[1] A. Abbasi, P.J. Hogg, Fire testing of concrete beams with fibre reinforced plastic rebar, in: Advanced Polymer Composites for Structural Applications in Construction, Elsevier, 2004, pp. 445-456.
[2] C.W. Stover, J.L. Coffman, US Geological Survey Professional Paper 1527, United States Government Printing Office, Washington, (1993).
[3] M.S. Yarandi, M. Saatcioglu, S. Foo, Rectangular concrete columns retrofitted by external prestressing for seismic shear resistance, in: 13th World Conference on Earthquake Engineering. Vancouver, BC, Canada, 2004.
[4] K. Qian, S.-L. Liang, D.-C. Feng, F. Fu, G. Wu, Experimental and numerical investigation on progressive collapse resistance of post-tensioned precast concrete beam-column sub assemblages, Journal of Structural Engineering, 146(9) (2020) 04020170.
[5] J. Yu, K.H. Tan, Structural behavior of reinforced concrete frames subjected to progressive collapse, ACI structural journal, 114(1) (2017) 63-74.
[6] J. Yu, Y.-P. Gan, J. Liu, Numerical study of dynamic responses of reinforced concrete infilled frames subjected to progressive collapse, Advances in Structural Engineering, 24(4) (2021) 635-652.
[7] X. Lu, K. Lin, D. Gu, Y. Li, Experimental Study of Novel Concrete Frames Considering Earthquake and Progressive Collapse, in: Concrete Structures in Earthquake, Springer, 2019, pp. 29-45.
[8] X. Lu, K. Lin, Y. Li, H. Guan, P. Ren, Y. Zhou, Experimental investigation of RC beam-slab substructures against progressive collapse subject to an edge-column-removal scenario, Engineering Structures, 149 (2017) 91-103.
[9] Z.P. Bažant, M. Verdure, Mechanics of progressive collapse: Learning from World Trade Center and building demolitions, Journal of Engineering Mechanics, 133(3) (2007) 308-319.
[10] M.M. Talaat, Computational modeling of progressive collapse in reinforced concrete frame structures, University of California, Berkeley, 2007.
[11] G. Kaewkulchai, E. Williamson, Modeling the impact of failed members for progressive collapse analysis of frame structures, Journal of Performance of Constructed Facilities, 20(4) (2006) 375-383.
[12] M. Sasani, A. Kazemi, S. Sagiroglu, S. Forest, Progressive collapse resistance of an actual 11-story structure subjected to severe initial damage, Journal of Structural Engineering, 137(9) (2011) 893-902.
[13] J. Yu, Y.-P. Gan, J. Wu, H. Wu, Effect of concrete masonry infill walls on progressive collapse performance of reinforced concrete infilled frames, Engineering structures, 191 (2019) 179-193.
[14] J. Yu, L. Luo, Y. Li, Numerical study of progressive collapse resistance of RC beam-slab substructures under perimeter column removal scenarios, Engineering Structures, 159 (2018) 14-27.
[15] W.-J. Yi, Q.-F. He, Y. Xiao, S.K. Kunnath, Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures, ACI Structural Journal, 105(4) (2008) 433.
[16] Q. Kai, B. Li, Q. He, W. Yi, Slab effects on response of reinforced concrete substructures after loss of corner column, ACI Struct. J, 109(6) (2012) 845-855.
[17] DoD, Design of buildings to resist progressive collapse, Unified Facilities Criteria (UFC) 4-023-03, (2009).
[18] U. Gsa, Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects, Washington, DC, (2003).
[19] K. Qian, S.-L. Liang, F. Fu, Q. Fang, Progressive collapse resistance of precast concrete beam-column sub-assemblages with high-performance dry connections, Engineering Structures, 198 (2019) 109552
[20] E. Livingston, M. Sasani, M. Bazan, S. Sagiroglu, Progressive collapse resistance of RC beams, Engineering Structures, 95 (2015) 61-70.
[21] K. Khandelwal, S. El-Tawil, Assessment of progressive collapse residual capacity using pushdown analysis, in: Structures Congress 2008: Crossing Borders, 2008, pp. 1-8.
[22] T. Kim, J. Kim, J. Park, Investigation of progressive collapse-resisting capability of steel moment frames using push-down analysis, Journal of Performance of Constructed Facilities, 23(5) (2009) 327-335.
[23] Y. Li, X. Lu, H. Guan, L. Ye, An energy-based assessment on dynamic amplification factor for linear static analysis in progressive collapse design of ductile RC frame structures, Advances in Structural Engineering, 17(8) (2014) 1217-1225.
[24] K. Marchand, A. McKay, D.J. Stevens, Development and application of linear and non-linear static approaches in UFC 4-023-03, in: Structures Congress 2009: Don't Mess with Structural Engineers: Expanding Our Role, 2009, pp. 1-10.
