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Modeling Marshall Test Results of Hot Mix Asphalt Using Nonlinear Genetic 
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A. Azarhoosh

Faculty of Engineering, Department of Civil Engineering, University of Bojnord, Bojnord, North Khorasan, Iran.

ABSTRACT:  The Marshall test method is widely used for the design and control of hot mix asphalt 
(HMA). The Marshall and modified Marshall mix design methods are most widely used in Iran. 
Determining Marshall test results (Marshall stability, flow, and Marshall quotient (MQ)) are time-
consuming. Therefore, using new and advanced methods to determine the results of Marshall testing 
is essential. In this study, the genetic programming method based on artificial intelligence was used 
for the prediction of Marshall test results. Input variables in the genetic programming models use the 
volumetric properties of standard Marshall specimens such as air voids, voids in mineral aggregate 
(VMA), and voids filled with asphalt (VFA). Also, multiple linear regression models were used as the 
base model to evaluate the models presented by the genetic programming method. The results indicated 
that the proposed methods are more efficient than the laboratory costly method and the performance 
of the genetic programming model is completely satisfactory in comparison to the base model and has 
been able to predict the results of Marshall testing based on the input parameters. The GP models have a 
higher coefficient of determination and fewer errors than MLR models. The presented models will also 
help further researchers willing to perform similar studies, without carrying out destructive tests.
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1- Introduction
Bruce Marshall developed the very basic fundamentals of 

the Marshall design. In 1948, the U.S. Corps of Engineers, 
improved and built up certain milestones to Marshall’s test 
procedure. Since this time, Marshall design has been adopted 
by organizations and government departments worldwide 
with very minor modifications [1]. The Marshall method of 
mix design is for dense graded hot mix asphalt (HMA). It is 
the predominant mix design method for airport pavements. 
Currently, the Marshall and modified Marshall mix design 
method are most widely used in Iran, and in the Iran Ministry 
of Road and Transportation, Management and Planning 
Organization journal (code. No.234), the use of this method 
for mix design of asphalt mixtures is suggested [2]. Basically, 
two mechanical properties, stability and flow, are determined 
for the asphalt specimens from the standard Marshall test. The 
ratio of stability and flow is known as the Marshall quotient 
(MQ). MQ indicates the stiffness of asphalt mixtures and is 
directly related to their resistance to permanent deformation. 
[3].

Marshall mix design in the lab is a time-consuming and 
costly process. In addition, the two parameters of Marshall 
stability and flow are the output of the Marshall test, which 
are obtained physically. Other parameters such as air voids 
(Va), voids filled with asphalt (VFA), voids in mineral 
aggregate (VMA), bulk and maximum unit weight of mixture 

can be calculated by further calculations. Therefore, if the 
two parameters of Marshall stability and flow are calculated 
using other methods, the researchers will obtain the other 
parameters with a series of mathematical calculations.

Besides, the construction and development of roads are 
one of the basics of economic and cultural development 
in countries. Hence according to the high costs of asphalt 
implementation and maintenance, the necessity of using new 
and advanced methods in the design and quality control of 
asphalt is becoming more and more evident. One of these 
modern methods is artificial intelligence algorithms. Artificial 
neural networks (ANN) are widely used to determine patterns 
between different parameters. Therefore, several studies 
have been performed to evaluate the performance of asphalt 
mixtures using ANN. In the study performed by Hassani and 
Heydari Panah [4], artificial neural networks were used to 
predict the Marshall stability of asphalt. For this purpose, the 
percentages of different sieve crossings, the percentage of 
fractured faces, and the percentage of bitumen were considered 
as network inputs, Marshall stability as network outputs. 
The results show that by increasing the number of hidden 
layer neurons to 8, the simulation power of the networks is 
maximized, and a further increase of the hidden layer neurons 
has no significant effect on the network simulation power. 
In the next step, by analyzing the sensitivity by a network 
with the highest simulation power, the trend of changes in 
Marshall stability toward the percentage of fractured faces of 
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aggregate was modeled. The results show that the strength of 
the Marshall stability of asphalt increases with an increasing 
percentage of fractured faces of aggregate, which is in line 
with the general trend.

Also, Ozgan [5] investigated the effect of two factors, 
temperature (30, 40 and, 50 °C) and loading times (1.5, 3, 
4.5, 6 hours) on the Marshall stability of field samples and 
used ANN to model them. Laboratory results show that the 
Marshall stability of asphalt samples at 30 °C after 1.5 and 6 
hours of loading decreases 40.16% and 62.39%, respectively. 
These reduction values at 40 °C are 74.31% and 78.10%, 
and at 50 °C are 83.22% and 88.66%. Also, the experimental 
results and the ANN model have shown good correlation, 
so the ANN method can be used to model the Marshall 
stability of asphalt samples. Also in another study, the 
Marshall stability of polyethylene modified asphalt samples 
was simulated by ANN and least squares support vector 
machine (LS-SVM) methods. Laboratory results showed that 
the use of polyethylene improved the Marshall properties 
of asphalt samples such as stability, flow, and air void. The 
two simulation methods used in this study use polyethylene, 
bitumen, and aggregate contents as input parameters to predict 
three variables of Marshall stability, flow, and the percentage 
of air void. Of the two methods used, the ANN-based model 
has much higher accuracy than the LS-SVM model [6].

