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ABSTRACT: The idea of using a meshless method for geometrically nonlinear problems due to its
advantage of eliminating mesh distortion has been attracted many researchers. In this paper, the nonlinear
wave propagation analysis in two-dimensional functionally graded (2D FG) thick hollow cylinders is
studied using the meshless method. For this purpose, the meshless local Petrov-Galerkin (MLPG) method
is developed for geometrically nonlinear dynamic analysis based on the total Lagrangian approach. The
radial point interpolation, which possesses the delta function property, is used to construct the shape
functions. Since the cylinder is assumed to have large deformations, the neo-Hookean hyperelastic
model is employed for constitutive modeling of material. The incremental-iterative Newmark/Newton-
Raphson technique is applied to iteratively solve the nonlinear equations of motion. The 2D FG cylinder
is analyzed under uniform and non-uniform mechanical shock loading. The mechanical properties
of the cylinder are assumed to vary nonlinearly through the radial and longitudinal directions which
are simulated using two-dimensional volume fractions. Rayleigh damping is utilized to model energy
dissipation in analyses. Numerical examples demonstrate the applicability and accuracy of the present
approach in tracking the nonlinear wave propagation in two-dimensional FG thick hollow cylinders. The
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effects of grading patterns on the time history and wave propagation are discussed in detail.

Neo-Hookean constitutive model.

1- Introduction
Functionally graded materials are a new type of compos-
ite materials in which the material properties vary continu-
ously through one or two directions to achieve the optimum
properties. Recently, studying dynamic behavior and wave
propagation of structures made of FGMs has attracted the
attention of many researchers. For instance, Moussavi-
nezhad et al. [1] developed the MLPG method for stress
wave propagation in finite-length FG cylinders. The wave
propagation of nano-beams/tubes made of FGMs has been
analytically studied by Norouzzadeh et al. [2]. Sur et al. [3]
investigated the heat transport in the functionally graded
thick plate in the context of Taylor’s series expansion in-
volving memory-dependent derivative for the dual-phase-lag
(DPL) heat conduction law. Aminpour et al. [4] attempted to
elucidate the size-dependent behavior of functionally graded
(FG) Anisotropic macro/nanoplates.

Many engineering problems can be analyzed based on lin-
ear approximations. But when the structure experiences large
deformations, it is incorrect to neglect the effects of large de-
formations on the geometric configuration of the structure.
The finite element method (FEM) has been widely used to
analyze geometrically nonlinear problems [5-7]. However,
in the analysis of some problems using FEM, because of its
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mesh-based interpolation, poor accuracy of the stress field,
shear locking in modeling of thin-walled structures, mesh
dependency and mesh distortion during large deformation
analyses affect the solution accuracy [8]. To overcome the
drawbacks of FEM, meshless techniques have been devel-
oped by researchers. In these techniques, a set of scattered
nodes rather than meshes is used to discrete the problem do-
main and boundaries. Smooth particle hydrodynamics (SPH)
[9], diffuse element method (DEM) [10], reproducing kernel
particle method (RKPM) [11], element free Galerkin (EFG)
[12], meshless natural neighbor Galerkin method [13], mesh-
less local Petrov—Galerkin method (MLPG) [14] and local
boundary integral equation (LBIE) [15] are the most widely
used meshless methods. It should be mentioned that the main
difference between these various meshless methods arises
from the shape function production approaches. The stabil-
ity, convergence of accuracy, and cost-efficiency of four vari-
ous meshless formulations for the solution of boundary value
problems in non-homogeneous elastic solids with functional-
ly graded Young’s modulus were investigated by Sladek et al.
[16]. Among the meshless methods, the MLPG method due to
its flexibility and simple implementation is a well-developed
meshless method. Sladek et al. [16] presented a review for
analysis of problems in engineering and sciences, using the
MLPG method.
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In recent years, the meshless methods provide an efficient
alternative to the finite element method for geometrically
nonlinear problems. Hao et al. [17] studied on geometrical-
ly nonlinear forced vibration of FG plates under transversal
and in-plane excitations with the help of Galerkin’s method.
Sladek et al. [18] based on Von Karman’s theory, proposed a
large-deformation meshless method to solve dynamic prob-
lems for Reissner—Mindlin plates with magneto-electro-
elastic properties. They compared the numerical results with
those obtained by the 3D FEM analyses and demonstrated
that the meshless results are in good agreement with FEM. In
addition, the 3D FEM needs a significantly higher number of
nodes compared with the meshless method. Zhang et al. [19]
presented an effective three-dimensional (3D) nonlinear ex-
plicit dynamic meshfree algorithm based on the element-free
Galerkin (EFG) method using the moving least square (MLS)
approximation. In their algorithm, the materials were regard-
ed as a neo-Hookean hyper-elastic and nearly incompressible
continuum. Zhang et al. [20] studied on geometrically non-
linear behavior of carbon nanotube-reinforced functionally
graded (CNTR-FG) cylindrical panels under uniform trans-
verse mechanical loading. Zhao et al. [21] based on Sander’s
nonlinear shell theory, extended the element-free kp-Ritz
method for geometrically nonlinear analysis of plates and
cylindrical shells. The comparison of their results with the
reported results in other works of the literature demonstrated
the efficiency of their presented solution method in handling
the snap-through and snap-back in shell problems. Zhu et al.
[22] adopted the MLPG method with the Kriging interpola-
tion technique to perform a geometrically nonlinear thermo-
mechanical analysis of moderately thick functionally graded
plates, based on the first-order shear deformation plate theory.
In their paper, both the thermal and large deformation analysis
leads to nonlinear partial differential equations (PDEs) which
were solved using the arc-length methods. Ghadiri Rad et al.
[23] studied the geometrically nonlinear dynamic behavior of
nanobeams using the element-free Galerkin (EFG) method.
Mellouli et al. [24] developed a meshfree method for geo-
metrically nonlinear analysis of 3D-shell structures based on
the double director’s shell theory with finite rotations.