[25] S. Kokot, A. Anthoine, P. Negro, G. Solomos, Static and dynamic analysis of a reinforced concrete flat slab frame building for progressive collapse, Engineering Structures, 40 (2012) 205-217.
[26] P. Ruth, K.A. Marchand, E.B. Williamson, Static equivalency in progressive collapse alternate path analysis: Reducing conservatism while retaining structural integrity, Journal of Performance of Constructed Facilities, 20(4) (2006) 349-364.
[27] T.C. Wang, Z.P. Li, Nonlinear static analysis for progressive collapse potential of RC building, in: Applied Mechanics and Materials, Trans Tech Publ, 2011, pp. 146-152.
[28] L. Kwasniewski, Nonlinear dynamic simulations of progressive collapse for a multistory building, Engineering Structures, 32(5) (2010) 1223-1235.
[29] E. Brunesi, R. Nascimbene, F. Parisi, N. Augenti, Progressive collapse fragility of reinforced concrete framed structures through incremental dynamic analysis, Engineering Structures, 104 (2015) 65-79.
[30] S. Marjanishvili, Progressive analysis procedure for progressive collapse, Journal of performance of constructed facilities, 18(2) (2004) 79-85.
[31] B.S.S. Council, NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings (FEMA Publication 274), in, ATC-33 Project, Washington, DC, 1997.
[32] I. Bitar, S. Grange, P. Kotronis, N. Benkemoun, A review on various formulations of displacement based multi-fiber straight Timoshenko beam finite elements, in: CIGOS 2015-Conférence Internationale Géotechnique-Ouvrage-Structure, Innovations in Construction, 2015.
[33] D. Combescure, P. Pegon, Application of the local-to-global approach to the study of infilled frame structures under seismic loading, Nuclear engineering and design, 196(1) (2000) 17-40.
[34] A. Mortezaei, H.R. Ronagh, Plastic hinge length of FRP strengthened reinforced concrete columns subjected to both far-fault and near-fault ground motions, Scientia Iranica, 19(6) (2012) 1365-1378.
[35] A.L.L. Baker, The ultimate-load theory applied to the design of reinforced & prestressed concrete frames, Concrete Publications, 1956.
[36] O. Bayrak, S.A. Sheikh, Confinement reinforcement design considerations for ductile HSC columns, Journal of Structural Engineering, 124(9) (1998) 999-1010.
[37] A. Baker, A. Amarakone, N. Inelastic hyperstatic frame analysis, ACI Structural Journal, (1964) 85-142.
[38] M.P. Berry, D.E. Lehman, L.N. Lowes, Lumped-plasticity models for performance simulation of bridge columns, ACI Structural Journal, 105(3) (2008) 270.
[39] W.G. Corley, Rotational capacity of reinforced concrete beams, Journal of the Structural Division, 92(5) (1966) 121-146.
[40] C.D. Comartin, R.W. Niewiarowski, S.A. Freeman, F.M. Turner, Seismic evaluation and retrofit of concrete buildings: a practical overview of the ATC 40 Document, Earthquake Spectra, 16(1) (2000) 241-261.
[41] M.H. Scott, G.L. Fenves, Plastic hinge integration methods for force-based beam-column elements, Journal of Structural Engineering, 132(2) (2006) 244-252.
[42] A.A. KHEYR, A. Mortezaei, The effect of element size and plastic hinge characteristics on nonlinear analysis of RC frames, (2008).
[43] S. Bae, O. Bayrak, Plastic hinge length of reinforced concrete columns, ACI Structural Journal, 105(3) (2008) 290.
[44] A. Kahil, A. Nekmouche, S. Boukais, M. Hamizi, N.E. Hannachi, Effect of RC wall on the development of plastic rotation in the beams of RC frame structures, Frontiers of Structural and Civil Engineering, 12(3) (2018) 318-330.
[45] W.M. Elsayed, M.A. Abdel Moaty, M.E. Issa, Effect of reinforcing steel debonding on RC frame performance in resisting progressive collapse, HBRC Journal, 12(3) (2016) 242-254.
[46] E. Hognestad, Study of combined bending and axial load in reinforced concrete members, University of Illinois at Urbana Champaign, College of Engineering …, 1951
[47] J.K. Wight, J.G. Macgregor, Reinforced Concrete Mechanics and Design, 2012, in, Pearson Education, Inc., Upper Saddle River, New Jersey.
[48] P. Kotronis, L. Davenne, J. Mazars, Poutre multifibre Timoshenko pour la modélisation de structures en béton armé: Théorie et applications numériques, Revue française de génie civil, 8(2-3) (2004) 329-343.
[49] J.P.S.C.d.M. Guedes, Seismic behavior of reinforced concrete bridges: Modelling, numerical analysis and experimental assessment, (1997).
[50] R. Taleb, Règles Parasismiques Algériennes RPA 99-Version 2003 pour les Structures de Bâtiments en Béton Armé: Interprétations et Propositions.