Despite the acceptable performance of ANN-based 
models, they have disadvantages. ANN models often do not 
provide a specific relation for calculating the output parameter 
in terms of input parameters. Therefore, they do not provide 
a realization of the nature of the relationship created between 
different input and output data. Genetic programming (GP) 
provided by Koza [7] is an alternative way to present a model 
for solving civil engineering problems. GP is a supervised 
machine-learning technique that searches for a program 
space instead of a data space. Therefore, many researchers 
have used GP to find out any complex relationships between 
experimental data in civil engineering [8-11].

In this research, GP has been used to represent the 
Marshall test results models in asphalt mixtures. Therefore, 
Marshall stability, flow, and MQ relations are represented 
based on air void, VMA, and VFA parameters. Also, multiple 
linear regression (MLR) models were used as the base model 
to evaluate the models presented by the GP method.

2- Materials
2.1. Aggregate

Three types of aggregate with different characteristics 
have been used in this study to investigate the influence of 
aggregate type on Marshall test results. Thus, specific gravity, 
Los Angeles abrasion, the percent of flat and elongated 
particles, and durability tests have been conducted on three 
types of aggregate, and the results have been proposed in 
Table 1.The aggregates used in asphalt mixtures should have 
a definite gradation. In this research, o investigate the effect 
of gradation type on Marshall test results, three types of 
gradation were used that their specifications were presented 
in Fig.1. Also, the gradations used in this study are for dense-

graded asphalt mixtures.

2.2. Bitumen
In the present study, bitumen with 60-70 and 85-100 

penetration grades, which are two common types of bitumen 
in the investigated country, have been used. Also, in this study, 
to control the characteristics of two types of bitumen and to 
compare them with the existing standards, conventional tests 
such as penetration grade, ductility, softening point, and flash 
point have been done, and the results shown in Table 2.

3- Experimental
3.1. Mix design

In the current study, Marshall mix design based on 
ASTM D6927-15 standard is used to determine the optimum 
bitumen [12]. Hence, asphalt samples were made with 1200 g 
aggregate and different amounts of bitumen. According to the 
type of gradation a based on previous studies, the following 
amounts of bitumen used to prepare samples:
Gradation type 1: 4, 4.5, 5, 5.5, and 6%,
Gradation type 2: 4.5, 5, 5.5, 6, and 6.5%,
Gradation type 3: 5, 5.5, 6, 6.5, and 7%.

To simulate heavy traffic, each side of the cylindrical 
sample was hit 75 times. To achieve mix and compaction 
temperatures, the temperature-viscosity graphs were used. 
The mix temperature for mixtures containing bitumen with 
60-70 penetration grade was determined as 168-173 °C, and 
its compaction temperature was determined as 150-155 °C. 
Also, these temperatures for mixtures containing bitumen 
with 85-100 penetration grade were determined 155-160 °C 
and 137-142 °C, respectively.

The stability of the mix is defined as a maximum load 
carried by a compacted specimen at a standard test temperature 
of 600C. The flow is measured as the deformation in units 
of 0.25 mm between no-load and maximum load carried by 
the specimen during the stability test. A useful factor in the 
assessment of mix quality is the stability to flow ratio (MQ). 
Besides, the bulk specific gravity and maximum specific 
gravity are calculated according to ASTM D2726 and ASTM 
D2041 standards for all asphalt samples, respectively. In the 
following, based on the properties of the materials, mixtures, 
and values obtained from the above experiments, the other 
volumetric properties of the asphalt mixtures were determined 
using the following equations:
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Table 1. The physical characteristics of used aggregates in this study

Table 2 .The characteristics of two types of bitumen using in this study

where VMA is void in mineral aggregate (%), Gmb is the 
bulk specific gravity of asphalt sample, Pb is the amount of 
bitumen as a percentage of the total weight of the mixture, Gsb 
is the bulk specific gravity of aggregates, Gmm is the maximum 
specific gravity of asphalt mixture, Va is the air void in dense 
asphalt mixture (%), and VFA is voids filled with asphalt as a 
percentage of VMA.

4- Modeling
4.1. MLR method

One of the most common methods in multivariable 
analysis is MLR. Based on regression analysis, a linear 
relation between a response or dependent variable is made 
with one or more explanatory or independent variables. The 
linear relation between independent variables x1, x2, … xn and 
the dependent variable Y is described in the MLR model as 
follows [13]:

0 1 1 2 2 n nY a a x a x a x e= + + +…+ +                    
(4)

where  is the width from source, the parameters a1, a2, …, 
and an are regression coefficients, and e is the fit error rate.

