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ABSTRACT: Short-term prediction of traffic parameters and informing them to travelers and 
transportation operators is a useful tool for advanced traveler information systems. Also, as an advanced 
traffic management system, it helps to make or maintains the balance between travel demand and supply 
for the near future. This paper predicts the hourly traffic level of service, which has easily understandable 
information for all users. Data used in this study is related to 5 sections of a critical suburban road in 
the north of Iran. This data was collected for five years, and due to its high volume, it is considered big 
data. Long short term memory and deep neural network as two deep learning algorithms and support 
vector machine as a well-known classifier are trained by the first four years records. Results show that 
in average long short term memory predictions are more accurate for all sections, which compared to the 
second precise model, long short term memory predictions are higher between 1 and 14%. Using long 
short term memory for predicting level of services A and C, support vector machine for predicting level 
of services B and D and deep neural network for predicting E and F, bring the highest accuracy for each 
level of service.
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1- Introduction
The increase in urbanization and mobilization in most large 
cities and on the other hand, the limitations of resources to 
construct and widen the roads cause insufficient supply for all 
travel demands. The imbalance of travel supply and demand 
leads to traffic congestion occurrence [1]. This is also true not 
only in urban areas but also on high-traffic suburban roads. 
Traffic congestion causes a waste of energy, time, and money. 
In such a situation, the deployment of intelligent transportation 
systems can be useful to improve the performance of the 
existing transportation network. For this purpose, based on 
previous experiences, using advanced traffic management 
systems (ATMS) and advanced traveler information systems 
(ATIS) can be a success [2]. The main component of such 
systems is the short-term prediction of traffic parameters 
shortly. Informing these predictions will help travelers 
and professionals to reduce traffic congestion. Also, these 
systems have several economic advantages. Reducing traffic 
congestion and fuel consumption, air pollution reduction, 
decreasing the demand for constructing new roads, and 
decreasing operational costs are some economic advantages, 
which lead to saving tens of billions of tomans.

The research on short-term traffic prediction can be 
grouped based on these three questions. What traffic param-
eters are predicted? What data are used for prediction? What 
method is used for prediction?

Predicting traffic volume and average speed are widely 
studied in previous studies [3-5]. Since the travel time is dif-
ficult to be directly measured, it is less studied than the other 
two traffic parameters [2, 6]. Each of these three parameters 
has a continuous nature. Little attention is put on predicting 
traffic level of service (LOS). This qualitative parameter has 
more significant information for users who do not know the 
specific parameters of the transportation network [7]. Another 
advantage of predicting LOS is that the problem is changed 
into a classification problem, which can be expected to be 
more accurate [7].

Regarding data sources, traffic data can be collected by 
loop detectors, mobile sensors like GPS and Bluetooth, traffic 
monitoring cameras, and Remote Traffic Microwave Sensors 
(RTMS) [7, 8]. Due to the emergence of these systems, a large 
amount of real-time and historical data becomes available at 
high spatial and temporal resolutions [9], and traffic data are 
exploding [10]. Therefore, the prediction problem requires 
data-driven models more than ever [9, 10]. Predictions are 
more valid and accurate using big data, but some models do 
not have the potential to use such data [11].

Prediction methods can be divided into two general cat-
egories of parametric (statistical) and non-parametric (ma-
chine learning) [11, 12]. Smoothing [13], ARIMA [14], and 
Kalman filtering [15] are well-known parametric prediction 
methods. These models have a well-established theoretical 
background [11]. It is possible to interpret the marginal effect 
and signs and investigate elasticity and estimator properties *Corresponding author’s email: seyedabrishami@modares.ac.ir
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[16, 17]. One of the main disadvantages of parametric mod-
els is the concentration on mean and losing extreme peaks 
[11]. Needing prior assumptions decreases their flexibility 
[11]. Also, by increasing the volume of data, these models 
significantly require more time and processing power to do 
mathematical calculations [16, 18]. In contrast, non-para-
metric models have no or fewer primary assumptions. These 
models consider outliers, missing, and noisy data [11]. Non-
parametric models can depict nonlinear and high dimensional 
relationships and are more compatible with the high volume 
of traffic big data [11]. Although these models are not very 
interpretable and their main purpose of them is to increase the 
prediction accuracy [16]. Neural network [19] and non-para-
metric regression [20] are the most applicable non-parametric 
models [11].