In this paper for the first time, the MLPG method is devel-
oped for geometrically nonlinear wave propagation analysis
of two-dimensional functionally graded thick hollow cylin-
ders in which the material properties vary nonlinearly through
the radial and longitudinal directions. Since the cylinder is
assumed to involve large deformations, the neo-Hookean
model, a hyperelastic constitutive model, is employed to ob-
tain the nonlinear stress-strain relationship. The mechanical
properties of the 2D FG cylinder are simulated using two-
dimensional volume fractions. The nonlinear wave propaga-
tion of the displacement field for various FG distributions is
studied in detail.

2- Radial point interpolation

In this section, the meshless shape function construction
using the radial point interpolation method (RPIM) is briefly
introduced. More details can be found in the paper by Liu
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and Gu [25]. RPIM is based on interpolation of the function
‘U > among a set of scattered nodes in a small local domain
which affects ‘% ’. Such a local domain is termed the support
domain ‘€. Using the RPIM shape function ‘P, the ap-
proximation of ‘# ’ in support domain of point ‘X’ can be
expressed concerning its nodal values vector ‘U .

u=®U (1)
The RPIM shape function can be obtained as:
®=R"(7)R, @)

Where RT (r_) is the radial basis function (RBF) matrix
and R, is composed of nodal values of radial basis function
(RBF):

R'(r)=[r(F) R(F) - R,(F)] 3)
Rl(fl) Rz(fl) Rn(fl)

RQ: ng”z) st(”z) an(’”z) @
R(7) R(7) - R,(7)

Where the term * 71 * is the number of nodes located in the
support domain. In this paper, the multiquadrics (MQ) radial
basis function is used, which is defined as follows [1].

RF)=|r-rnf +E-zY +&] = +&f ©

The parameters ‘g ’and ‘¢ ’ are determined to be equal to
0.5 and the average nodal spacing, respectively.

3- Nonlinear formulation
3- 1- Kinematics

Fig. 1 shows a body with finite deformation. The body
occupies the domain () at the initial state. After the ap-
plication of the loads, the body deforms and occupies a new
domain () at the current configuration. The position vectors
in the initial and current configurations are denoted by x and
X , respectively.

In the total Lagrangian description, the motion of the
body is referred to as the initial (un-deformed) configuration.
The current coordinate can be expressed in terms of initial
coordinates using the following equation.
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Deformed configuration
XZ )
AN

Initial configuration

DXi > X

Fig. 1. Initial and deformed configuration of a body
with finite deformations.

x=X+u(X,7) (6)

Where u is the displacement vector. The deformation
gradient is one of the key quantities in finite deformation
analysis which maps a differential line element from the ini-
tial (material) configuration to the current (spatial) configura-
tion and is given in convective description as

ox; ou;
F.=—-=0,+—
(). SN ¢

Thus, the deformation gradient tensor can be used to ob-
tain the change in length and direction of a differential line
element during a finite deformation.

dx,=F,dX, (®)

The components of the deformation gradient tensor in the
polar coordinate system considering axisymmetric conditions
are given by:

u, ,
E’r =1+ur,r9 FHH =1+79 F'zz =
)
1_'_uz,z’ F;fz U z» F;r =U,

The variation of deformation gradient can be derived us-
ing Egs. (1) and (7).