4.2. GP method
In 1992, Koza introduced the GP method as an extension 

of the genetic algorithm approach. GP is a new technique for 
computer program generation derived from the biological 
evolution model. According to this method, tree structure 
computer programs with dynamically changeable sizes and 
shapes are evolved for problem-solving. The breeding of tree 
populations is based on the Darwinian principle of genetic 
operations and natural selection [7]. In a GP population, 
each individual is a program including primitives composed 
terminals and functions in a hierarchical tree structure. 
Terminals are commonly in the form of variables or constants. 
A function can be programming, logical operators, standard 
arithmetic, mathematical, or any problem-specific function in 
the domain. The GP process begins with an initial population 
of programs that are commonly produced randomly. Each 
individual within this population is then appraised by a 
predefined problem-specific fitness function. The fitness 
value demonstrates the corresponding individual capability 
for problem-solving in a determined environment. After 
creating an initial population, various parents are chosen 
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Despite the acceptable performance of ANN-based 
models, they have disadvantages. ANN models often 
do not provide a specific relation for calculating the 
output parameter in terms of input parameters. 
Therefore, they do not provide a realization of the 
nature of the relationship created between different 
input and output data. Genetic programming (GP) 
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influence of aggregate type on Marshall test results. 
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percent of flat and elongated particles, and durability 
tests have been conducted on three types of 
aggregate, and the results have been proposed in 
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Table 1 The physical characteristics of used aggregates in this study 

Test Standard Type 1 Type 2 Type 3 Specification 
limit 

Specific gravity (coarse agg.) ASTM C 127     
Bulk  2.47 2.52 2.56 ----- 
Saturated surface dry (SSD)  2.50 2.53 2.59 ----- 
Apparent  2.51 2.56 2.60 ----- 
Specific gravity (fine agg.) ASTM C 128     
Bulk  2.40 2.47 2.51 ----- 
Saturated surface dry (SSD)  2.43 2.48 2.53 ----- 
Apparent  2.44 2.50 2.55 ----- 
Specific gravity (filler) ASTM D854 2.38 2.42 2.50 ----- 
Los Angeles abrasion (%) ASTM C 131 28 20 14 Max 30 
Maximum water absorption (%) ACTM C 127 2.5 1.4 0.7 Max 2.8 
Flat and elongated particles (%) ASTM D 4791 13 10 4 Max 15 
Fractured faces (two-fractured face) (%) ASTM D 5821 80 88 92 Traffic level 
Soundness in NaSO4 (%) ASTM C 88 11 9 3 Max 12 

The aggregates used in asphalt mixtures should have 
a definite gradation. In this research, o investigate the 
effect of gradation type on Marshall test results, three 
types of gradation were used that their specifications 
were presented in Figure 1. Also, the gradations used 
in this study are for dense-graded asphalt mixtures. 

2.2. Bitumen 

In the present study, bitumen with 60-70 and 85-100 
penetration grades, which are two common types of 
bitumen in the investigated country, have been used. 
Also, in this study, to control the characteristics of 
two types of bitumen and to compare them with the 
existing standards, conventional tests such as 
penetration grade, ductility, softening point, and flash 
point have been done, and the results shown in Table 
2. 

Table 2 The characteristics of two types of bitumen using in this study 

Tests Standards Two types of bitumen 
60-70 85-100 

Penetration (100 g, 5 s, 25 ºC), 0.1 mm ASTM D5-73 65 91 
Ductility (25 ºC, 5 cm/min), cm ASTM D113-79 114 >150 

Softening point, ºC ASTM D36-76 57 52 
Flash point, ºC ASTM D92-78 264 243 

Viscosity at 135 ºC, mPas ASTM D2171-07 0.274 0.221 
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Fig. 1. The three types of gradation used in this study [2]
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temperature was determined as 150-155 °C. Also, 
these temperatures for mixtures containing bitumen 
with 85-100 penetration grade were determined 155-
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gravity are calculated according to ASTM D2726 and 
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properties of the asphalt mixtures were determined 
using the following equations: 
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𝑉𝑉𝑉𝑉𝑉𝑉  (3) 
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from the population-based on fitness measures. In the next 
step, genetic operators such as mutation and crossover are 
used on the parents to produce new offspring and to form 
a new generation, which is usually fitter than the prior one. 
This trend continues up to the stop criteria are satisfied. 
A tree structure for the GP model is presented in Fig2. In 
order to achieve models to predict Marshall test results, GP 
parameters were configured as listed in Table 3.

4.3. Performance Measures
To compare and evaluate model functions, statistical 

parameters including root mean squared error (RMSE), mean 
absolute error (MAE), and coefficient of determination (R2) 
were used. These parameters are defined as follows.

(5)

( )( )

( ) ( )

2

1
2

2 2

1 1

/
n

i i i i
i

n n

i i i i
i i

h h t t

R

h h t t

=

= =

 
− − 

 
 =
 
 

− − 
 

∑

∑ ∑

(6)( )
0.5

2

1

/
n

i i
i

RMSE h t n
=

 
= − 
 
∑

                                                                                       (7)

1

/
n

i i
i

MAE h t n
=

= −∑

where hi and ti are the experimental and calculated output 
values for the ith output, respectively; ih  and it  are average 
of the experimental and calculated outputs; and n is number 
of sample.