This paper aims to make four contributions. First, this pa-
per defines and predicts the qualitative LOS, which measures 
the performance of the transportation links. Second, we used 
traffic big data which is collected for five years. Also, new 
features related to the solar and lunar calendar, holidays, time 
of day, and blockage by police or accident are extracted and 
used. Third, the short-term prediction problem is investigated 
for a suburban road in Iran as a developing country. Many 
studies focus on urban traffic prediction. Since the destination 
of this suburban road is a tourist city, the majority of trips 
are recreational and non-routine. Forth, methodologically, we 
used deep machine learning methods, including Long Short 
Term Memory (LSTM) and Deep Neural Network (DNN), 
and also the Support Vector Machine (SVM) to predict LOS. 
The accuracy of these models is compared. This comparison 
shows the superior performance of the proposed models for 
each section of the road.

2- Previous Studies
Since the 1980s, researchers have begun to study the 

short-term prediction of traffic parameters [21]. By increasing 
computational power and evolution of prediction methods, 
the focus of studies on the prediction of traffic parameters 
such as traffic speed and flow and travel time was increased. 
In this section, previous studies are reviewed based on pre-
dicted traffic parameters, used methods, and data.

Various statistical methods have been employed in traffic 
parameters prediction such as the autoregressive integrated 
moving average (ARIMA) [22], probabilistic graphical meth-
ods such as Markov chain [23], Markov random fields (MRF) 
[24], and Bayesian network [25]. For example, Xu et al. [26] 
predict LOS using a combined ARIMA and Kalman filter. 
The prediction error of the combined method is lower than 
the pure ARIMA and Kalman filters. Jayan and Anusha [27] 
collect travel time by Bluetooth and RFID (Radio Frequency 
Identifier) sensors under mixed traffic conditions. They pre-
dict travel time using the ARIMA model. Yang et al. [28] in-
vestigate floating car speed prediction by using a combined 
wavelet-ARIMA model. First, the wavelet solves missing 
data and noise disturbance problems, and then ARIMA pre-
dicts speed. 

Neural networks (NNs) [29, 30], SVM [31], K-nearest 
neighbourhood (KNN) [32], Locally weighted learning 
(LWL) [33] and deep learning methods such as LSTM [34] 
are well-known time series prediction methods. Wu et al. [35] 
develop a deep neural network-based traffic flow prediction 
model (DNN-BTF) that can mine spatial-temporal features of 
traffic flow. The proposed method outperforms states of the 
art methods such as the traditional shallow back-propagation 
neural network (BPNN) and stacked autoencoder (SAE) in 
terms of prediction error. Ma et al. [36] predict traffic speed by 
learning traffic as an image. A convolutional neural network 
(CNN) based method is employed to extract traffic feature 
and predict traffic speed. Tian et al. [37] predict traffic flow 
by using an LSTM-based model. They employed multi-scale 
temporal smoothing to infer missing data. To capture more 
information from traffic flow data Tan et al. [38] propose a 
novel method based on dynamic tensor completion (DTC). 
Compared to ARIMA, the accuracy of the designed algorithm 
is improved, especially under missing data. Yao et al. [39] 
consider dynamic spatial dependencies between locations 
and the daily and weekly temporal dependency to predict traf-
fic flow. They propose a novel spatial-temporal dynamic net-
work (STDN) and verify its effectiveness. Although machine 
learning methods can model nonlinear relationships, Li et al. 
[40] refer to requiring a large amount of data and lack inter-
pretability as two main deficiencies of them and investigate 
the accuracy and efficiency concepts. They predict LOS by an 
algorithm based on partial least square (PLS). To predict LOS 
Liu et al. [41] propose a fully convolutional model based on 
semantic segmentation technology, which is appropriate for 
grid‐based Spatio-temporal LOS prediction in dense urban 
areas. Xu et al. [42] present an algorithm based on kernel K-
nearest neighbors (kernel-KNN) to predict LOS. 

