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ABSTRACT: Two-dimensional half-plane fundamental solutions have been developed by different 
researchers in the fields of electronics, mechanics, and geotechnics. However, for geotechnical 
purposes, their solutions are not complete. This paper discusses those previous solutions and details 
the mathematical procedures for obtaining a new and complete set of half-plane boundary element 
fundamental solutions. Initially, static equilibrium equations were written using Papkovitch functions 
and a proper Green’s function was presented for a two-dimensional half-plane space. Having applied 
the second Green’s identity, the stress-free condition for the ground surface has been satisfied in the 
displacement and traction fundamental solutions. These solutions can be applied in a meaningful way to 
problems with semi-infinite workspaces like those much seen in geophysics, geotechnical, and mining 
engineering because they do not need to discretize the distal boundaries of the model. After extracting 
half-plane fundamental solutions, the effects of the gravity force as body force and required functions 
for a half-plane boundary element analysis were extracted. The effectiveness and accuracy of the new 
solutions have been evaluated by implementing them in a boundary element computer code and solving 
several classic semi-infinite examples. Results showed that the new solutions are capable of accurately 
and economically modeling semi-infinite problems.
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1- Introduction
Because of their simplicity and accuracy, volumetric 

numerical methods such as Finite Element (FE) and Finite 
Difference (FD) methods are widely used for solving 
engineering differential equations [1, 2]. In some cases, 
however, conditions such as model geometry result in 
difficulties when volumetric methods are used, for example, 
in the modeling of infinite and semi-infinite domains. 
These problems commonly occur in many geophysical and 
geotechnical problems because the requirement to discretize 
the whole body of the model cannot be done directly in 
volumetric methods. The discretization of infinite and semi-
infinite spaces requires artificial boundaries to close the 
model. What should be the distance between these artificial 
boundaries from the center of the model, and how large should 
the elements be, are two important questions for engineering 
analysts, as these parameters are directly proportional to the 
computational efforts and calculation time. To reduce the size 
and the number of elements, meshless approaches such as 
boundary integral methods have been introduced [3, 4]. In the 
boundary element method (BEM), which is a practical form 
of the boundary integral solution, discretization is only done 
on the boundaries of the domain. Although the boundary 

element technique requires fewer elements in comparison 
with volumetric methods, for the problems related to a semi-
infinite space, it requires artificial boundaries to be again 
defined. 

Boundary element analyses are completely based on the 
fundamental solutions which provide useful mathematical 
kernels that can be derived by satisfying the physical and 
boundary conditions of the problem [4, 5]. Based on those 
fundamental solutions and geometrical properties, the 
boundary element approach can be divided into Full-plane 
and Half-plane methods [6]. The Full-plane boundary element 
method is related to Kelvin’s Fundamental solutions. Brebbia 
and Dominguez [4] described the mathematical processes 
required for the extraction of full-plane fundamental 
solutions in elasticity. Katsikadelis [5] also extracted the 
fundamental solutions for potential as well as elasticity 
problems. Brebbia and Aliabadi [7] introduced an adaptive 
Finite-Boundary element method for analyzing complex 
non-linear problems. Brebbia and Nardini [8] presented a 
new procedure for eigenvalue and transient dynamic analyses 
in solid mechanics with a boundary integral approach. More 
recently these methods have been successfully applied for the 
solution of geophysical and geotechnical problems by, Xiao 
and Carter [9], Panji et al. [10], and Panji et al. [11]. Another 
approach for solving half-space problems is the Half-plane 
boundary element method in which fundamental solutions *Corresponding author’s email: firoozfar@znu.ac.ir
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are calculated considering the ground surface’s stress-free 
condition.

The first attempts to satisfy the stress-free condition 
when extracting the solutions related to a semi-infinite elastic 
domain were made by Boussinesq [12] who provided the 
stress fundamental solutions when a point load is applied 
perpendicularly on the ground surface. However, these 
solutions cannot be used as the boundary element fundamental 
solutions. Cerrutti [13] obtained the displacement solutions 
when the point load is applied on the ground surface parallel 
to the stress-free boundary. In Melan’s work [14] the stress 
fundamental solutions have been obtained when the point 
load is applied at an arbitrary coordinate inside a semi-infinite 
domain. Telles and Brebbia [15] extended Melan’s work and 
provided the complete fundamental solutions for a boundary 
element analysis. However, in their traction solutions, the 
stress-free condition has not been completely satisfied and 
this causes some difficulties when modeling semi-infinite 
problems (Appendix B). Ye and Sawada [16] evaluated the 
Telles and Brebbia [15] solutions and concluded that the 
accuracy of the solutions decreases with increasing depth.