5- Result and discussion
 5.1. Experimental results

The results of the Marshall mix design for all the asphalt 
samples used in this study are presented in Table 4. As can be 
seen, asphalt mixtures containing type 3 aggregates have the 
highest Marshall stability and the lowest flow compared to 
the other two types of aggregates. Because type 3 aggregates 
compared to the other two types have the best physical 
characteristics that their results are presented in Table 1. 
The aggregates properties in terms of shape, angularity, and 
texture are among influential parameters on Marshall test 
results. The fracture faces and rough surfaces of aggregates 
increased the friction and interlocking among them that can 
lead to resistance of asphalt mixtures against deformation.

Also, the amounts of fine and coarse aggregate in 
asphalt mixture and the nominal maximum size of aggregate 
significantly affect Marshall test results. Asphalt mixtures 
containing coarser aggregates are more resistant to 
deformation at high temperatures due to their higher internal 
friction and interlocking. Therefore, as it can be seen, the 
asphalt mixtures made with coarser gradation, have more MQ 
and consequently lower rutting potential.

Bitumen is used as an adhesive to keep aggregates next to 
each other in the asphalt mixture. The Marshall test results of 
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Table 3. Initial configuration of GP-based model

asphalt mix depend significantly on their bitumen properties. 
With the increase of bitumen stiffness, the stiffness of 
asphalt mixtures and consequently their resistance against 
deformation will be increased. As can be seen, mixtures 
containing bitumen 60-70, which has more viscosity compared 
to bitumen 85-100, have a higher Marshall stability and less 
flow. Furthermore, the results of this study have shown that 
asphalt mixtures with similar gradation and aggregate type, 
higher amounts of bitumen decrease the air void and increase 
the MQ and rutting potential.

5.2. Predictions Models
In this study, 270 asphalt samples were made and 

examined. Since three samples have been made for each 
compound of asphalt mixtures and experimental conditions 
(the type of bitumen and aggregate, gradation) 90 samples 
were used to represent models. Next, data randomly divided 
into two groups of training and testing to analyze data and 
represent a model. So, 80% and 20% of data were used in 
this study for training (representation) and testing model, 
respectively. It is essential to mention that all input and output 
data have been normalized between 0 and 1 by equation (8) 
before any analysis of data.

Normalized value=  [(Actual)_value-(minimum)_
(Actual value) ]/((maximum)_(Actual value)-
(minimum)_(Actual value) )

(8)

5.2.1. Models offered based on MLR method
In this section, the traditional Marshall test results models, 

obtained through linear regression analysis, were presented. 
These models used air void, VMA, and VFA as input variables 
which are shown in equations 9 to 11.

1.369 0.751 0.496 1.513aS V VMA VFA= − + −      (9)

 
�̅�𝐹 = 0.412 − 0.454𝑉𝑉�̅�𝑎 − 0.127𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅ ̅ + 0.568𝑉𝑉𝐹𝐹𝑉𝑉̅̅ ̅̅ ̅̅  (10) 

       (10)

(11)
1.776 1.029 0.597

2.166
aMQ V VMA

VFA

= − +

−

where S .  is Marshall stability normalized b 0 and 1 (kg), 
 F . is flow normalized between 0 and 1 (0.25 mm),  MQ . is 

Marshall quotient normalized between 0 and 1 (kg/mm)  aV
is air void between normalized 0 and 1 (%), VMA  are voids 
in mineral aggregate normalized between 0 and 1 (%),  VFA  
is voids filled with asphalt normalized between 0 and 1 (%).

Fig.3 depicts the results of calculated Marshall test results 
versus experimental amounts. As it is observed, experimental 
and calculated results have a relatively poor fit. Therefore, 
calculate Marshall test results in asphalt mixtures may not be 
true based on this model.

A coefficient of determination is a statistic parameter 
to measure the degree of a linear relationship between two 
variables, which each of them has been measured by their 
units. In this study, based on the quantitative content of 
data, the Pearson coefficient of determination has been used. 
Pearson coefficient of determination is defined in a way that 
only accepts amounts between -1 and +1, which +1 means 
perfect positive correlation and -1 means perfect negative 
correlation. In other words, the larger absolute value of this 
coefficient confirms that a stronger linear relationship between 
two parameters exists. Results of the correlation between data 
used in this study are represented in Table 5. The results show 
that the two parameters of air void and VFA compared with 
VMA have a greater impact on the Marshall test results.