Some studies combined different methods and show that 
hybrid methods’ performance is better than pure methods. 
Wang et al. [43] predict vehicle-type specific traffic speed us-
ing hybrid empirical mode decomposition (EMD) and ARI-
MA (EMD-ARIMA). The proposed model outperforms the 
traditional ARIMA, the Holt-Winters, the NN, and a naive 
model. Lue et al. [44] combine the KNN and LSTM to predict 
traffic flow. KNN can capture spatial features of traffic flow, 
and LSTM is used for mining temporal variability and predic-
tion of traffic flow. 

The short-term prediction is applied to diverse transporta-
tion research. Jiang et al. [45] predict online car-hailing ser-
vices demand using the least squares support vector machine 
(LS-SVM) model. By using a DNN model that consists of a 
CNN and LSTM Petersen et al. [46] predict bus travel time. 
Liu et al. [47] employ a deep learning-based algorithm to pre-
dict metro passenger flow. Tu et al. [48] present a novel deep 
belief network method to predict flight delay.

3- Methodology
3- 1- Deep neural network

Typical NNs have three layers, an input layer, a hidden 
layer(s), and an output layer that full connection is applied 
between them. Each layer consists of several processing ele-
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ments (PEs). PEs in hidden layers receive the outputs of pre-
viously connected layers and transform them into a weighted 
linear summation (Eq. (1)) and gives it to connected next lay-
ers as their input.
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Where ( )j kI  and ( )j kO  are the input and output of the jth 
PE in the hidden layer k. M is the number of PEs in the previ-
ous layer. ijw  is the weight of connections, and γ  is a bias 
term. ()σ  is a sigmoid transform function. Step, hyperbolic 
tangent, and rectified linear unit are other popular functions. 
Eq. (2) presents sigmoid formulation:
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Increasing the number of hidden layers and PEs is con-
verted shallow NN to DNN. It is expected that the DNN mod-
el provides a more accurate prediction [35]. Deep-learning 
methods are representation-learning methods with multiple 
levels of representation [49, 50].

The fully connected DNN architecture used in this study 
consists of 1 input layer, 30 hidden layers, and one output 
layer. Fig. 1 shows the architecture of used DNN.

3- 2- Long short term memory
The LSTM networks are a special type of recurrent neural 

network (RNN) capable of learning long-term dependencies. 
For the first time, these networks were introduced in 1997 
by Hochreiter and Schmidhuber [51]. Traditional RNNs can 
model nonlinear time series relationships but are not able to 
train the time series with long time lags. Also, it is difficult to 
find the optimal time window size automatically [2]. LSTM 
can address these issues by incorporating memory units and 
learning when to forget previous memories and update mem-
ories [37].

Let denote the input time series with D variables of length 
T as ( )1 1, , , TX X X X= … . Where 

tX  is the t-th observation. 
tc  is a memory cell, contains information at time step t, and 

is controlled by three gates. These gates control whether to 
forget the current cell value (forget gate tf , Eq. (3)), to read 
its input (input gate ti , Eq. (4)), and to output the new cell 
value (output gate to , Eq. (5)) [37]. Also, tc  (Eq. (6)) is an 
input modulation gates. All these gate, cell update and output 
are computed in the following formulas [36]:
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Fig. 1. The architecture of used DNN. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The architecture of used DNN.
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 indicates scalar product. W s are the network 
parameters matrices. th  (Eq. (7)) is the hidden state. ()φ  is 
the hyperbolic tangent function, and ()σ  denotes the sigmoid 
transfer function (Eq. (2)). 

Fig. 2 shows the architecture of an LSTM network.

3- 3- Support vector machine
The SVM is a supervised machine learning technique that 

is used for both classification and regression (SVR) prob-
lems. In the case of classification, SVM finds linear boundar-
ies between different classes. For linearly separable data, the 
main aim is to find hyperplanes with the largest distance from 
the nearest data point in each class, which are known as sup-
port vectors. After finding support vectors, the rest of the data 
can be discarded. Fig. 3 shows the best boundary (the black 
one) for classification, which has equal distances from sup-
port vectors of red and blue classes.

