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ABSTRACT: Data loss in Structural Health Monitoring (SHM) networks has recently become one of 
the main challenges for engineers. Therefore, a data recovery method for SHM, generally an expensive 
procedure, is essential. Lately, some techniques offered to recover this valuable raw data using Neural 
Network (NN) algorithms. Among them, the convolutional neural network (CNN) based on convolution, 
a mathematical operation, can be applied to non-image datasets such as signals to extract important 
features without human supervision. However, the effect of different parameters has not been studied 
and optimized for SHM applications. Therefore, this paper aims to propose different architectures and 
investigate the effects of different hyperparameters for one of the newest proposed methods, which is 
based on a CNN algorithm for the Alamosa Canyon Bridge as a real structure. For this purpose, three 
different CNN models were considered to predict one and two malfunctioned sensors by finding the 
correlation between other sensors, respectively. Then the CNN algorithm was trained by experimental 
data, and the results showed that the method had a reliable performance in predicting Alamosa Canyon 
Bridge’s missed data. The accuracy of the model was increased by adding a convolutional layer. Also, 
a standard neural network with two hidden layers was trained with the same inputs and outputs as the 
CNN models. Based on the results, the CNN model had higher accuracy, lower computational cost, and 
was faster than the standard neural network.
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1- Introduction
Available infrastructures are subjected to considerable 

operational and environmental loads during their life cycle. 
These loads and hazardous events like earthquakes and ex-
treme hurricanes can impact structures unfavorably and 
speed up structural damage. Hence, identifying the structural 
condition timely is essential to ensure safety [1]. Tradition-
ally, visual inspection was crucial in evaluating the structural 
condition. Nevertheless, visual inspection is w=ork-intensive 
and time-wasting; consequently, it cannot accurately track 
condition variations in real-time. Structural health monitor-
ing (SHM) approaches emerged to address this issue and 
acquired increasing usage in past decades. SHM is a useful 
method that presents tools for evaluating and monitoring 
structural health [2, 3]. These tools can widely be used for en-
suring integrity and safety, detecting damage, and estimating 
performance deterioration of infrastructures [3-8]. 

During the last 40 years, diverse SHM methods have been 
increasingly exploited to monitor bridges’ structural condi-
tions around the world [9-12]. These methods have collected 
immense data after long-term data gathering time by numer-
ous sensors with high sampling frequencies [13]. In current 
SHM applications, the utilization of these sensors faces lots 
of limitations, including sensor measurement disabilities or 

sensor failure, which can be momentary or permanent [13-
15]. Also, there are cases in which data loss may occur during 
data transmission between sensors and receivers in wireless 
SHMS [16]. These limitations controlled the efficient use of 
dense sensor arrays on civil infrastructure and resulted in 
insufficient datasets, which caused a significant problem in 
starting the analysis phase due to created missing data [17]. 
Furthermore, considering the limitations of computational 
ability and data analysis methods, the knowledge of a large 
amount of SHM data is not well interpreted. Big data (BD) 
and artificial intelligence (AI) techniques are discussed as ad-
vantageous practices to address the issues mentioned earlier 
[13].

Several methods have been conducted to recover the 
missing data resulting from sensors or transition failures dur-
ing recent years. These recovering methods are mainly based 
on estimating those data using other data collected from dif-
ferent sensors [18]. In a study, recovering of missed data was 
performed by a compressive sampling technique using fewer 
measured data compared to the number of measurement data 
made obtainable by SHM [19]. This compressive technique 
is also employed to recover dynamic structural responses in 
a wireless network for long-term structural monitoring of a 
bridge [20]. Data recovery methods have also been applied 
to recover missing data. In a study, restoring the missing data 
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was achieved by interpolating the characteristics between the 
data measured by stress sensors installed on the building’s 
structural members [15]. Lu et al. employed the partial least 
square method to propose an approach to recovering strain 
monitoring data in buildings. In this method, the correlation 
between the strain sensors installed at different building loca-
tions has been proved by a proposed model [21]. Also, an 
inter-sensor modeling method was offered in a study, to re-
cover strain data collected from sensors of an actual bridge 
using nonparametric copulas. During the study, the basis of 
predicting data was the dependence of sensors located at dif-
ferent locations on the bridge [22].