5.2.2. Models based on the GP method
In the following, the Marshall test results models based on 

GP are presented:

( )

( )

2

0.75 8
9 4

a a aS V VMA VMA V V VMA

VFA VMA VFAVMA VFA VMA

= × − + +

 ×
− + − × − 

 

(12)

2
0.3330.857

51
a

a

VFA VVFAF
VMAVMA VFA

V VFA

−
= +

+ + +
(13)

( )
( )

3
6 2

58
5

a

a

V VMA VMA
MQ

VVFA

− +
=

−
+ ×

(14)

7 
 

Table 3 Initial configuration of GP-based model 

Parameter Value Parameter Value 
Function set (+,-,*,/) Terminal set )3,…,r1,r3,…,x1(x 

Population size 5000 Number of generations 1000 
Max initial depth 6 Max depth 25 

4.3.  Performance Measures 
To compare and evaluate model functions, statistical 
parameters including root mean squared error 
(RMSE), mean absolute error (MAE), and coefficient 
of determination (R2) were used. These parameters 
are defined as follows: 

𝑅𝑅2

=
[
 
 
 
∑(ℎ𝑖𝑖 − ℎ�̅�𝑖)(𝑡𝑡𝑖𝑖 − 𝑡𝑡�̅�𝑖)
𝑛𝑛

𝑖𝑖=1

/√∑(ℎ𝑖𝑖 − ℎ�̅�𝑖)
2 ∑(𝑡𝑡𝑖𝑖 − 𝑡𝑡�̅�𝑖)2

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1 ]
 
 
 
2

 

(5) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = [∑(ℎ𝑖𝑖 − 𝑡𝑡𝑖𝑖)2/𝑛𝑛
𝑛𝑛

𝑖𝑖=1
]
0.5

 (6) 

𝑅𝑅𝑀𝑀𝑅𝑅 = ∑|ℎ𝑖𝑖 − 𝑡𝑡𝑖𝑖|
𝑛𝑛

𝑖𝑖=1
/𝑛𝑛 (7) 

where hi and ti are the experimental and calculated 
output values for the ith output, respectively; ℎ�̅�𝑖 and 𝑡𝑡�̅�𝑖 
are average of the experimental and calculated 
outputs; and n is number of sample. 

  

5. Result and discussion 
5.1. Experimental results 

The results of the Marshall mix design for all the 
asphalt samples used in this study are presented in 
Table 4. As can be seen, asphalt mixtures containing 
type 3 aggregates have the highest Marshall stability 
and the lowest flow compared to the other two types 

of aggregates. Because type 3 aggregates compared 
to the other two types have the best physical 
characteristics that their results are presented in Table 
1. The aggregates properties in terms of shape, 
angularity, and texture are among influential 
parameters on Marshall test results. The fracture 
faces and rough surfaces of aggregates increased the 
friction and interlocking among them that can lead to 
resistance of asphalt mixtures against deformation. 

Also, the amounts of fine and coarse aggregate in 
asphalt mixture and the nominal maximum size of 
aggregate significantly affect Marshall test results. 
Asphalt mixtures containing coarser aggregates are 
more resistant to deformation at high temperatures 
due to their higher internal friction and interlocking. 
Therefore, as it can be seen, the asphalt mixtures 
made with coarser gradation, have more MQ and 
consequently lower rutting potential. 

Bitumen is used as an adhesive to keep aggregates 
next to each other in the asphalt mixture. The 
Marshall test results of asphalt mix depend 
significantly on their bitumen properties. With the 
increase of bitumen stiffness, the stiffness of asphalt 
mixtures and consequently their resistance against 
deformation will be increased. As can be seen, 
mixtures containing bitumen 60-70, which has more 
viscosity compared to bitumen 85-100, have a higher 
Marshall stability and less flow. Furthermore, the 
results of this study have shown that asphalt mixtures 
with similar gradation and aggregate type, higher 
amounts of bitumen decrease the air void and 
increase the MQ and rutting potential. 
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Table 4 Marshall test results  

Test No. Type of 
aggregate 

Type of 
bitumen 

Type of 
grading 

Amount of 
bitumen 

Air void 
 (%) 

VMA 
 (%) 

VFA  
(%) 

Marshall 
stability (kg) 

Flow  
(0.25 mm) 

MQ  
(kg/mm) 

1 

1 60-70 1  

4 5.72 14.22 59.74 949 9.21 412.16 
2 4.5 5.25 14.39 63.49 1002 9.65 415.34 
3 5 4.62 14.80 68.79 1061 10.34 410.44 
4 5.5 4.34 15.52 72.06 976 11.18 349.19 
5 6 3.92 16.12 75.67 904 12.01 301.08 
6 

2 60-70 1 

4 6.20 14.29 56.62 1161 8.39 553.52 
7 4.5 5.48 13.86 60.48 1224 9.04 541.59 
8 5 5.16 14.13 63.52 1292 9.93 520.44 
9 5.5 4.58 14.17 67.68 1201 10.79 445.23 
10 6 4.35 14.52 70.03 1109 11.65 380.77 
11 

3 60-70 1 

4 6.96 14.87 53.23 1408 7.32 769.40 
12 4.5 5.93 14.34 58.65 1483 7.65 775.42 
13 5 5.21 14.27 63.46 1591 8.24 772.33 
14 5.5 4.79 14.46 66.88 1532 9.06 676.38 
15 6 4.45 14.72 69.77 1476 10.12 583.40 
16 

1 60-70 2 

4.5 5.64 15.12 62.69 903 9.42 383.44 
17 5 5.09 15.14 66.36 981 9.83 399.19 
18 5.5 4.59 15.66 70.67 927 10.65 348.17 
19 6 4.23 16.30 74.06 842 11.34 297.00 
20 6.5 3.91 16.98 76.96 733 12.18 240.72 
21 