Fundamental solutions related to a two-dimensional 
semi-infinite orthotropic space were presented by Dumir and 
Mehta [17]. The solutions, however, are not complete and 
some variables have been omitted in their research so that the 
results cannot be used for solving practical examples. Pan et.al 
[18] provided a half-plane BEM formulation for anisotropic 
problems. But, because of non-linear procedures and using 
complex numbers, the implementation of these solutions for 
static analysis is complicated. Pan and Chen [19] provided 
displacement and traction solutions for static analysis of two-
dimensional full-plane and half-plane problems. Their half-
plane solutions are applicable when the point load is applied 
on the stress-free boundary (ground surface).

One of the fields that the half-plane fundamental solutions 
can be effectively used for reducing the calculation time are 
the analysis of geotechnical problems containing cavities and 
in-homogenous mediums. Dong and Lo [20] used the Telles 
and Brebbia [15] approach for the analysis of elastic half-
plane domains containing Nano in-homogenous structures 
and showed that the half-plane solutions provided by Telles 
and Brebbia can be used efficiently when the problem occurs 
very close to the ground surface. In the three-dimensional 
case, Mindlin [21] provided a complete set of displacement 
and traction half-plane fundamental solutions.

To increase the efficiency of calculation and decrease 
computational time, especially for static analysis, accurate, 
compact, and easy-to-use half-plane solutions are required. 
In section 2 of this paper, the concept and importance of the 
half-plane fundamental solutions are clarified. In sections 3 
and 4 by using the Papkovitch [22] and Green’s functions 
[23] and applying Green’s second identity [23], a new and 
complete set of two-dimensional half-plane boundary element 
fundamental solutions are obtained and the mathematical 
procedures are presented. Finally in section 5, by solving 
some classical examples, the efficiency of the new solutions 
is evaluated. 

2- Half-Plane Boundary Element Concept
Fig. 1 shows a semi-infinite domain including three types 

of boundaries, 1Γ  , 2Γ and 3Γ , representing stress-free, far-
field, and inner boundaries, respectively. For most modeling 
purposes including geophysical and geotechnical problems, 
the model space is distributed around the inner boundaries and 
the analytical results are important only around these types 
of boundaries. However, according to the full-plane analysis 
[4, 5], obtaining the results around the inner boundaries 
requires the inclusion of all other types of boundaries when 
discretizing and solving the model equations. 

For any n-dimensional elastic space bounded by a 
boundary, Γ  in equilibrium, displacements are related to 
boundary tractions with the following boundary integral 
equation [4, 5, and 23]:
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In which, *u and *p  are the full-plane displacement and 
traction fundamental solutions, respectively [4] and u  p  are 
the boundary displacements and tractions. ic  is a constant 
related to the geometry and dimension of the problem and it is 
equal to 1 for internal nodes. Also, ic can be calculated using 
a procedure called solid body movement when the point 
belongs to the boundary [4, 5, 10, 11, and 15]. Considering 
Fig. 1, if hu  and hp  are the half-plane fundamental solutions 
the boundary integral equation is modified as follows: 
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If the hu  and hp  are the half-plane boundary element 
fundamental solutions; hp and p  are both equal to zero 
along the 1Γ   and therefore, the stress-free boundary ( 1Γ ) 
vanishes form the boundary integral equation. Since 1Γ  can 
be extended to infinity, the far-field boundaries ( 2Γ )  are also 
extended to infinity and the displacements and tractions along 
them tend to zero:
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Therefore, by vanishing integrals along ( 1Γ )  and ( 2Γ )  it 
is only required to discretize the inner boundaries ( 3Γ )  when 
modeling a semi-infinite space. 
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3- Extracting Half-Plane Fundamental Solution ( hu , hp )
For an isotropic elastic body in equilibrium the 

displacement can be expressed by the following equation [4, 
5] (bold letters are used for vectors and tensors):
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In which µ  and ν  are the shear modulus and Poisson’s 
ratio, respectively, and F is the body force per unit volume. 
In this equation ∇  is the gradient vector and can be defined 
as ( )/ x,  / y,  / z ,∇ = ∂ ∂ ∂ ∂ ∂ ∂ … .∇  and 2∇  are the 
n-dimensional gradient and Laplace operators, respectively.