Deep neural networks (DNN) are other tools to recover 
and predict missing data in SHM networks [23, 24]. Liu et 
al. utilized a deep learning-based data recovery method for 
missing structural temperature data in an SHMS mounted on 
a river bridge. Based on their results, they found that the long 
short-term memory (LSTM) network-based recovery method 
performs better in terms of accuracy than the support vector 
machine (SVM), and wavelet neural network (WNN) in pre-
dicting time series data such as structural temperature [18]. In 
a recent study, to detect missing dynamic responses, a DNN 
was proposed and was trained using visualized time series 
structural responses and missing data from dynamic accelera-
tions measured from long-term SHM [25]. In another study, 
a novel neural network-based method has been employed to 
predict high-rise buildings’ future structural responses using 
the previous and current steps of the measured time history 
acceleration data [26]. In another study, a NN was proposed 
to estimate responses of buildings proposed. In this study, the 
input included building structural parameters and the wind 
load, and output was set as the maximum inter-story drift ra-
tio [27]. Predicting large buildings’ structural responses was 
also studied in another study using a recurrent neural net-
work (RNN). Perez-Ramirez et al. proposed an RNN model 
in which the acceleration time history responses of particu-
lar floors in a structure were assumed as the input layer, and 
that of another story was set as the output layer of NN. This 
model’s prediction was examined and verified by structural 
responses under various lateral loads [28].

In recent years, CNN is broadly utilized in image recogni-
tion, image classifications, etc. To move toward automated 
monitoring, CNNs are progressively employed by detecting 
structural flaws in images. CNNs can address the most tra-
ditional methods’ weaknesses, which require hand-crafted 
features. One of the main features of CNNs is being qualified 
for negotiating with an ample amount of data. Furthermore, 
recent applications of CNNs show that these models are pow-
erful in solving overfitting problems, which are counted as 
the most critical problem of conventional NNs. In the SHM 
fields, the CNNs also show excellent performances in dealing 
with pixel-based image data. These applications mostly can 
be seen to address image-based damage detection, corrosion 
detection, and visual-based damage identification [29-31]. A 
method for crack identification using large-scale pixel-based 
images has been introduced by Xu et al. These images were 
classified into sub-images, and the proposed CNNs were 

trained with these sub-images. Using new images taken from 
girders’ surfaces in bridges, the CNN model automatically 
identified cracks [29]. Khodabandehlou et al. employed the 
image classification ability of CNNs to introduce a method 
for evaluating structural conditions [32]. In another research, 
the proposed CNN model was used to detect data anomaly 
that usually occurs in signal processing of measured data 
gathered from field tests. In this approach, time and frequency 
information of dynamic structural responses were set as the 
trained CNN model’s input for visualization of image data, 
and these data were classified as normal and anomalies [33]. 
Fan et al. proposed a data recovery method for vibration re-
sponses of bridges based on deep learning. In this technique, 
measured responses from structures were used as input and 
output of CNNs [34]. Oh et al. utilized a CNN-based data 
recovery method in the case of a sensor fault or data loss in a 
sensor network. This method recovers the missing strain data 
using the remaining sensors’ responses by training the CNN 
measured before the failure of the mentioned sensor [17]. 

Although some previous research implemented ML algo-
rithms to recover the missed data laboratory specimens, the 
reliability of this method has not been studied for the real 
and in-site structures such as bridges or existing raw data of 
SHM. Besides, the effects of different parameters have not 
been studied [35]. Therefore, in this paper, a recovery method 
using CNN was utilized to predict the missing data of accel-
erometers installed on Alamosa Canyon Bridge in the case of 
structural health monitoring [36]. Then modal features such 
as natural frequencies and mode shapes were then obtained 
using the predicted data and compared with the original data. 
Moreover, the effect of different parameters such as activa-
tion function, number of layers, etc., was investigated, and 
a comparison was made between CNN and NN. Finally, a 
standard neural network (NN) was implemented to compare 
it to CNN which has not been studied so far.