2 60-70 2 

4.5 5.83 15.06 61.27 1111 8.55 519.77 
22 5 5.16 15.01 65.63 1169 9.31 502.26 
23 5.5 4.89 15.76 69.00 1218 10.06 484.29 
24 6 4.44 16.36 72.83 1147 10.95 419.00 
25 6.5 4.18 17.10 75.57 1083 11.82 366.50 
26 

3 60-70 2 

4.5 6.68 15.56 57.10 1391 7.75 717.94 
27 5 5.84 15.70 62.83 1425 8.19 695.97 
28 5.5 4.95 15.92 68.89 1498 9.14 655.58 
29 6 4.58 16.59 72.41 1532 10.32 593.80 
30 6.5 4.25 17.29 75.44 1467 11.17 525.34 
31 

1 60-70 3 

5 5.32 15.45 65.55 902 9.63 374.66 
32 5.5 4.70 15.66 70.01 981 10.05 390.45 
33 6 3.93 15.95 75.33 907 10.89 333.15 
34 6.5 3.44 16.47 79.13 829 11.66 284.39 
35 7 2.99 17.03 82.45 714 12.37 230.88 
36 

2 60-70 3 

5 5.74 15.83 63.72 1086 9.09 477.89 
37 5.5 5.04 15.93 68.37 1145 9.54 480.08 
38 6 4.36 16.32 73.26 1209 10.22 473.19 
39 6.5 3.86 16.86 77.09 1143 11.03 414.51 
40 7 3.34 17.38 80.78 1057 11.95 353.81 
41 

3 60-70 3 

5 6.53 16.48 60.38 1344 8.16 658.82 
42 5.5 5.60 16.47 65.98 1396 8.95 623.91 
43 6 4.68 16.65 71.89 1472 9.74 604.52 
44 6.5 4.01 17.06 76.49 1519 10.63 571.59 
45 7 3.56 17.65 79.85 1481 11.59 511.13 

 

  

where parameters are introduced in the previous section.
Calculated Marshall test results using the above model for 
training and testing data versus experimental amounts are 

shown in Fig. 4. The results of the above model have better 
fitness than the laboratory values compared to the results of 
the MLR model.
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Table 4 (Continued.) 

Test No. Type of 
aggregate 

Type of 
bitumen 

Type of 
grading 

Amount of 
bitumen 

Air void 
 (%) 

VMA 
 (%) 

VFA  
(%) 

Marshall 
stability (kg) 

Flow  
(0.25 mm) 

MQ  
(kg/mm) 

46 

1 85-100 1  

4 5.93 14.30 58.50 732 9.57 305.96 
47 4.5 4.97 14.47 65.64 791 10.49 301.62 
48 5 4.30 14.88 71.13 844 11.31 298.50 
49 5.5 3.97 15.60 74.53 785 12.09 259.72 
50 6 3.61 16.28 77.82 702 12.87 218.18 
51 

2 85-100 1 

4 5.89 14.40 59.12 966 8.47 456.20 
52 4.5 5.23 13.98 62.62 1010 9.19 439.61 
53 5 4.82 14.21 66.07 1069 10.31 414.74 
54 5.5 4.25 14.29 70.27 1003 10.98 365.39 
55 6 4.02 14.67 72.59 949 11.74 323.34 
56 

3 85-100 1 

4 6.42 14.95 57.06 1212 7.64 634.55 
57 4.5 5.67 14.46 60.76 1282 7.93 646.66 
58 5 4.91 14.38 65.84 1319 8.42 626.60 
59 5.5 4.45 14.57 69.48 1391 9.26 600.86 
60 6 4.07 14.84 72.57 1279 10.44 490.04 
61 

1 85-100 2 

4.5 5.44 15.20 64.21 702 9.79 286.82 
62 5 4.77 15.22 68.64 747 10.81 276.41 
63 5.5 4.28 15.78 72.89 811 11.55 280.87 
64 6 3.83 16.38 76.62 766 12.35 248.10 
65 6.5 3.52 17.09 79.42 699 13.43 208.19 
66 

2 85-100 2 

4.5 5.64 15.14 62.76 903 8.69 415.65 
67 5 4.82 15.08 68.02 988 9.54 414.26 
68 5.5 4.51 15.84 71.51 1015 10.64 381.58 
69 6 4.07 16.47 75.27 939 11.27 333.27 
70 6.5 3.77 17.21 78.10 867 12.08 287.09 
71 

3 85-100 2 

4.5 6.17 15.64 60.53 1193 7.83 609.45 
72 5 5.54 15.81 64.97 1251 8.25 606.55 
73 5.5 4.61 16.03 71.23 1297 9.32 556.65 
74 6 4.20 16.70 74.87 1318 10.45 504.50 
75 6.5 3.91 17.48 77.61 1245 11.51 432.67 
76 

1 85-100 3 

5 4.87 15.53 68.66 719 10.11 284.47 
77 5.5 4.34 15.74 72.44 775 11.24 275.80 
78 6 3.62 16.10 77.50 789 12.08 261.26 
79 6.5 3.13 16.67 81.20 723 13.43 215.34 
80 7 2.60 17.19 84.87 657 14.18 185.33 
81 