Using Hooke’s laws the stresses can be calculated from 
displacement as follows [4, 5]:
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Where 2 /1 2λ µν ν= −  is the Lame’s constant and I  
is the unit matrix.

By using Eq. (4), it can be shown that the displacement 
vector can be decomposed into a scalar field β  and a vector 
field B  as follows:
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In which M and N  are two linear operators. Considering 
two potential functions H and ϕ , Helmholtz’s theorem [22] 

can be used for decomposing the displacement vector:
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Substituting into the equilibrium equation (Eq. (4)):
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Defining the Papkovitch vector function, 
( )(2 1 /1 2 )ν ν ϕ= − − ∇ +∇×B H :
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One special solution for the above differential equation 
can be obtained as follows:
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Fig. 1. Three types of boundaries related to a half-plane boundary element analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Three types of boundaries related to a half-plane boundary element analysis.
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In which β  is the Papkovitch scalar function with the 
following relation:
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By substituting Eq. (11) into Eq. (7) with considering the 
fact that ( )(2 1 /1 2 )ν ν ϕ∇× = − − − ∇H B :
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With ( ) ( ) ( )(1/ 4 1 ) .M ν= − − ∇s s r s and ( ) ( ) ( )(1/ 4 1 )N s sν= − − ∇
. 

Considering a scalar potential function V distributed in 
an n-dimensional space Ω   bounded by Γ  , the Green’s 
second identity can be defined as follows [23]:    1 .
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in which G  is the half-plane Green’s function, K shows 
a constant related to the dimension of the problem and n  
is the normal outward vector to the boundary. For a two-
dimensional space a half-plane Green’s function concerning 

0z =  that satisfies the Laplace equation ( )2G 0∇ =  can be 
defined as follows:
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In which r  is the distance of a source point ( , )α β  
from a field point ( , )x z  and ’ r  stands for the image r
concerning the boundary, 0z = . 

Fundamental solutions Part 1: To obtain half-plane 
fundamental solutions, at first we assumed that a concentrated 
load is applied at a point ( 0, )cα β= =  in the direction of 
the z-axis. Therefore all components of load along both the 
x-axis and the y-axis are equal to zero. Considering Eq. (5) 
and applying 0x yB B= =  and 0x yF F= = , the tractions 
on the stress-free boundary ( 0)z =  can be expressed as 
follows:
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By integrating the latter equation with respect to x  and 
applying the Laplace operator, then using Green’s second 
identity 0z ≠  , the following equations can be obtained:
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In the above equation, the boundary term of Green’s 
second identity vanishes because of the stress-free condition 
along, 0z = . The first part of the integral when the point 
load is of a form ( ) ( ) z zF P cδ α δ β= −  can be obtained as 
follows: 
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In which zP is the constant magnitude of the point load 
(Fig. 2) and δ  is the Dirac delta function. The second part of 
the integral can be taken by parts as follows:
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In which again the boundary integral vanished because of 
the half-plane Green’s function. Substituting Eqs. (20) and 
(21) into the (19) for 0z ≠ :
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Again considering Eq. (5) and following the same 
procedures as discussed above for 0z ≠  one can obtain:
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Eqs. (10) and (11) present two linear differential equations 
that can be solved analytically to obtain zB  β :
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Now it is possible to use the result of Eq. (13) to obtain 
displacement fundamental solutions when the load acts in the 
direction of the z-axis as follows:
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In which, ( ),iA x z  are the functions that are presented 
in Appendix A.