This paper is organized as follows: In section 2, brief in-
formation was provided about the Alamosa Canyon Bridge 
studied in this paper. Then, in section 3, to implement the 
data recovery method, different architectures for CNN and 
NN were proposed with their formulas. In section 4, the re-
sult of the models was shown as the recovered data of faulted 
sensors and modal parameters. Besides, an error analysis was 
done. Furthermore, in section 5, a parametric study was done 
to obtain the best activation function. Finally, in the last sec-
tion, the conclusion of this study was provided.

2- General overview of the bridge
Alamosa Canyon Bridge (Fig. 1) was a steel bridge with 

a concrete deck that was located from north to south in New 
Mexico, USA. The bridge was reconstructed in the 1960s 
based on seven independent spans. It used six steel W30 × 
116 standard wide-flange beams which had roller connections 
at their ends to transfer loads of each span to the piers. Also, 
the cross braces of this bridge were channel sections (C12 
× 25). Fig. 2 schematically shows the elevation view of the 
Alamosa Canyon Bridge and its dimension.
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2- 1- Structural health monitoring system
In the 1990s, Farrar et al. [36] conducted several field 

tests on Alamosa Canyon Bridge. The main purpose of those 
tests, which were funded by Los Alamos National Labora-
tory’s Laboratory Direct Research and Development (LDRD) 
office, was to investigate damage detection methods in situ 
structures. Table 1 summarizes the field tests which were used 
in the previous research to validate damage detection meth-

ods. Several global damage detection methods were studied. 
Also, they investigated how modal parameters would change 
under different environmental and operational conditions.

On each test that has been conducted by Farrar [36] on 
Alamosa Canyon Bridge, different numbers of accelerome-
ters have been installed. Fig. 3 shows the location of installed 
sensors on the Alamosa Canyon Bridge for an ambient test, 
which is studied in this paper.

 
 

 
 

Fig. 1. Alamosa Canyon Bridge [37]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Alamosa Canyon Bridge [37].

 
 

Fig. 2. Side view of the Alamosa Canyon Bridge [36]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Side view of the Alamosa Canyon Bridge [36].

Table 1. Summarized field tests of the Alamosa Canyon Bridge.Table 1. Summarized field tests of the Alamosa Canyon Bridge. 
 

Structural Health 
Monitoring test Vibration test Type of sensors Number of data 

acquisition channels 
Number of 

tests 

Forced vibration test 

24hr Impact Test Accelerometer and 
Transducer 32 11 

Random shaker 
test 

Accelerometer and 
Transducer 32 10 

Ambient Vibration Test Ambient 
Vibration Test 

Accelerometer and 
Transducer 32 11 
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3- Materials and Methods
The convolutional neural network, which is usually called 

CNN or ConvNet, is one of the machine learning algorithms. 
CNN is mainly used for computer vision purposes such as 
image classification, face recognition, and so on. However, 
CNN can be applied to non-image datasets, especially wave-
form datasets such as audio and other types of signals. A CNN 
is based on a mathematical operation or sliding dot product. 
Each CNN architecture is formed by a series of layers that 
pass their results to the next layer.

3- 1- Convolutional Neural Network
At first, in this study, all the recorded data of a test, an 

ambient test in this study, was assumed to be a matrix. Fig. 4 
shows the procedure of arrangement and making the matrix. 
Each column of this matrix belongs to a sensor, and each row 
represents measured acceleration on each time step. The time 
steps of the studied data were 0.007812 seconds, and 2048 
accelerations had been recorded. The total duration of each 
test was 16 seconds.

