestrians on the loaded surface ( )  . S n S d=  where d 

is the density of pedestrians on the deck.

In the numerical analysis, the Hilber–Hughes– Taylor 
method was used for the non-linear time history analysis 
under the walking dynamic loads. In Fig.10, the harmonic 
vertical loads of P(t) (that may be vertically or laterally) were 
applied to the vertical hangers’ system for a particular mode 
shape. In the case of torsional modes with several sags, the 
amplitude of the force must be of the shape shown in Figure 
11. As mentioned earlier, it should be noted that suspension 
bridges always have four main types of vibration modes 
[13]: lateral, vertical, torsional, and longitudinal modes. 
However, numerical results show that the lateral modes 
and torsional modes do not always appear as pure lateral or 
torsional vibration modes. Most vertical vibration modes 
appear as pure vertical modes, without corresponding lateral 
or torsional ones. However it is possible to consider coupled 
lateral-torsional or torsional-lateral modes To considered 
harmonic loads, so to apply pedestrian loads in the case of 
coupled modes, the lateral and torsional loads have been 
placed simultaneously on the surface of bridges To the shape 
of lateral and torsional signs of coupled modes. Results 
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3-2- Application of load models 
Harmonic load models were provided according to 
the certain traffic class. There are two different load 
models to calculate the response of the footbridge 
due to pedestrian streams depending on their 
density: the load model for density: 21 /d P m , 
and the load model for density: 21 /d P m , d, P, 
and m2 are the density of pedestrians, number of 
pedestrians and unit of surface, respectively. Both 
load models share a uniformly distributed harmonic 
load of ( ) 2 [ / ]P t N m   that represents the 

equivalent pedestrian stream. ( )P t   can be 

calculated from: 

( ) ( ).cos 2 . . . .sP t p f t n =                                                                                                     

Eq. (4) 

where ( ) ( ).cos 2 . .sP t p f t=  is the harmonic load 

due to a single pedestrian [3], P  is the component 
of the force due to a single pedestrian with a 
walking step frequency sf , which is assumed equal 

to the footbridge natural frequency under 
consideration, n  is the equivalent number of 
pedestrians on the loaded surface S, where S is the 
area of the loaded surface. Also,  is the reduction 
coefficient taking into account the probability that 
the footfall frequency approaches the critical range 
of natural frequencies under consideration. The 
amplitude of the single pedestrian load P, the 
equivalent number of pedestrians n  (95th 
percentile), and reduction coefficient s  are 
defined in Table 1 [6], considering the excitation in 
the first harmonic or second harmonic of the 
pedestrian load. 

Table 1. Parameters for the load model of pedestrian traffic 
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Where   is the structural damping ratio and n is 
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pedestrians on the deck. 

 

Fig. 10. Application of a vertically harmonic load according to mode shape
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Fig. 11. Sign of the amplitude of the load in the case of a torsion mode with several sags. Noted in red are the zones in which the 
amplitude of the load is positive, and in blue the zones in which the amplitude of the load is negative [13]

Fig. 12. Vertical vibration mode shape of vertical hangers’ system (mode 14: frequency=1.5488 Hz)

show that the coupled lateral-torsional vibration modes are 
dominated by the lateral vibration modes in conjunction with 
the torsional vibration, while coupled torsional-lateral modes 
are dominated by torsional vibration modes. The loaded 
surface S of the whole bridge deck should be considered with 
load acting up and down according to the investigated mode 
shape directions. The different load directions are simulating 
a phase shift of 180 (orπ ) for the pedestrians walking over 

the bridge. This can be interpreted as full synchronization 
between every single pedestrian and the belly of the mode 
shape (direction), which he/she is reaching or just walking 
over. In numerical analysis, it was assumed that the load 
density was 1.5 person/m2 (excessive live load on the deck) 
and the average weight of a person was 700 N [13].

The following figures 12 and 13 illustrate the bending and 
torsion modes in the vertical hangers’ system.4.	
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Fig. 13. Torsional vibration mode shape of vertical hangers’ system (mode 5: frequency=0.73085 Hz)

4- Results and Discussions
4.1. Lateral and vertical vibrations corresponding to the 
critical frequency range under the pedestrian load

Natural frequencies of the four bridges with different 
hanger systems were calculated. Results are shown in Tables 
2 and 3. Dead load and the pre-stressing load of cables were 
considered as initial conditions for the calculation of natural 
frequencies. The critical ranges for natural frequencies fi of 
footbridges with pedestrian excitation are as follows: 

For vertical and longitudinal vibrations 1.25 Hz ≤ fi ≤ 4.6 
Hz and for lateral vibration 0.5 Hz ≤ fi ≤ 1.2 Hz.