Using displacement components 21U  and 22U  and Eq. 
(5), the components of the stress tensor can be obtained as 
follows:
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Fig. 2. Point load acted in the direction of the z-axis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Point load acted in the direction of the z-axis.
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Finally, the tractions along the boundaries can be 
calculated by multiplying the stress tensor into the unit 
normal vector to the boundary.

Fundamental solutions part 2: In the second part 
we considered a concentrated load acting at a point 

0, )( cα β= =  in the direction of the x-axis (Fig. 3). 
Using Eq. (5) and applying 0z yF F= =  and 0yB =  the 
following conditions can be obtained along, 0z = :
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Where ( )1 2 1 2a ν= − , 
2 1 / 2a aλ µ=  and ( )3 12 / 2a aλ µ µ= + . 

These equations present two differential equations with three 
unknown functions xB , zB , and β . Considering Eq. (3), 

xB can be calculated as follows:
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Since 0|x
z

B
z =

∂
∂

 and 
2

0 |x
z

B
z x =
∂
∂ ∂

 are both equal to zero along, 

0z = ; from the Eq. (31) one can obtain:
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Considering Eq. (32) on 0z = , the following equation is 
always valid:
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Applying Green’s second identity on Eqs. (35) and (36) 
for 0z ≠ :
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These two equations present two linear differential 
equations that can be solved to obtain unknowns zB  and β  
as follows:
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By using the result of Eq. (13), the displacement 
fundamental solutions when the point load acts in the 
direction of the x-axis can be calculated as follows:
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In which ( ),iB x z  are the functions represented in 
Appendix A. 

Similar to the previous part (load along the z-axis), traction 
fundamental solutions can be extracted from the stress tensor 
components considering Eq. (5) as follows:
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Calculation of K constant: As discussed previously, 
K is a dimension-related constant. Weatherburn [23] 
showed that in the case of three-dimensional space, K  is 

equal to 4π− . For a half-plane two-dimensional case, it is 
possible to calculate K  by applying Green’s second identity 
and using half-plane Green’s function. Fig. 4 shows a semi-
infinite space subjected to concentrated load acted in a point 
( ), α β  surrounded by a circular boundary with a radius of ε
. Applying Green’s second identity: 
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On the boundary of the surrounding circle when ε  tends 
to zero: 
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Therefore, K is equal to 2π .

 
 

Fig. 3. Point load acted in the direction of the x-axis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Point load acted in the direction of the x-axis.
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4- Half-space Body Force
A body force is a force that acts throughout the volume 

of the body. Gravity, electric force, and magnetic force can 
be considered as the body forces when modeling static and 
dynamic problems. For most mechanical and geotechnical 
purposes the body force due to gravity is most important. In 
general, the force of gravity is not a constant value and it can 
vary as a function of space and time. However, for a small 
area on the earth’s surface, the variation of the force is so 
small that can be considered a constant value.

For a half-space problem considering gravity force in the 
solution, needs to model far-field boundaries and discretize 
the whole volume of the body which requires heavy 
computational efforts and calculation time even for a constant 
value of the body force. Body force can be considered in the 
solution as the integral of the force per unit volume along the 
whole volume of the body as follows:
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In which jb is the j th component of body force per unit 
volume and h

iju  is the half-plane displacement fundamental 
solution extracted in the previous section. Considering a 
constant force in each direction, the above domain integral 
can be converted into the half-plane boundary integral as 
follows:

 
3

3

3Ω Γ

3Γ

 Ω Ψ   Γ  

η   Γ Ψ ,

h h
ij j ij j

h
ij j ij j

u b d p d

u d c  

 



 


 (50)  

 

 
 

 

     
 
 

 
  

 

2
1

2
2

2

1 1 2

1

2 1 2

Ψ
2

1 2
Ψ

2 4 1

η 2
2 2

1 2
2 1

1 2 2
η

2 2 1

x

zx

x

z

zx

b x
S

bb xz z
S

b xn zn
S

b
zn

bb zn zn
S




    

  
    

 
 

  
   




  

 

              



 
  

 

 (51)  

 

  
21

1 2 2
S 

  
 

 
 (52)  

 

11 12

21 22

h U U
u

U U
 

  
 

 

 

(53)  

 
h
ij jki kp n  

 
(54)  

 

 

 