To decrease the training time of the proposed algorithm, 
which is one of the critical challenges in machine learning, it 
is essential to normalize and rescale the accused data before 
training the CNN model. Another reason for normalization 
was the different range of recorded data by sensors due to 
their various distance from the excitation source. Therefore, 
each sensor’s data was normalized by finding the minimum 
and maximum of data and using the following equation:
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where Acc is each recorded acceleration in the dataset, 
Max stands for a maximum value of the recorded data, Min is 
the minimum value of the recorded acceleration, and Nd in-
dicates the normalized values of raw data from experiments.

For the proposed method, to recover a specific sensor’s 
data, first, it should be intentionally assumed as a malfunc-
tioned or faulted sensor. When a sensor becomes faulted, it 
will not be able to measure the acceleration, and it can be 
assumed to record the zero as the magnitude of the accelera-
tion during the malfunctioned period. Hence, its data was not 
considered and then replaced with zero in the matrix of raw 
data. Due to limitations on the available recorded data, to in-
crease the number of training sets for the machine learning 
algorithm, data augmentation was implemented using over-
lapping the existing dataset, increasing the number of training 
sets. Hence, the dataset was divided into square windows to 
set as input. The windows’ dimension was considered equal 
to the number of sensors. In the case of Fig. 1, the windows’ 
dimension was 30*30. The total number of windows (W) is 
calculated as follows:

 (1) 

 

 (2) 

 

 (3) 

 

 (4) 

 (5) 

 (6) 

 

Acc MinNd
Max Min

−
=

−

Nt WLW
WS
−

=

1I KC
Stride
−

= +

0 0
0x

for x
f

x for x


=  

( 1) 0
0

x

x
e for x

f
x for x
 − 

= 


0
0x

x for x
f

x for x
 

=  

 (2)

 

 
 

Fig. 3. Schematic location of accelerometers in Farrar's experiment [36]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Schematic location of accelerometers in Farrar’s experiment [36].
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Nt, WL and WS indicate the number of recorded accelera-
tions, windows’ length, and windows’ stride, respectively. In 
this study, the WL was assumed to be equal to 30 (number 
of sensors). The outputs of the CNN are the data that have 
been omitted and replaced with zero. Decreasing the param-
eter WS provides more input data and will increase the ac-
curacy of the prediction. Therefore, a sensitivity analysis was 
done, and the results showed that using values for WS smaller 
than 6 increased the computational costs; however, the error 
changes were not significant (less than 3%). Hence, the WS 
was assumed 6. Eighty percent of divided windows randomly 
were assumed as the training sets, and the others were used 
as validation sets. In this paper, three different CNN models 
have been considered, named (a), (b), and (c). Model (a) and 
(b) had 3 and 2 convolutional layers, respectively. They were 
trained to predict one faulted sensor’s data. Model (c) had 
three convolutional layers; however, it was used and trained 
to recover two faulted sensors. Other hyperparameters, such 
as the number of kernels, strides, learning rate, and so on, 
were the same for these three models. Fig. 5 illustrates the 
proposed CNN architecture of model (a) for the data recov-
ery method in this paper. The input datasets, which are ar-
ranged windows, pass through the first convolutional layer. 
This layer convolves inputs using 32 kernels, which are 8*8 
matrix. These kernels were assumed as hyperparameters, and 
the algorithm tried to learn them. The convolutional layer’s 
size depends on the input layer, kernel size, and stride sizes 
which are calculated as follows:
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Where the C, I, and K indicate the size of the convolu-
tional layer, input layer, and kernel, respectively, and Stride 
indicates the number of data that the kernel shifts over the 
input layer each time.

The next layer is the pooling layer. This layer reduces the 
dimension of the convolutional layer’s output by subsam-
pling. In this paper, the max-pooling is used, which returns 
the maximum values of its input’s rectangular regions. This 
layer is connected to the dropout layer, which is used as regu-
larization to prevent overfitting. In the proposed model, these 
layers were repeated three times to increase the model’s com-
plexity and accuracy. Also, the number of filters doubles in 
each convolutional layer compared to the previous one. The 
last dropout layer flattened and connected to the dense layer 
(fully connected layer), which used the sigmoid function as 
its activation function. The details of the proposed CNN for 
the Alamosa Canyon Bridge are shown completely in Table 2.