According to Tables 2 and 3, some modes of the 
footbridges with vertical, inclined, old, and new modified 
hanger systems have coincided with the critical bandwidth 
of pedestrian frequencies for lateral and vertical vibrations, 
which means that they are prone to excitation by walking 
pedestrians. 

The natural frequency variation diagram for four hanger 
systems is shown in Fig.14. It was realized that, up to the ninth 
mode, the dynamic behavior of the new modified system is 
somewhat identical to the vertical and old modified systems. 
After the ninth mode, the frequencies of the new system are 
very close together. 

Fig. 14. The natural frequency diagram of the footbridge with different hanger systems

/ 
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Table 3. Natural modes and frequencies of the suspension footbridge with old and new modified hanger systems

Table 2. Natural modes and frequencies of the suspension footbridge with vertical and inclined hangers

9 
 

Mode 
No. 
 

Natural 
Frequency 
(Hz) 

Description of Mode 
Shape  

Mode 
No. 
 

Natural 
Frequency 
(Hz) 

Description of Mode Shape 

1 0.44007 Vertical  1 0.54748 Main cables oscillation 
2 0.54793 Main cables oscillation  2 0.60388 Main cables oscillation 
3 0.60736 Main cables oscillation  3 0.78885 Lateral 
4 0.69588 Vertical  4 0.84059 Main cables oscillation 
5 0.73085 Torsional  5 0.852 Main cables oscillation 
6 0.7843 Lateral  6 1.1949 Main cables oscillation 
7 0.8434 Main cables oscillation  7 1.2107 Main cables oscillation 
8 0.85463 Main cables oscillation  8 1.5507 Main cables oscillation 
9 0.92586 Torsional  9 1.5785 Main cables oscillation 
10 1.1231 Vertical  10 1.6536 Vertical 
11 1.1994 Main cables oscillation  11 1.9163 Main cables oscillation 
12 1.2153 Main cables oscillation  12 1.9298 Torsional 
13 1.2786 Torsional  13 1.9697 Main cables oscillation 
14 1.5488 Vertical  14 2.1171 Vertical 
15 1.5555 Main cables oscillation  15 2.1895 Torsional 
16 1.5835 Main cables oscillation  16 2.2411 Main cables oscillation 
17 1.6656 Torsional  17 2.381 Main cables oscillation 

18 1.921 Main cables oscillation  18 2.4781 Main cables 
oscillation/Lateral effect 

19 1.9757 Main cables oscillation  19 2.5023 Main cables 
oscillation/Torsion effect 

20 2.1705 Vertical  20 2.7225 Vertical 
 

Table 3. Natural modes and frequencies of the suspension footbridge with old and new modified hanger systems 
Modified Hanger systems 

Old Modified  New Modified 

Mode 
No. 

Natural 
Frequency 
(Hz) 

Description of Mode 
Shape  Mode 

No. 

Natural 
Frequency 
(Hz) 

Description of Mode 
Shape 

1 0.48097 Vertical  1 0.54641 Main cables oscillation 
2 0.54673 Main cables oscillation  2 0.5996 Main cables oscillation 
3 0.59965 Main cables oscillation  3 0.75247 Vertical 
4 0.75086 Torsional  4 0.78733 Lateral 
5 0.75728 Vertical  5 0.85001 Main cables oscillation 
6 0.7847 Lateral  6 0.86249 Main cables oscillation 
7 0.85332 Main cables oscillation  7 0.94076 Torsional 
8 0.86481 Main cables oscillation  8 0.95332 Vertical 
9 0.97054 Torsional  9 1.11 Torsional 
10 1.2123 Main cables oscillation  10 1.1736 Hanger oscillation 
11 1.2289 Main cables oscillation  11 1.1855 Hanger oscillation 
12 1.2397 Vertical  12 1.2045 Hanger oscillation 
13 1.3838 Torsional  13 1.2058 Hanger oscillation 
14 1.5727 Main cables oscillation  14 1.2103 Hanger oscillation 
15 1.6018 Main cables oscillation  15 1.2103 Hanger oscillation 
16 1.64203 Vertical  16 1.2144 Hanger oscillation 
17 1.7492 Torsional  17 1.2146 Hanger oscillation 
18 1.9385 Main cables oscillation  18 1.2309 Hanger oscillation 
19 1.9955 Main cables oscillation  19 1.2342 Hanger oscillation 
20 2.2194 Hanger oscillation  20 1.3467 Hanger oscillation 
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20 2.2194 Hanger oscillation  20 1.3467 Hanger oscillation 
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The critical pedestrian frequencies of Tables 2 and 3 are 
summarized in Table 4 (only the values inside the bridge 
excitation frequency range are shown in Table 4). As it is seen 
from Table 4, the lateral vibration mode has been transferred 
from the third mode in the inclined system to the sixth and 
fourth modes in the old and new modified hanger systems, 
respectively. The new modified system was improved in 
comparison with the old one in the terms of vertical vibration 
mode so that the new system has no vertical frequency in the 
pedestrian vertical frequency range.