3

3 3

3

3Γ

3 3Γ Γ

3Γ

,  Γ

 Γ Ψ   Γ

 η   Γ Ψ ,

h
ij j ij j

h h
ij j ij j

h
ij j ij j

c u p u d

u p d p d

u d c

 

 

 

 





 



 

 

(55)  

 

ΨHU GP H G    (56)  
 

 (50)

Where h
ijp , is the half-plane traction fundamental 

solution extracted in the previous section, and ( ),α β  is the 
coordinate of the source point. ijc , are the geometry-related 
constant that can be calculated using a method called solid 
body movement [4]. Ø j and ç j  are the known functions that 
were extracted as follows:
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In which xb  and  zb are the components of the constant 
body force per unit volume in the direction of x and z  axis, 
respectively. jn is the j th component of the unit normal 
vector to the boundary and S is constant that can be calculated 
as follows: 
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Fig. 4. Point load surrounded by a circle. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Point load surrounded by a circle.
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5- Boundary Integral Equation and Discretization:
Fundamental solutions derived in section 3, provide a 

second-order tensor with the following components [4, 5]:
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Similarly, traction fundamental solutions can be calculated 
from stress tensors as follows [4, 5]:
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In which h
ijp  are the components of the traction 

fundamental solutions tensor and jkiσ  are the stress 
components which were presented in the previous section. 

kn  is the k th component of the unit vector normal to the 
boundary. The half-plane boundary integral equation by 
applying the half-plane fundamental solutions and half-plane 
body forces into the equilibrium equation can be expressed 
as follows:
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According to Fig. 1, Eq. (55) shows that the calculation of 
the displacement field ju  only requires discretizing the inner 
boundaries, 3Γ . The discretized form of the equation can be 
presented as follows:
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In which H and G are the discretized form of the 
fundamental solutions. By considering the NE number of 
boundary elements the integrals can be expressed as follows:
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According to Fig. 5, for a quadratic element the shape 
function, ϕ , can be extracted by using the properties of the 
unit space as follows [4]:
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Fig. 5. Transferring the coordinate of the model space to the unit space. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Transferring the coordinate of the model space to the unit space.
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Some expressions in the fundamental solutions contain 
( )1tan /a b−  function (see for example expression ( )2 ,A x z  

in Appendix A). Most computer algorithms compute 
( )1tan /a b−  as zero when the " "a  value tends to zero. 

However, for a boundary element analysis the sign of " "b  
is important. For modifying ( )1tan− −  function following 
algorithm is suggested: 
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The formulation and boundary element fundamental 
solutions provided in this section, do not make any special 
difficulties when applying to the boundary integral Eq. 
(55) and all singularities are the same as traditional 
boundary element methods [4, 5]. The main difference 
between the presented half-plane method and traditional 
BEM formulations is the discretization process. In half-
plane formulation, only the boundaries of the cavities and 
topographic reliefs are discretized and it is not necessary to 
define the far-field boundaries to close the model. Therefore, 
the number of boundary elements required to calculate the 
responses is significantly reduced resulting in much lesser 
computational efforts to solve the model. The only limitation 
of the new method is the uniqueness problem as described 
by Telles and Brebbia [15]. This problem appears when 

the boundaries of the model are not closed-form the sides. 
In this situation, the results of the solution are differential 
deformations. When the deformation is initialized for only 
one point of the domain is possible to convert all differential 
deformations to real deformations in the model. Therefore the 
uniqueness problem won’t make any special difficulties for 
the BEM analysis and different methods have been developed 
for solving the problem [15].

6- Numerical Examples
Half-plane under surface loading: In the first example 

three kinds of linear distribution of traction over a finite part 
of a semi-infinite plane were evaluated. The problem was 
solved by only discretizing the loaded part of the surface 
using quadratic boundary elements and the results for surface 
displacement were computed using a Matlab code solution at 
boundary nodes. The analytical solution for this example is 
available in Poulos and Davis [25]. 