The output of the dense layer is a 30*1 vector that re-
turns the predicted data for a sensor which were intentionally 
assumed as a faulted sensor at the first step. The length of 
this vector depends on the windows’ size, which was 30*30 
Metrix in this study. After training the CNN with the training 
datasets, the validation data sets were used to evaluate the 
performance of the algorithm. 

3- 2- Neural Network 
To compare the advantage of the CNN algorithm for re-

covering data to other machine learning algorithms, a stan-
dard neural network was proposed and trained in this research. 
Fig. 6 shows the architecture of the NN. This NN consists of 
2 hidden layers with the exponential linear unit (eLU) activa-
tion function, the same as CNN models. The training sets and 
validation sets were the same as CNN. 

 
 

Fig. 4. Data arrangements. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The proposed CNN architecture of model (a) for the recovery of Alamosa Canyon Bridge.
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Table 2. Details of CNN architecture for the first model (model (a)) to predict one sensor
 

Table 2. Details of CNN architecture for the first model (model (a)) to predict one sensor 
 

Layer Size Operator Size/Stride size/Number of kernels 
Input layer 30×30 Kernel 1 17×17/1/32 

Convolutional layer 1 14×14×32 Subsampling 1 2×2/1/- 
Pooling layer 1 13×13×32 Kernel 2 8×8/1/64 

Convolutional layer 2 6×6×64 Subsampling 2 2×2/1/- 
Pooling layer 2 5×5×64 Kernel 3 4×4/1/128 

Convolutional layer 3 2×2×128 Subsampling 3 2×2/1/- 
Pooling layer 3 1×1×128   

FC layer 128×1   

Output layer 30×1   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. The proposed NN architecture for the recovery of Alamosa Canyon Bridge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The proposed NN architecture for the recovery of Alamosa Canyon Bridge.

All the accelerometers’ responses at a window are passed 
as inputs, and the outputs are the responses of faulted sensors. 
The learning rate, the number of training, and other hyperpa-
rameters are assumed equal to CNN to have a fair conclusion.

4- Results and Discussion
4- 1- Regenerated Lost Signals

After the models were trained, four random periods (win-
dow), which were 0.234 seconds of the experimental test and 
contained 30 records of acceleration, were selected, and a 

damage scenario was assumed. For models (a) and (b), one 
sensor was assumed malfunctioned, and their records con-
verted to zero. Then, the trained model predicted the real 
value of a malfunctioned sensor. Figs. 7 & 8 compare the 
normalized predicted data and the reference data for models 
(a) and (b), respectively. As seen, the predicted data are very 
close to reference data and accurately follow the entire data 
trend. As expected, model (a) (Fig. 7) showed better perfor-
mance than model (b) (Fig. 8) due to having more convolu-
tional layers and being more convoluted. But, model (b) (Fig. 
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8) did not show very accurate performance in the third period 
(window). The maximum error in the tested periods for mod-
els (a) and (b) were 2.9 and 3.12%, respectively.

For model (c), which was assumed to have two mal-
functioned sensors, all the recorded data for these two sen-
sors were assumed to zero in the input data. The output is 
a 60×1 array. Fig. 9 shows the results of model (c) in the 
abovementioned period. As shown, the first thirty data be-
long to the first sensor, and the rest belongs to the second 
malfunctioned sensor. The results show that this method 

exhibited desirable performance in prediction data of more 
than one sensor. The maximum difference between the ref-
erence and predicted data in the tested four periods was 
4.67%.

Fig. 10 presents the results obtained from the convention-
al neural network. As shown, the proposed NN model could 
not predict the missed data very accurately compared to CNN 
models. However, the NN is still a reliable algorithm for use 
in the proposed method, and the maximum error in these four 
periods is less than 8% (7.4%).