4.2. Comparison of the hangers’ force oscillations in different 
hanger systems

The force oscillation of the hangers in the new modified 
system has been significantly reduced. As mentioned earlier, 
the positioning and connection of the added member between 
the two inclined adjacent hangers distributes the hangers 
force almost uniformly across the inclined hangers’ system 
and prevents excessive oscillations in this system. 

Fig.15 and 16 show hangers the force under self-weight 
of the bridge in vertical and new modified hanger systems in 
comparison with the inclined one.

As it is seen from Figure 16, the vertical hanger force is in 
the range of the upper and lower hangers’ force fluctuations.

4.3. Comparison of lateral displacements of the bridges with 
different hanger systems

According to Table 4, some modes of bridges with four 
hanger systems have coincided with the critical bandwidth of 
frequencies, which means that they are prone to excitation by 
walking pedestrians. The lateral modes with equal frequencies 
from four different bridges were chosen and compared. The 
applied harmonic loads on four systems of bridge hangers are 
given in Table 5. The indices of loads in Table 5 represent 
the modes which have lateral vibration shape with identical 
frequencies. Then the lateral displacements of the systems 
were compared.

As is shown from Fig.17, the lateral displacements of the 
vertical, old, and new modified hanger systems are identical 
and are lower than the inclined one. It was realized that 
the inclined hanger system has less stiffness against lateral 
vibration comparing with the other three systems. (i.e. 
vertical, old and new modified systems)

Table 4. Natural frequencies and mode shapes of the different hanger systems

Table 5. Pedestrian dynamic loads according to the lateral natural frequency for the footbridges

10 
 

 

Fig. 14: The natural frequency diagram of the footbridge with different hanger systems 

Table 4. Natural frequencies and mode shapes of the different hanger systems 

 Hanger Systems 
Vertical  Inclined  Old Modified  New Modified 

Mod
e No. 

 

Natural 
Frequen
cy (Hz) 

Mode 
Shape  

Natural 
Frequenc

y (Hz) 

Mode 
Shape  

Natural 
Frequenc

y (Hz) 

Mode 
Shape  

Natural 
Frequenc

y (Hz) 

Mode 
Shape 

3 - -  0.78885 Lateral  - -  - - 
4 - -  - -  - -  0.78564 Lateral 
6 0.7843 Lateral  - -  0.7847 Lateral  - - 
10 - -  1.6536 Vertical  - -  - - 
14 1.5488 Vertical  2.1171 Vertical  - -  - - 
16 - -  - -  1.642 Vertical  - - 
20 2.1705 Vertical  2.7225 Vertical  - -  - - 
 

4-2- Comparison of the hangers’ force 
oscillations in different hanger systems 

The force oscillation of the hangers in the new 
modified system has been significantly reduced. As 
mentioned earlier, the positioning and connection 
of the added member between the two inclined 
adjacent hangers distributes the hangers force 

almost uniformly across the inclined hangers’ 
system and prevents excessive oscillations in this 
system.  
Figures 15 and 16 show hangers the force under 
self-weight of the bridge in vertical and new 
modified hanger systems in comparison with the 
inclined one. 

 

Fig. 15: Inclined and new modified hanger forces with L=1m and H=Var. due to the self-weight 

11 
 

 

Fig. 16: Vertical and new modified hanger forces with L=1m and H=Var. due to the self-weight 

As it is seen from Figure 16, the vertical hanger 
force is in the range of the upper and lower hangers' 
force fluctuations. 

4-3- Comparison of lateral displacements of the 
bridges with different hanger systems 

According to Table 4, some modes of bridges with 
four hanger systems have coincided with the 
critical bandwidth of frequencies, which means that 
they are prone to excitation by walking pedestrians. 

The lateral modes with equal frequencies from four 
different bridges were chosen and compared. The 
applied harmonic loads on four systems of bridge 
hangers are given in Table 5. The indices of loads 
in Table 5 represent the modes which have lateral 
vibration shape with identical frequencies. Then the 
lateral displacements of the systems were 
compared. 