The first case is related to a strip vertical loading acting 
in the direction of the z-axis (Fig. 6). As Poulos and Davis 
[25] described, the vertical displacement of the ground 
surface nodes can be calculated analytically by the following 
equation:
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Fig. 6. Vertical displacement due to the vertical traction acted on the surface of a semi-infinite space. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Vertical displacement due to the vertical traction acted on the surface of a semi-infinite space.
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Fig. 7. Vertical displacement due to the vertical triangle traction acted on the surface of a semi-infinite space. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Vertical displacement due to the vertical triangle traction acted on the surface of a semi-infinite space.

In which ( ),0zu x  is the vertical displacement at 
any point on the surface and ( )0,0zu  is the vertical 
displacement at the center of the loading. p  is the magnitude 
of loading, b  is the half-length of the loading line and ν  and 
E  are the Poisson’s ratio and Elastic modulus of the domain, 
respectively. Fig. 6 shows the comparison between analytical 
and half-plane boundary element solutions. For clarifying 
the robustness of the method, the deformation results are 
plotted in the nodes under the loading area and also for the 
surrounding points. According to Fig. 6, the loading width is 
12m and the results are calculated for 24m. As can be seen 
in the figure, there is a good agreement between the two sets 
of solutions and it indicates that the displacement part of the 
fundamental solutions works correctly in the case of surface 
loading.

In the second test, a linear surface loading is considered. 
According to Poulos and Davis [25], the vertical displacement 
due to normal triangle traction acting on the surface can be 
obtained as follows: 
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In which p  is the maximum magnitude of the linear 
loading. Fig. 7 shows the results of analytical and numerical 

solutions. A proper agreement can be seen between the results.

Shallow Circular Cavity under Pressure: The second 
verification example presents a circular cavity embedded 
in a semi-infinite space (Fig. 8). A uniform pressure with a 
magnitude of 100 KPa  is applied over the internal boundary 
of the cavity. The ratio between cavity embedded depth and 
radius is equal to / 1.34d r =  and the material properties of 
the domain are the same as in previous examples. The stress 
distribution in an element inside the domain of this problem 
can be calculated using the computed displacements. To reach 
this goal, there are several approaches proposed by Liu and 
Jeffers [26, 27] and Liu [28]. For example, Liu and Jeffers [26] 
introduced a new method for discretizing the model domain 
by rational triangular Bézier splines. By defining a nine-node 
internal element and calculating the vertical and horizontal 
displacements in the nodes, the displacement function can be 
estimated by a Lagrange interpolation or spline functions [28, 
29]. The function then can be differentiated concerning x  
and z  and finally the stress components can be calculated 
using Eq. (5). In Fig. 9 the computed numerical results were 
compared to an analytical solution obtained by Jeffry [30]. 
As can be seen, there is a good agreement between the two 
solutions. 

Ground surface vertical displacement and horizontal 
stresses due to internal pressure of shallow cavities 
embedded in different depths of the soil are provided in 
Fig. 10. It can be seen that by increasing the depth of the 
cavity, both horizontal stress and vertical displacement 
decrease. The deformed shapes of the cavity are presented 
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Fig. 8. Schematic representation of a shallow circular cavity under pressure 
 embedded in a semi-infinite space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Schematic representation of a shallow circular cavity under pressure embedded in a 
semi-infinite space.

 
 

Fig. 9. Horizontal stress on the ground surface due to the presence of a circular cavity under pressure. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Horizontal stress on the ground surface due to the presence of a circular cavity under pressure.
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Fig. 10. Ground surface horizontal stresses (a) and vertical displacements (b) due to the presence of a circular cavity 
under pressure. 

 

 

 

 

 

 

 

 

 

Fig. 10. Ground surface horizontal stresses (a) and vertical displacements (b) due to the presence of 
a circular cavity under pressure.
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Fig. 11. Deformed shape versus the main shape of a shallow circular cavity (The displacement of the deformed shapes was 
scaled up 10 times for better visualization).  

 
 

Fig. 11. Deformed shape versus the main shape of a shallow circular cavity (The displacement of the de-
formed shapes was scaled up 10 times for better visualization). 

in Fig. 11 with a scale factor equal to 10. When the cavity 
is located at a shallower depth, the displacement in the 
top parts of the cavity grows more compared to that of 
the lower parts and by increasing the cavity depth the 
displacement becomes more uniform because of uniform 
confinement stresses. It is worth noting that for modeling 
this example only 30 half-plane elements were used. 
The same calculation can be done using ABAQUS finite 
element software with more than 700 domain elements 
[31] and with a full-plane boundary element code using 
200 boundary elements [32]. 