AFrr ¢i,r 0

A
AF=JAF_ l=| 0 ¢, L”’} AF =B’ Au (10)
u
AFrz ¢i,Z 0 :
AF;r O ¢i,}"

3- 2- Nonlinear strain-displacement relationship

The Green-Lagrange strain tensor is a strain measure de-
fined in the initial configuration. At the initial configuration,
the right Cauchy-Green deformation tensor C ; 1s introduced
as

Cj=Fii Fiy (11

The Green-Lagrange strain tensor is given by

Cj =i By (12)

Using the chain rule, the following incremental equation
can be derived from Eq. (12).

Expanding the above equation gives the matrix form of
Green—Lagrange strain tensor variation in the polar coordi-
nate system.

A~

Ag =FAF (14)

Where

gzz yrz]T’ ]/rz = grz + 8zr (15)
F. 0 0 0 F,

. 0 F 0O 0 O

F= % (16)
0 0 F. F,. 0
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Substitution Eq. (10) into Eq. (14) yields:

Ag = (fT B’ )Au =B" Au (17)
Where
Frr ¢i,r Fzr ¢i,r
Fd/r 0
Frz ¢i,z Fzz ¢i,z

Frr ¢i,z + Frz ¢i,r Fzr ¢i,z + Fzz ¢i,r

4- Constitutive Equation
4- 1- Stress-strain relationship

Hyper-elastics are elastic materials with strongly non-
linear stress-strain relation. These materials are characterized
by introducing a strain energy density function ‘p ’. Strain
energy is the mechanical work required in a reversible pro-
cess to produce a particular state of strain. For an isotropic
material, ‘W ’ can be expressed as a function of invariants of
the right Cauchy-Green deformation tensor.

w=w(I,1,,1,,X) (19)

Where

I, =tr(C)=1C=C,,+Cy +Cy;, I, =
(20)
-tr(CC)=CC, I, =det(C)=J">

Where ‘1’ is the unit matrix. For hyper-elastic materi-
als, the second Piola-Kirchoff stress is the first derivative of
the strain energy density function concerning the Green-La-
grange strain.

s_ﬁszaW_z[aW%aW%W%Jm

e oCc \al oC oI, 0C oI, oC

Several approaches are available for constitutive model-
ing of hyper-elastic based on the definition of strain energy
functions. Among these, the neo-Hookean is one of the most
used models. The neo-Hookean model is represented by the
following stored energy function [26]:
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W=§(11—3)—,uan+%(an)2 (22)

Where ‘A °, © 11 * are Lame constants which are equal to
‘p/27and ‘v E /((l+v) (1_21/)) >, respectively. Using Egs.
(21) and (22), the second Piola-Kirchoff stress matrix con-
cerning the initial configuration in the neo-Hookean model
can be obtained as:

S=AlmJC" +ull-C) 23)

4- 2- 2D functionally graded materials

FGMs are a special class of composites that have gained
widespread applications in aircraft and space vehicle struc-
tures, defense industries, nuclear reactors, the transportation
sector, etc., which are used to increase functional performance
enhanced by the desired variational properties of the material
combinations. This continuous variation prevents the stress
concentrations at the boundary of different materials. Two-
dimensional FGMs are usually made by a continuous combi-
nation of three or four distinct material phases. In this paper,
the inner surface of the cylinder is considered to be made of
two kinds of a material denoted by ‘c1’and ‘c2’, and the outer
surface is made of two kinds of another material denoted by
‘m1” and ‘m2’. The properties of the basic constituents of the
FG cylinder can be found in Table 1.

Table 1. Basic constituents of 2D FG cylinder.

Constituents F/ (GPCI) p(kg/ m3)

cl 440 3210
c2 300 3470
ml 115 4515
m2 69 2715

The material properties at an arbitrary point, in the 2D-
FGM cylinder, can be simulated as follows [1].