2 85-100 3 

5 5.34 15.91 66.42 873 9.26 377.11 
82 5.5 4.71 16.05 70.65 911 10.18 357.96 
83 6 3.97 16.41 75.80 968 11.05 350.41 
84 6.5 3.41 16.93 79.87 902 11.93 302.43 
85 7 2.85 17.45 83.70 834 12.69 262.88 
86 

3 85-100 3 

5 6.10 16.56 63.16 1089 8.32 523.56 
87 5.5 5.23 16.54 68.42 1146 9.04 507.08 
88 6 4.30 16.76 74.34 1193 10.11 472.01 
89 6.5 3.59 17.17 79.08 1191 10.87 438.27 
90 7 3.10 17.76 82.56 1107 11.63 380.74 

5.2. Predictions Models 
In this study, 270 asphalt samples were made and 
examined. Since three samples have been made for 
each compound of asphalt mixtures and experimental 
conditions (the type of bitumen and aggregate, 
gradation) 90 samples were used to represent models. 
Next, data randomly divided into two groups of 
training and testing to analyze data and represent a 
model. So, 80% and 20% of data were used in this 

study for training (representation) and testing model, 
respectively. It is essential to mention that all input 
and output data have been normalized between 0 and 
1 by equation (8) before any analysis of data. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑣𝑣𝑁𝑁𝑁𝑁𝑣𝑣𝑁𝑁 =  
[(𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣𝑁𝑁𝑁𝑁)𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − (𝑁𝑁𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑣𝑣𝑁𝑁)𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣]

(𝑁𝑁𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑣𝑣𝑁𝑁)𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − (𝑁𝑁𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑣𝑣𝑁𝑁)𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
  

5.2.1. Models offered based on MLR method 
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In this section, the traditional Marshall test results 
models, obtained through linear regression analysis, 
were presented. These models used air void, VMA, 
and VFA as input variables which are shown in 
equations 9 to 11. 

𝑆𝑆̅ = 1.369 − 0.751𝑉𝑉�̅�𝑎
+ 0.496𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅ ̅
− 1.513𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅  

(9) 

�̅�𝑉 = 0.412 − 0.454𝑉𝑉�̅�𝑎
− 0.127𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅ ̅
+ 0.568𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅  

(10) 

𝑉𝑉𝑀𝑀̅̅ ̅̅ ̅ = 1.776 − 1.029𝑉𝑉�̅�𝑎
+ 0.597𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅ ̅
− 2.166𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅  

(11) 

where 𝑆𝑆̅ is Marshall stability normalized between 0 
and 1 (kg), �̅�𝑉 is flow normalized between 0 and 1 
(0.25 mm), 𝑉𝑉𝑀𝑀̅̅ ̅̅ ̅ is Marshall quotient normalized 
between 0 and 1 (kg/mm) 𝑉𝑉�̅�𝑎 is air void between 
normalized 0 and 1 (%), 𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅ ̅ are voids in mineral 
aggregate normalized between 0 and 1 (%),  𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅  is 
voids filled with asphalt normalized between 0 and 1 
(%). 

Figure 3 depicts the results of calculated Marshall test 
results versus experimental amounts. As it is 
observed, experimental and calculated results have a 
relatively poor fit. Therefore, calculate Marshall test 
results in asphalt mixtures may not be true based on 
this model. 

A coefficient of determination is a statistic parameter 
to measure the degree of a linear relationship between 
two variables, which each of them has been measured 
by their units. In this study, based on the quantitative 
content of data, the Pearson coefficient of 
determination has been used. Pearson coefficient of 
determination is defined in a way that only accepts 
amounts between -1 and +1, which +1 means perfect 
positive correlation and -1 means perfect negative 
correlation. In other words, the larger absolute value 
of this coefficient confirms that a stronger linear 
relationship between two parameters exists. Results 
of the correlation between data used in this study are 
represented in Table 5. The results show that the two 
parameters of air void and VFA compared with VMA 
have a greater impact on the Marshall test results. 
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Fig. 3. Experimental versus predicted Marshall test results using MLR models 

 

 

Table 5 Correlation coefficient between independent and dependent variables  

Independent 

parameters 

Dependent parameters 

Marshall 

stability 
Flow MQ 

Air void -0.554 -0.916 -0.646 

VMA 0.198 -0.438 +0.391 

VFA -0.416 0.893 -0.608 

5.2.2. Models based on the GP method 

In the following, the Marshall test results models 
based on GP are presented: 

𝑆𝑆̅ = 𝑉𝑉�̅�𝑎 × 𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅ ̅(𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅ ̅ − 𝑉𝑉�̅�𝑎) + 𝑉𝑉�̅�𝑎 + 𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅ ̅2 − 0.75𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅ ̅ + [𝑉𝑉𝑉𝑉𝑉𝑉
̅̅ ̅̅ ̅̅
9 − 𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅ ̅ × 𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅

4 ] × 8(𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅ − 𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅ ̅) (12) 
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Fig. 4. Experimental versus predicted Marshall test results using GP models