7- Conclusion
In this paper, a new set of half-plane boundary element 

fundamental solutions for modeling semi-infinite geophysical 
problems was presented. In this regard, Papkovitch and Green’s 
functions for a half-plane two-dimensional elastostatic space 
were introduced. Green’s second identity was used as a tool for 
satisfying stress-free boundary conditions along the ground 
surface. The fundamental solutions were then obtained in two 
different types of loading. In the first case, displacement and 
traction fundamental solutions were obtained when the point 
load acts in the direction of the z-axis. In the second case, 
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the solutions when the point load acts in the direction of the 
x-axis were presented. These two sets of solutions provide 
a complete set of fundamental solutions required for a half-
plane boundary element analysis.

The accuracy and efficiency of the half-plane solutions 
were evaluated by solving four classic examples. As the first 
set of examples, the ground surface vertical and horizontal 
displacements were evaluated indicating that the displacement 
set of half-plane fundamental solutions is correct and 
accurate. In the second set of examples, for testing the traction 
fundamental solutions, a shallow circular cavity under 
pressure embedded in a semi-infinite space was considered 
and the results for horizontal stresses on the ground surface 
were compared to an available analytical solution. The results 
again showed that the traction fundamental solutions work 
well for a boundary element analysis. All of these examples 
were solved only by a small number of boundary elements 
showing the power of boundary element analysis for solving 
half-plane problems.

The use of half-plane boundary element fundamental 
solutions does not introduce any special difficulties. All 
procedures including discretization, method of integration, 
solution of singularities, and calculation are the same as 
full-plane boundary element analysis. The discretization 
is only done for the boundaries of the model inside the 
loaded zone and also, the requirement to define artificial 
boundaries completely vanishes. These features reduce the 
computational time and calculation efforts which make the 
half-plane boundary element analysis a reliable solution for 
engineering problems. 
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Required functions when point load (𝑝𝑝𝑧𝑧 = 1) is acted in the direction of the z-axis: 
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Required functions when unit point load (𝑝𝑝𝑥𝑥 = 1) is acted in the direction of the x-axis: 
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In all the above expressions, (𝛼𝛼, 𝛽𝛽) is the coordinate of the source point, (𝑥𝑥, 𝑦𝑦) is the coordinate of the field point, 
𝜇𝜇 and 𝜈𝜈 are the shear modulus, and Poisson's ratio, respectively, and 𝑟𝑟 = √(𝑥𝑥 − 𝛼𝛼)2 + (𝑧𝑧 − 𝛽𝛽)2 and 𝑟𝑟’ =
√(𝑥𝑥 − 𝛼𝛼)2 + (𝑧𝑧 + 𝛽𝛽)2 are the distance of the source point and its image from the field point, respectively. 
 
Appendix B  

Telles and Brebbia [15] presented a set of half-plane boundary element fundamental solutions. However, the 
traction set of their solutions doesn’t completely support the stress-free condition of the ground surface. 

The complementary part of the traction solutions have been presented as follows: 
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 Eq. (B.1) 

 
Where all parameters are available in the Telles and Brebbia [15]. When the field point is located on the ground 

surface, �̅�𝑥 = 0, 𝑐𝑐 = 𝛽𝛽 , 𝑅𝑅1 = −𝛽𝛽 and 𝑟𝑟2 = 𝑥𝑥 − 𝛼𝛼 ; therefore: 
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 Eq. (B.2) 

 
The traction component on the surface can be obtained as follows:  
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 Eq. (B.3) 

 
For the ground surface, the Kelvin part of the solutions which must be added to the complementary part is available 

in Brebbia and Dominguez [4] as follows: 
 

 
 2

22 2 2

2
1 2

4 1
x

p
R R

 
 

         
 Eq. (B.4) 

 
The sum of 𝑝𝑝22

𝑐𝑐  and 𝑝𝑝22 is not equal to zero showing that the 𝜎𝜎122𝑐𝑐  does not support the ground surface stress-free 
condition properly. 
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