P(’”’Z)chl Va+ BaVao+ BV, + B, V.04

The term * P (r,z )’ can be considered as a modulus of
elasticity and density. The presented volume fractions vary as
two-dimensional nonlinear functions.
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Vcl = (1_/11’)(1_/12)’ VcZ - (1 ﬂ“r)ﬂ“p ml = 25)

2,0=-2)7,

m

/’tr=(r_"ij : ﬂﬁ[ijz 26)
r, = L

5- Meshless Technique

In the case of axisymmetric problems, using the polar
coordinate system simplifies the formulations. Considering
axisymmetric conditions, the stress components must satisfy
the following differential equations of motion in radial and
longitudinal directions at the current configuration:

L =24,

o 096

O-rr,r + O-zr,z + - pur,lt = 0 (27)

r

=0 (28)

Where o, are the components of the Cauchy (real) stress
tensor. In these equations, the tensor notation is used to de-
note partial derivatives. The differential forces at the current
configuration can be expressed as:

dl, =oc;n;dS (29)

Where “n; *is * j * directional component of a unit vec-
tor normal to the current surface ‘dS . To get the forces at
the current configuration concerning the initial configuration,
the following relations between the parameters at the initial
and current configuration are defined.

1
%Zm@%» no;=Fy m, dS=|F|dSy (30

In these equations, zero subscripts refer to the parameters
at the initial configuration and P, are the components of the
Ist Piola—Kirchhoff stress tensor. Substitution Eq. (30) into
Eq. (29) leads to:

dT, = P;ny,; as, 31)

Comparing this equation with Eq. (29) indicates that for
obtaining the current forces concerning the initial configu-
ration, the Cauchy $tress tensor must be replaced by the 1
Piola-Kirchhoff stress tensor. Making this replacement into
Egs. (27) and (28), one can write the weak form of the equa-
tion of motion concerning the initial configuration.

P, P
| (PM +P, +-2—%_p, uw]Wr dQ, =0(32)

QQO

J. (Pzz,z + Prz,r

Z,,,sz dQ, =0 (33
QQO

Where W, and W are the test functions in radial and
longitudinal directions, respectively. Applying Gauss diver-
gence theorem to these equations, the governing equations
take the following forms:

[WPdQg — [rWNP ATy + [rWpiidly =0,
QQo FQo QQO
Where
W w,., W, 0 0 W, .
o0 0 W, W, ’
' ’ (35)
P'=[p. Ry P. B. P

The local boundary, in general, may be composed of three
parts (r r’ §] r“ §] r‘) r’ is the internal boundary
which is located entlrely 1n51de the global domain. 1™ and
F’QO are parts of the external boundary with prescrlbed es-
sential and natural boundary conditions, respectively. Thus,
Eq. (34) can be taken into account in a new form as follows.

fwrdQ, -

QQO

JrWNPdl, +

_ (37)
- [rWpyiidly = [rWTdl,

Q I,

Q0 Qo0
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The Eq. (37) is nonlinear and must be solved using an

incremental/iterative procedure. To get the incremental equa- Fr . Pr .
tion of motion, the following incremental relationships can be F P S r
defined during a finite deformation. 00 60 S
60
F=<F_, ¢, P=<P_+ , S= s (43)
Py =P +AP, U, , =1, +Au (38) F,. F. S
};'ZV PZV -

Inserting Eq. (38) into Eq. (37) yields
It should be mentioned that the second Piola-Kirchhoff
stress tensor is symmetric (i.e., ‘S, =S5, ). Substitution of

1
.[W AP dQQ o : I ’:WNAP dFQ + Eqgs. (10) and (17) into Eq. (41) leads us to the increment of
Qg Loy T 18t Piola-Kirchhoff stress in terms of nodal displacements.
[rpoWAwdl', = [ rWT dl,
Q T} - —
- " sy AP=(FDB"+SB')au (44)
- JW'P,dQ,+ [rWNP, dl'
Qg Too+Tg Finally, by substituting Eq. (44) into Eq. (39), the incre-
. mental discretized equation of motion for node “/ ” can be
- Irpo Wi, dl'y, obtained as:
QQO
For each finite strain measure, there is a corresponding IW' (F DB +S Bl) dQQ _
stress measure that is conjugate to it in the sense of virtual o

work. The corresponding stress to the Green-Lagrange strain ®

is the second Piola-Kirchhoff symmetric stress. The 1% Piola-

Kirchhoff stresses (P, ) can be related to the second Piola- J‘ *WN (ﬁ DB" +8§ Bz) dr . | Au +
Kirchhoff stresses (.5, ) through the following transforma- Y ¢
tion. ! Foo oo
By =Sy Fy, AB; =Sy AFy +ASy Fy (40) jrpo W dI', |Au (43)
Qg