Table 5. Pedestrian dynamic loads according to the lateral natural frequency for the footbridges 
 

Hanger Systems ( )iP t : Dynamic Load (N/m2) 

Vertical ( ) ( )6 5.6cos 2 0.784P t t=   

Inclined ( ) ( )3 5.6cos 2 0.788P t t=   

Old modified ( ) ( )6 5.6cos 2 0.787P t t=   

New modified ( ) ( )4 5.6cos 2 0.784P t t=   
i: mode number according to Table 2 and 3      

 

Fig. 17: Lateral displacement of the footbridge with different hanger systems 

As is shown from Figure 17, the lateral 
displacements of the vertical, old, and new 
modified hanger systems are identical  and are 
lower than the inclined one. It was realized that the 

inclined hanger system has less stiffness against 
lateral vibration comparing with the other three 
systems. (i.e. vertical, old and new modified 
systems) 
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Fig. 15. Inclined and new modified hanger forces with L=1m and H=Var. due to the self-weight

/ 

Fig. 16. Vertical and new modified hanger forces with L=1m and H=Var. due to the self-weight

Fig. 17. Lateral displacement of the footbridge with different hanger systems

/ 

/ 
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4.4. Comparison of vertical displacements of the bridges with 
different hanger’ systems

To compare bridges’ vertical displacements, similar to 
lateral displacements, the modes were chosen that firstly, 
they had vertical mode vibration shapes, and secondly, the 
frequencies of those modes were equal. According to Tables 
2 and 3, it was observed that the footbridges had no identical 
frequency related to vertical mode shapes to compare with 
each other in terms of vertical displacement. For this reason, 
equal frequencies of four hanger systems were compared two 
by two. 

In order to compare vertical displacement in bridges with 
different hanger systems, the constant value of 44.86 N was 
employed as the amplitude of the harmonic load ( . .p n ψ′ ). 
The mentioned value was calculated by assuming 1ψ =  for 
all bridges. i.e.:

( ) ( ).cos 2 . . . .sP t p f t nπ ψ′=

2 1.85 (200 1.5)1.851 /  : n 0.16
100*2

nd P m
S

×
′≥ = = =

. . 280 0.16 1 44.86p n ψ′ = × × =

Fig.18 shows that the old modified hangers’ system has 
fewer vertical displacements in comparison with the vertical 
hangers’ system. 

Fig.20 shows that the new modified hangers’ system has 
fewer vertical displacements in comparison with the old 
modified hangers’ system. By comparing Fig.18 to 20, it 
is realized that the new modified system has fewer vertical 
displacements than conventional hanger systems and acts 
better than the others. 

/ 

Fig. 18. Maximum vertical displacements due to P1 for the bridges with vertical and old modified hanger systems

/ 

Fig. 19. Maximum vertical displacements due to P10 and P16 for the bridges with inclined and old modified hangers’ 
systems, respectively
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/ 

Fig. 20. Maximum vertical displacements due to P5 and P3 for the bridges with old and new modified hanger 
systems, respectively

5- Conclusion
•	 The number of critical pedestrian frequency in the 

vertical, inclined, old, and new modified hanger systems 
are 3, 4, 2, and 1, respectively. The results showed that in 
terms of the number of excitation frequency within the 
critical frequency range for pedestrian induced dynamic 
loads, both the old and new modified systems have 
less excitation frequency than the vertical and inclined 
systems and finally the new modified system has the least 
excitation frequency. 

•	 In the new modified hanger system in addition to the 
complete elimination of slackness phenomenon, unlike 
the old modified hanger system, the upper and lower 
sections forces of hangers were almost equal.

•	 The inclined hanger system has less stiffness against 
lateral vibration comparing with the other three vertical, 
old, and new modified systems.

•	 The maximum amount of lateral displacement of the 
footbridge is related to the inclined system, which is 
102.4%, 99.7%, and 99.9% more than the vertical, 
old, and new modified model, respectively. The lateral 
displacements in the three vertical, old and new modified 
systems are very close together and their variations are 
very small and less than 1%.

•	 The new modified hanger system has less vertical 
displacement in comparison with three other vertical, 
inclined, and old modified hanger systems. The maximum 
displacement in the bridge with the old modified hanger 
system is 260.3% higher than the new modified one.

•	 The new modified system was improved in comparison 
with the old one in terms of the vertical vibration mode 
so that the new system has no vertical frequency in the 
pedestrian vertical frequency range.
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