[1] B. Sinha, K. H. Gerstle, L. G. Tulin, Stress-strain relations for concrete under cyclic loading, in: Journal Proceedings, (1964) 195-212.
[2] I.D. Karsan, J. O. Jirsa, Behavior of concrete under compressive loadings, Journal of the Structural Division, (1969).
[3] B. Y. Bahn, C. T. T. Hsu, Stress-strain behavior of concrete under cyclic loading, ACI Materials Journal, 95 (1998) 178-193.
[4] D. Z. Yankelevsky, H. W. Reinhardt, Model for cyclic compressive behavior of concrete, Journal of Structural Engineering, 113(2) (1987) 228-240.
[5] D. Palermo, F. J. Vecchio, Compression field modeling of reinforced concrete subjected to reversed loading: formulation, Structural Journal, 100(5) (2003) 616-625.
[6] W. Ramberg, W. R. Osgood, Description of stress-strain curves by three parameters, (1943).
[7] Z. Rong, W. Sun, H. Xiao, G. Jiang, Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites, Cement and Concrete Composites, 56 (2015) 25-31.
[8] S. Kawashima, P. Hou, D. J. Corr, S. P. Shah, Modification of cement-based materials with nanoparticles, Cement and Concrete Composites, 36 (2013) 8-15.
[9] L. Singh, D. Ali, U. Sharma, Studies on optimization of silica nanoparticles dosage in cementitious system, Cement and Concrete Composites, 70 (2016) 60-68.
[10] J. Xu, B. Wang, J. Zuo, Modification effects of nanosilica on the interfacial transition zone in concrete: A multiscale approach, Cement and Concrete Composites, 81 (2017) 1-10.
[11] Y. Gao, C. Zou, Experimental study on segregation resistance of nanoSiO2 fly ash lightweight aggregate concrete, Construction and Building Materials, 93 (2015) 64-69.
[12] H. Du, D. Suhuan, L. Xuemei, Effect of nano-silica on the mechanical and transport properties of lightweight concrete, Construction and Building Materials, 82 (2015) 114-122.
[13] A. Standard, ASTM C330, Standard Specification for Lightweight Aggregates for Structural Concrete, ASTM International, (2014).
[14] J. R. Prestera, M. Boyle, D. A. Crocker, S.B. Chairman, E.A. Abdun-Nur, S.G. Barton, L.W. Bell, G.R. Berg, S.J. Blas Jr, P.M. Carrasquillo, Standard Practice for Selecting Proportions for Structural Lightweight Concrete (ACI 211.2-98), (1998).
[15] A. Standard, ASTM C469, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression, ASTM International, (2010).
[16] A. Standard, ASTM C39, Standard test method for compressive strength of cylindrical concrete specimens, ASTM International, (2012).
[17] J.J. Thomas, H.M. Jennings, J.J. Chen, Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement, The Journal of Physical Chemistry C, 113(11) (2009) 4327-4334.
[18] G. Land, D. Stephan, The influence of nano-silica on the hydration of ordinary Portland cement, Journal of Materials Science, 47(2) (2012) 1011-1017.
[19] R. Yu, P. Spiesz, H. Brouwers, Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount, Construction and Building Materials, 65 (2014) 140-150.
[20] M. H. Zhang, O.E. Gjvorv, Mechanical properties of high-strength lightweight concrete, Materials Journal, 88(3) (1991) 240-247.
[21] G. M. Sturman, S.P. Shah, G. Winter, Microcracking and inelastic behavior of concrete, Special Publication, 12 (1965) 473-499.
[22] S. Sinaie, A. Heidarpour, X.-L. Zhao, J.G. Sanjayan, Effect of size on the response of cylindrical concrete samples under cyclic loading, Construction and Building Materials, 84 (2015) 399-408.
[23] D. J. Carreira, K.-H. Chu, Stress-strain relationship for plain concrete in compression, in: Journal Proceedings, (1985) 797-804.
[24] S. Popovics, A numerical approach to the complete stress-strain curve of concrete, Cement and concrete research, 3(5) (1973) 583-599.