 
 

Fig. 7. Acceleration prediction of the model (a) and the real values. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Acceleration prediction of the model (a) and the real values.

 
Fig. 8. Acceleration prediction of the model (b) and the real values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Acceleration prediction of the model (b) and the real values.
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4- 1- 1- Error Analysis
To have a better understanding of the models’ accuracy 

and optimize the model and obtain better performance in this 
study, the root mean square error (RMSE) was selected as the 
loss function of the models in this paper. Furthermore, mean 
absolute error (MAE) was used as the second metric to show 
errors. The results are listed in Table 3. For each model, the 
errors are calculated for training sets and validation sets. As 
mentioned earlier in this study, the validation sets and train-
ing sets are entirely different. Although the MAE depends 
on the magnitude of outputs, the calculated values can eas-
ily be compared due to the same range of output data for dif-
ferent tested models. Increasing the complexity of the model 
by adding extra convolutional layers reduces both MAE and 
RMSE. In all cases, the MAE and RMSE for training sets are 

a bit lower than validation sets, which confirmed a well-fitted 
model. This can be seen in Fig. 11. It is expected that by in-
creasing the number of faulted sensors with the same number 
of datasets, the model’s errors increase. Although the errors 
of the model (c) should be higher than the model (a), for the 
model (c) by overlapping techniques, the number of inputs 
was increased 15 times larger than the model (a), and this 
resulted in the lower error.

Fig. 12 shows the convergence curve obtained by training 
the 3 layers neural network. The loss function, which was the 
root mean square function (Fig. 12a), and the mean absolute 
error (Fig. 12b) as other metrics decreased slowly. It is shown 
that for this case study based on this architecture, after 1000 
iterations, validation error did not improve. Therefore, this 
number of training seems enough.

 
Fig. 9. Acceleration prediction of the model (c) and the real values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Acceleration prediction of the model (c) and the real values.

 
 

Fig. 10. Predicted data using a standard neural network. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Predicted data using a standard neural network.
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Fig. 12. Convergence curves for standard Neural Network model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Convergence curves for standard Neural Network model.

 
Fig. 11. Convergence’s curve of validation sets and training sets for model (a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Convergence’s curve of validation sets and training sets for model (a)

Table 3. Errors of the studied cases.Table 3. Errors of the studied cases. 
 

Model No. of faulted sensors No. of convolutional layers Datasets MAE RMSE 

Model (a) 1 3 Training 0.0153 0.0210 
Validation 0.0155 0.0234 

Model (b) 1 2 Training 0.0154 0.0212 
Validation 0.0161 0.0240 

Model (c) 2 3 Training 0.0106 0.0145 
Validation 0.0116 0.0162 

NN 1 0 Training 0.0181 0.0235 
Validation 0.0215 0.0291 

MAE: mean absolute error; RMSE: root mean square error 
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4- 2- Modal Properties 
One of the main objectives of structural assessment is to 
obtain damage-sensitive features from the measured system 
responses. Among these features, modal properties such as 
natural frequencies and mode shapes are common. Therefore, 
to better understand the reliability of the proposed method 
and parameters to recover lost data, a comparative study was 
done on the modal features extracted from the predicted CNN 
model. Hence, a scenario was assumed where a sensor (sensor 
number 6) misfunctioned. Then trained model (a) was used, 
and natural frequencies and mode shapes were calculated 
using the frequency domain decomposition method (FDD) 
[38], and the results were compared to the original ones. 
Table 4 listed the natural frequencies

To investigate the correlation between modes from origi-
nal data and the predicted data (CNN model), Modal Assur-
ance Criterion (MAC), a statistical indicator, was used. Table 
5 shows the results.
The MAC is bounded between 0 and 1. The values near one 
show consistency. Hence, the results in Table 5 showed that 
the modes shapes from the original signal and predicted signal 
are consistent. And the CNN model is reliable for predicting 
data in the SHM application.