In many cases, data is distributed non-linearly. Before 
finding boundaries, it is essential to map data into a separable 
space by using mathematical functions, named the Kernel 
function (Fig. 4).

Common kernel functions are linear, polynomial, sigmoi-
dal, and radial basis functions (RBF). This study used the 
widely used RBF kernel function [53]. The formulation of 
the RBF function is as Eq. (9) [54].

Where σ  is a free parameter to be calibrated. 2( )i jX X−  
is the squared Euclidean distance between the two feature 
vectors 

iX  and 
jX  [30, 55].

4- Dataset
Data used in this study is related to Karaj to Chaloos sub-

urban road in Iran. This road is a critical traffic channel in 
the north of Iran, and in many hours of the year, congested 
traffic is observed on this road. Traffic data is collected by 
loop detectors from March 2013 to March 2019. Each record 
consists of hourly traffic parameters, including hourly traffic 
flow, hourly average traffic speed, and hourly LOS. By know-
ing the ratio of the hourly average traffic speed to the road 
free-flow speed and the ratio of hourly traffic volume to the 
road capacity, the hourly LOS is defined based on Table 1. 
This type of LOS definition is provided by Iran road main-
tenance and transportation organization (http://www.rmto.ir/
en). The level of service of road decreases from A to E.

Where V/C and S/Sf are the ratio of the hourly average 
traffic speed to the road free-flow speed and the ratio of hour-
ly traffic volume to the road capacity, respectively. 

The raw data has the following details.
As the destination of this road is a tourist city, many of 

the travels are non-mandatory and non-routine. It is expect-
ed that calendar-related features such as weekdays, months, 
and holidays have a direct effect on LOS. Also, each holiday 
has a different effect on LOS, so it seems to be necessary to 
consider the type of holidays as a feature alongside calendar-
related features. This study includes both the lunar and solar 
calendars because some of the holidays are based on the solar 
calendar, and others are related to the lunar calendar. Block-
age by accident and police directly affects the performance 
of each direction of road and parallel paths. By considering 
these factors, effective features are extracted and presented 
in Table 3.

 
 

Fig. 2. The architecture of an LSTM network [37]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The architecture of an LSTM network [37].

 
 

Fig. 3. The optimal boundary for separating classes [52]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The optimal boundary for separating classes 
[52].
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Fig. 4. Mapping data into separable space by the Kernel function [52]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Mapping data into separable space by the Kernel function [52].

Table 1. Defining hourly LOS.Table 1. Defining hourly LOS. 
 

V/C 
S/Sf Under 0.1 0.1-0.3 0.3-0.5 0.5-0.7 0.7-0.9 Over 0.9 

Over 0.95 A A B C D E 
0.8-0.95 A B C D D E 
0.6-0.8 B C D D E E 
0.45-0.6 C D D E E F 
0.3-0.45 E E E E F F 

Under 0.3 F F F F F F 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Description of the raw dataset.Table 2. Description of the raw dataset. 
 

Name Details 
ID Road identification code 

Mehvar_id Route identification code 
Start_time Starting date and time of periods 
End_time Ending date and time of periods 

Total Car Counter Hourly traffic volume 
average speed Hourly average traffic speed 
Traffic LOS Hourly LOS 
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LOS is predicted for five sections of the Karaj-Chaloos 
road, Named S1, S2, S3, S4, and S5. Fig. 5 shows the percent-
age of each LOS in each station.

Each section of this road has different attributes such as 
slope, number of lanes, and geometric design. These differ-
ences lead to different LOSs at the same time. Section S3 
only has one lane for each direction, and in many hours of 
the year, LOSs, C, and D have occurred. In section S5, traf-

fic flows are more stable because of more capacity and free 
flow speed compared to other stations. Attributes of sections 
S1, S2, and S4 are similar to each other. Also, records are not 
distributed equally based on LOSs. Traffic LOS E and F for 
all stations and LOS A for station S3 occurred rarely. This is 
more severe for LOS F, in which the percentages are under 
1% for each section.

Table 3. Description of features used in predictive models.
 