12 
 

�̅�𝐹 = 0.857𝑉𝑉𝐹𝐹𝑉𝑉̅̅ ̅̅ ̅̅
1 + 𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅ ̅ + 𝑉𝑉𝐹𝐹𝑉𝑉̅̅ ̅̅ ̅̅ 2 +

𝑉𝑉𝐹𝐹𝑉𝑉̅̅ ̅̅ ̅̅ − 0.333𝑉𝑉�̅�𝑎
𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅ ̅
𝑉𝑉�̅�𝑎

+ 5
𝑉𝑉𝐹𝐹𝑉𝑉̅̅ ̅̅ ̅̅

 (13) 

𝑉𝑉𝑀𝑀̅̅ ̅̅ ̅ = 𝑉𝑉�̅�𝑎(6 − 𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅ ̅) + 2𝑉𝑉𝑉𝑉𝑉𝑉̅̅ ̅̅ ̅̅ ̅3

(8 + 𝑉𝑉𝐹𝐹𝑉𝑉̅̅ ̅̅ ̅̅ ) × 5 − 𝑉𝑉�̅�𝑎
5

 (14) 

where parameters are introduced in the previous 
section. 

Calculated Marshall test results using the above 
model for training and testing data versus 
experimental amounts are shown in Figure 4. The 
results of the above model have better fitness than the 
laboratory values compared to the results of the MLR 
model. 

5.2.3. Comparison of prediction models 

In this study to compare the performance of models, 
the R2, MAE, and RMSE parameters have been used 
whose amounts for GP and MLR models are shown 
in Table 6. According to logical hypothesis [14, 15], 
if a model contains minimum errors (characterized in 
this study by RMSE and MAE parameters) and the 
coefficient of determination approaches to values 
more than 0.8, it would be an appropriate model to 
predict experimental observations with high 
accuracy. Results of Table 6 demonstrate that the GP 
model has a higher coefficient of determination and 
fewer errors than the MLR model. 
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Fig. 4. Experimental versus predicted Marshall test results using GP models 

   

6

8

10

12

14

16

6 8 10 12 14 16

Pr
ed

ic
te

d 
Fl

ow
 (0

.2
5 

m
m

)

Experimental Flow (0.25 mm)

Train

6

8

10

12

14

16

6 8 10 12 14 16

Pr
ed

ic
te

d 
Fl

ow
 (0

.2
5 

m
m

)

Experimental Flow (0.25 mm)

Test

0

200

400

600

800

0 200 400 600 800

Pr
ed

ic
te

d 
M

Q
 (k

g/
m

m
)

Experimental MQ (kg/mm)

Train

200

400

600

800

200 400 600 800

Pr
ed

ic
te

d 
M

Q
 (k

g/
m

m
)

Experimental MQ (kg/mm)

Test



181

A. Azarhoosh, AUT J. Civil Eng., 5(1) (2021)  171-182, DOI: 10.22060/ajce.2020.18074.5658

Table 5 Correlation coefficient between independent and dependent variables 

Table 6. Comparison of performance of MLR and GP models

14 
 

Table 6 Comparison of performance of MLR and GP models 

Marshall test results Model type 
Model performance 

R2 RMSE MAE 

Marshall stability 
MLR Train 0.583 131.54 109.10 

Test 0.509 158.35 125.58 

GP 
Train 0.854 57.60 47.28 
Test 0.817 73.71 65.79 

Flow 
MLR 

Train 0.720 0.631 0.562 
Test 0.687 0.818 0.696 

GP Train 0.972 0.195 0.071 
Test 0.931 0.252 0.180 

MQ 
MLR Train 0.662 86.30 68.70 

Test 0.620 95.20 77.09 

GP 
Train 0.923 22.37 8.21 
Test 0.910 41.04 17.09 

6. Conclusion 
In this study, GP has been used to represent the 
Marshall test results models in asphalt mixtures. 
Therefore, Marshall stability, flow, and MQ relations 
are represented based on air void, VMA, and VFA 
parameters. Also, MLR models were used as the base 
model to evaluate the models presented by the GP 
method. The most essential results out of this study 
are as follows: 

• Asphalt mixtures containing type 3 and type 
2 aggregates, assuming the other parameters 
are constant, have the best and the worst 
performance, respectively. 

• Asphalt mixtures containing coarser 
aggregates are more resistant to deformation 
at high temperatures due to their higher 
internal friction and interlocking. 

• GP model, in comparison with the MLR 
model, has been able to calculate Marshall 
test results more accurately. To investigate 
the performance of models, R2, MAE, and 
RMSE parameters have been used that the 
GP model has the highest R2 and the least 
errors. 

• The GP model is relatively short and simple. 
Since the above model is the result of a 
relatively wide range of materials, 
characteristics, and conditions, it can be 
used for pavement design. 

• Among independent parameters used to 
predict Marshall test results, the air void and 
VFA have the most effect. 
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Independent 

parameters 

Dependent parameters 

Marshall 

stability 
Flow MQ 
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VMA 0.198 -0.438 +0.391 

VFA -0.416 0.893 -0.608 
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