It is convenient to write the Eq. (40) in the following ma-

trix form, = [rWTdr, - [W'PdQ, +
Féo QQO
P=FS, AP=F AS+S AF (41) "
[ rWNP, dr, - [rp, Wii,dT,
Where T S
'F, 0 0 F, It can be found that Eq. (45) is nonlinear because both
0 F, O 0 sides of this equation are a function of displacements. By
F=|o 0o F F considering the Rayleigh damping matrix ¢ C’, the last equa-
oo (;z Fzr tion can be rewritten in the following compact form:
(0 0 F. F,
: “42) Ky Au+CAi + MAii = AP (46)
S0 0 8. rAu+CAu+MAi =
0 S, 0 0
S=|0 o S. O The incremental-iterative Newmark/Newton-Raphson
0O 0 S 0 technique is used to solve the last equation.
_SZV 0 0 SZZ
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- — - —

Fig. 2. Schematics of the hollow cylinder.

6- Numerical Examples and Discussion
6- 1- 6.1. Thick hollow cylinder under uniform internal
pressure

In the first example, a homogeneous thick hollow cylinder
with the following mechanical properties has been analyzed
using the proposed method.

,=025m, r,=0.5m, L=0.5m, E=2.75GPa,
(47)
v=03

Where, ‘7;°, ‘7, ”and ‘L ’ are the inner radius, outer ra-
dius, and length of the cylinder (Fig. 2).

The cylinder is considered under the following dynamic
internal pressure in the radial direction.

S, (r=r)=Rl1-e) (48)

Where P, =20MPa andc = 100s™". According to Eq.
(48) in a long-time limit, the internal pressure turns into a
static pressure * p,” and the dynamic behavior of the cylinder
converges to steady-state. By considering these assumptions,
it is possible to compare the obtained results with the analyti-
cal solution given by [29]:

By (1+v)(1-2v)
E(rf _ rjz)

1| B (+v)

r E(r02 _’}2)

u

7

(49)
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The radial displacement along the cylinder thickness ob-
tained from the MLPG method with various nodal distribu-
tions at a long time (¢ =100+ ) is compared with the analytical
result (obtained from Eq. (49)) in Fig. 3. It can be observed
from this figure that in nodal distribution 16x24°, the results
convergence is achieved.

As the next example, an FG thick hollow cylinder with
the following mechanical properties is linearly analyzed to
show the accuracy and potentialities of the MLPG method.

,=025m, r,=0.5m, L=0.5m,

(50)
n,=0.01, n,=0, £=0

To verify the obtained results, the same boundary condi-
tions as that introduced in Hosseini et al. [27] reference, are
considered for the problem.

Pyt
0

where ° P,=4GPa/s ’. In Fig. 4 the time history of ra-
dial displacement obtained by the presented MLPG method
is compared with those obtained by the FEM method reported
by Hosseini et al. [27]. As can be seen in this figure, an excel-
lent agreement with the FEM solution is achieved.

Fig. 5 depicts the geometrically nonlinear time histo-
ry of radial displacement of a cylinder with "’f =03m’, ¢
r,=04m’, ‘n,=0.01", "y =0, “¢=0"and linear constitu-
tive model, under uniform external pressure. Rad et al. [28]
analyzed the aforementioned cylinder supposing the plane
strain conditions. In this paper, the length of the cylinder is
considered to be very long ‘I =2 m * and the same boundary
conditions introduced in Eq. (51) with * P,=700GPa/s > are
imposed at the cylinder ends. According to Fig. 5, the com-
parison between the results shows an acceptable agreement.

£ <0.005
t>0.005"

=)=

C}))

6- 2- Thick hollow cylinder under non-uniform internal
pressure

Compared to Ref. [28] which deals with the time his-
tory analysis of cylinders with infinite length (plain strain
condition) and variation of material properties only in the
radial direction, this work-study the thick hollow cylin-
ders in a more general case (limited length) which allows
the two-dimensional wave propagation analysis of thick
hollow cylinders made of 2D functionally graded materi-
als. Thus, in this paper, a finite length cylinder with the
r,=025m, r,=0.5m, L =0.5m dimensions and following
boundary conditions is considered.