Table 3. Description of features used in predictive models. 
 

Feature Name Description Type 

Season Including spring, summer, fall, and winter Nominal 
Solar month Including 12 solar months Nominal 
Lunar month Including 12 lunar months Nominal 

Day of a solar month Including 29-31 days of a solar month Nominal 
Day of a lunar month Including 29-30 days of a lunar month Nominal 

Time of day Including 24 hours a day Nominal 
Day or night Including day and night Dummy 

Number of holidays The number of sequential holidays Continuous 
Holidays Includes 1 for holidays and 0 for other days Dummy 

Holiday type Type of holidays Nominal 
Days before holidays Equal to 1 if there is at least one holiday in 3 next days Dummy 

Type of ahead holidays Including the type of holiday in 3 next days Nominal 
Days after holidays Equal to 1 if there is at least one holiday in 3 past days Dummy 

Type of previous holidays Including the type of holiday on 3 previous days Nominal 
Blockage Blockage of the road by accidents or by police Dummy 

Blockage of the opposite 
direction Blockage of the opposite direction by accidents or by police Dummy 

Blockage of parallel paths Blockage of parallel paths by accidents or by police Dummy 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. The percentage of each LOS in each station. 
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5- Results and Discussion
First, by applying the normalization function, the data are 

changed so that the range of data changes is in the range [-1 
1]. Records from March 2013 to March 2018 are used to train 
models, and the rest of the records are used for the test. Table 
4 shows the accuracy of predictions for the test dataset of 
each road section.

LSTM outperforms SVM and DNN for all five sections. 
The accuracy differences are notable for sections S1 and S2. 
For sections S3, S4, and S5, although the LSTM has the high-
est accuracy, the accuracy differences are limited to 1-2%. 
DNN has more accuracy for S1 and S2 compared to SVM, 
and for the other three sections, SVM’s predictions are more 
accurate than DNN.

To evaluate the performance of models for predicting 
each LOS, the prediction accuracy of LOS is calculated and 
presented in Table 5.

Highlighted cells indicate the most accurate model. For 
traffic LOS A, the LSTM has the highest average accuracy. 
DNN with little accuracy difference compared to LSTM pre-
dicts traffic LOS A. For LOS A; the DNN model is the most 
accurate model of stations, S2, S3, and S5. The SVM predicts 
LOS B better than other models, especially for satiations S1 
and S3. Although DNN prediction accuracy is the highest for 
stations S2 and S4, it has the lowest accuracy of LOS B pre-
diction on average. The performance of DNN in the predic-
tion of light LOSs is not as well as in other models. Prediction 
of LOS C is more accurate by the LSTM. SVM and DNN 
have similar performances for this LOS. As the frequency of 
LOSs decrease from LOS A to LOS F, the accuracy of mod-
els is also dropped except for traffic LOS D which all three 
models have more accurate predictions compared to LOS C. 
Also, SVM prediction matches the reality more than LSTM 
and DNN for traffic LOS D. The performance of DNN for 

Table 4. Prediction accuracy of models for each sectionTable 4. Prediction accuracy of models for each section 
 

Models S1 S2 S3 S4 S5 
SVM 35.7% 26.9% 36.7% 60.1% 62.5% 
DNN 43.5% 27.9% 28.7% 51% 62.2% 

LSTM 49.9% 32.1% 37.8% 62.8% 65.2% 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Accuracy of models for each traffic state.Table 5. Accuracy of models for each traffic state. 
 