5- Parametric Study
Another analysis in this study was to investigate the ef-

fect of activation functions in hidden layers. The previous 
results were obtained by using exponential linear unit (eLU) 
as the activation function in three CNN models and the NN 

model. Although the nonlinear functions seem to be suitable 
for CNN, three different nonlinear functions, rectified linear 
unit (ReLU), eLU, and leaky ReLU were tested for model (a). 
These activation functions can be calculated, respectively, as 
follows:
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Fig. 13 compares the convergence curve of the model (a) 
for the mentioned activation functions. In this case study, it is 
concluded that the eLU activation function has a better per-
formance for recovering the data compared to other activa-
tion layers. The eLU activation function speeded up the con-
vergence of the model and had a lower error. Increasing the 
number of epochs reduces the errors of the model. However, 
after 1000 epochs, the slope of loss function-epochs did not 
change, and the model did not need further epochs.

Table 4. Predicted and original natural frequency.Table 4. Predicted and original natural frequency. 
 

Mode 
Natural Frequencies (Hz) 

Error (%) 
Ambient Test CNN model 

1 7.6210 7.7016 -1.05 

2 12.2984 12.2446 0.43 

3 20.1747 20.1763 -0.008 

4 24.2876 24.2860 0.007 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Modal Assurance Criterion between predicted and original data.Table 5. Modal Assurance Criterion between predicted and original data 
. 

Mode 1 2 3 4 
1 0.904 0.237 0.016 0.002 
2 0.178 0.979 0.001 0.0002 
3 0.011 0.002 0.917 0.008 
4 0.001 0.005 0.008 0.992 
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6- Conclusion
In this paper, data sets of a case study on the Alamosa 

Canyon Bridge were used to predict lost SHM data using a 
convolutional neural network. Data loss can occur in SHM 
projects due to data collision in wireless SHM networks or 
malfunctioned and faulted sensors. The study aimed to vali-
date the accuracy and optimized the performance of the us-
ing CNN algorithm as a recovery method for the Alamosa 
Canyon bridge as an actual structure. The proposed CNN 
was trained by the measured data of Farrar’s experiments 
[36] on the Alamosa Canyon bridge, which deliberately as-
sumed it had some failed sensors. After training, CNN pre-
dicted the missed data of failed accelerometers based on the 
found correlation of other sensors with high accuracy. Three 
different CNN architectures are made to evaluate the effects 
of the number of convolution layers and predicted sensors. 
The method had a satisfying performance in predicting the 
missed time histories. As expected, the algorithm had better 
performance when it had more convolutional layers. Increas-
ing the number of failed sensors can decrease the accuracy of 
predicted data; however, this error can be reduced by increas-
ing the number of training datasets.

Moreover, the number of datasets plays a pivotal role 
in improving the efficiency of the algorithm. In SHM of in-
frastructures like buildings and bridges, the drawback men-
tioned above is not a serious concern due to the vast amount 
of raw data; therefore, this method can suitably be employed 
as a recovery method.

Due to the importance of modal features in damage detec-
tion problems and to evaluate the model better, the natural 
frequencies and mode shapes were obtained using a trained 
CNN model and were compared to modal features obtained 

from the original dataset (without any malfunctioned sen-
sors). The results showed that natural frequencies could be 
predicted with less than 1 %. Error and the predicted mode 
shapes had an acceptable correlation with the original ones.
Also, a neural network was trained to compare the performance 
of CNN and NN. Based on this study’s results, using the 
mentioned architecture for NN, the algorithm had a fairly 
well performance without any overfitting. The standard NN 
error was higher than the proposed CNN; however, CNN’s 
learning speed was approximately two times faster than 
NN and had a lower computational cost. This is due to the 
arrangement of data and the advantage of CNN in extracting 
the features. Therefore, CNN is very efficient in terms of 
complexity and memory when we have a vast number of data 
like SHM projects.
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