_ =) Tl
—n«)—{o

t<0.0025 and 0<z<L/3 (52)
t>0.0025 or z>L/3



M.H. Ghadiri Rad., AUT J. Civil Eng., 5(3) (2021) 465-480, DOI: 10.22060/ajce.2021.19911.5752
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Fig. 3. The convergence analysis of the proposed MLPG method.
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Fig. 4. The linear radial displacement time history at the middle point of cylinder thickness under uni-
form internal pressure compared to FEM results reported in Hosseini et al.’s paper [27].

Where “ p — 6000GPa /s -
Fig. 6 depicts the linear 2D radial displacement contours

for ‘n, =n, =0and ‘£=0.05" at various times. The rate of
contour chénges at time intervals indicates the wave propaga-
tion speed.

The nonlinear radial displacement wave propagation of
the 2D-FG cylinder with the same conditions and considering
linear and neo-Hookean constitutive models can be tracked

472

in Figs. 7 and 8, respectively. By comparison the Figs. 6 to
8 it can be found that the wave propagation speed in the lin-
ear and nonlinear analysis is almost identical. However, the
values of radial displacement contours in nonlinear analysis
with the linear constitutive model are less than linear analysis
and in nonlinear analysis with the neo-Hookean constitutive
model are more than linear analysis, at the high load steps
(t>20—4s).
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Fig. 5. The nonlinear radial displacement time history at the middle point of thickness under uniform external
pressure compared to results reported in Rad et al.’s paper [28].
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z=0"and * £=0.05 > at various times.
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constitutive model at various times.

The influence of the value of radial and longitudinal vol-
ume fraction exponents ‘z ’ and ‘n_’ on nonlinear wave
propagation can be studied in Figs. 9 and 10, respectively.
According to Fig. 9, it can be found that the radial volume
fraction exponent has a significant effect on wave propaga-
tion speed so that by increasing the value of radial volume
fraction exponent, the wave propagation speed is increased
and values of radial displacement contours are decreased. Fig.
10 shows that when the value of longitudinal volume frac-
tion exponent is increased; the values of radial displacement
contours at any time $tep are decreased. But the influence of
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longitudinal volume fraction exponent on wave propagation
speed is negligible.

The time history of nonlinear radial displacement at °
z =L /2’ and the middle point of the cylinder thickness for
various damping ratios ¢’ are plotted in Fig. 11. This figure
shows that in the typical range of damping ‘£ <20%’, the
most important effect of the damping ratio is on the rate of
vibration decays in the free vibration part. In the other words,
the rate of vibration decays will be increased by increasing
the damping ratio.
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7- Conclusion

The main objective of this study is to develop an MLPG
technique for geometrically nonlinear analysis of 2D-FG hol-
low cylinders with finite deformations. Because of large de-
formations, the neo-Hookean hyperelastic model is applied
for the constitutive law. The material properties are simulated
using two-dimensional volume fractions. In the present work,
the iterative Newmark/ Newton-Raphson algorithm is em-
ployed to solve time-dependent nonlinear systems of equa-
tions. The hollow cylinder is analyzed under uniform and
non-uniform mechanical shock loading. Several numerical
examples are presented and effects of relative parameters
such as constitutive model, radial and longitudinal volume
fractions, and damping ratios on wave propagation are dis-
cussed in detail. Through the current research the following
conclusions can be drawn:

»  The accuracy and potentialities of the present meth-
od for analysis of thick hollow cylinder have been success-
fully demonstrated by verifying with the FEM results.

» A comparison between the results of linear and non-
linear analyses shows that the wave propagation speed in the
linear and nonlinear analyses is almost identical.

»  The values of radial displacement contours in non-
linear analysis with the linear constitutive model are less than
a linear solution at the high time steps. The values of radial
displacement contours in nonlinear analysis with the neo-
Hookean constitutive model are more than linear solution at
the high time steps.
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»  The peak points in time histories of nonlinear ra-
dial displacement with linear and neo-Hookean constitutive
models are less and more than the linear radial displacement,
respectively.

»  The effects of volume fraction on wave propagation
are studied and it is concluded that by increasing the value of
radial volume fraction exponent, the wave propagation speed
is increased but the values of radial displacement contours are
decreased. Increasing the value of longitudinal volume frac-
tion exponent has no significant effect on wave propagation
speed but causes to decrease in the values of radial displace-
ment contours.

»  The most important effect of the damping ratio is on
the rate of vibration decays in the free vibration part. So that
by increasing the damping ratio, the rate of vibration decays
will be increased.
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