LOS Models S1 S2 S3 S4 S5 Average 

A 
SVM 33.1 87.2 31.6 82 89.4 64.7 
DNN 76.8 99.3 69.5 61.8 90.6 79.6 
LSTM 82.5 98 47.7 86.3 87.5 80.4 

B 
SVM 72.9 9 66.8 33.5 21 40.6 
DNN 35 9.9 32.5 39.3 19.2 27.2 
LSTM 45.1 0.2 64.2 31.1 30.8 34.3 

C 
SVM 16.3 19 32.6 37.8 8.8 22.9 
DNN 29.5 13.4 17.6 41.6 8 22.0 
LSTM 65.7 23.7 18 31.4 4.1 28.6 

D 
SVM 40.2 54 23.3 17.5 27.4 32.5 
DNN 37.8 37.7 28.3 13.3 17.3 26.9 
LSTM 23.8 54.2 36.1 34.3 4.8 30.6 

E 
SVM 20.8 11.5 15.5 0 13.5 12.3 
DNN 45.8 18.8 26.8 0 0 18.3 
LSTM 0 19.2 17.1 0 0 7.3 

F 
SVM 5.6 15 0 - 0 5.2 
DNN 5.6 12.9 4.1 - 0 5.7 
LSTM 0 0 0 - 0 0.0 
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rare events including LOS E and F which are related to heavy 
and blockage LOSs and are more critical is better than other 
models. Although because these LOSs is rarely observed, 
models cannot be trained well, and the accuracy of the predic-
tions declined significantly. Confusion matrices are presented 
in the appendix.

Finally, Table 6 compare obtained results with other re-
searcher’s results.

Based on Table 6, Although the number of LOSs and 
number of observations are different, but this table shows that 
obtained result is in an acceptable range regrading to previ-
ous studies.

6- Conclusion
LOS is a qualitative traffic parameter that shows the per-

formance of the road and is more understandable for travel-
ers. After informing predicted LOS travelers and transporta-
tion agencies through ATIS more sustainable transportation 
system can be expected. This paper aims to predict the LOS 
by using three machine learning techniques, SVM, DNN, and 
LSTM. LSTM model can capture the dependency between 
sequential records while SVM and DNN consider records in-
dependently. Traffic big data of 5 sections of Karaj to Chaloos 
as a suburban road in data collected for five years and was 
used to train and test models. Results show that on average, 

LSTM outperforms SVM and DNN for all five stations. On 
average, the prediction of traffic LOS A and C is more accu-
rate by LSTM. For B and D LOSs, the highest prediction ac-
curacy is achieved by SVM, and DNN can predict low occur-
rence frequency LOSs, E and F better than LSTM and SVM. 

List of symbols

( )j kI 	The input of the jth PE in the hidden layer k

( )j kO 	 The output of the jth PE in the hidden layer k

M	 Number of PEs in the previous layer

ijw 	 Weight of connections in deep neural network

γ 	 Bias term in deep neural network

()σ 	 Sigmoid transform function

th 	 Hidden state in LSTM

()φ 	 Hyperbolic tangent function

σ 	 Free parameter of SVM

Table 6. Accuracy of models for each traffic state.
 

Table 6. Accuracy of models for each traffic state. 
 

Researcher Number of LOSs Number of observations Method Accuracy 

Antoniou et al. [56] 
3 705 

KNN 79.7 
ANN 83.7 

4 705 
KNN 86.4 

ANN 86.6 

Zahid et al. [57] 6 - 

RF 97.2 
SVM 97.8 
ANN 95.8 

Rule induction 95.8 

Zhu et al. [58] 4 49038 

Decision tree 51 
SVM 57 
ANN 72 
CNN 85 
RNN 89.5 

Toncharoen et al. [59] 3 10800 

CNN 89 
ANN 87 
KNN 87 
RF 87 

Current study 6 52560 
SVM 26.9-62.5 
DNN 27.9-62.2 
LSTM 32.1-65.5 
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SVM  DNN  LSTM 
 A B C D E F A B C D E F A B C D E F 

S1 

A 584 146 39 13 21 1 

 

1357 316 191 133 47 2 

 

1458 402 130 177 259 4 

B 1109 1014 1410 952 291 11 227 487 428 205 39 0 212 627 435 204 47 0 

C 28 116 402 239 5 0 75 306 730 590 55 0 68 235 1623 1360 149 8 

D 44 106 599 918 144 1 94 247 1035 863 114 8 29 126 283 544 132 6 

E 2 9 21 162 122 4 14 35 82 476 269 7 0 1 0 0 0 0 

F 0 0 0 1 4 1 0 0 5 18 63 1 0 0 0 0 0 0 

S2 

A 607 768 459 22 17 5 

 

691 789 549 701 149 20 

 

682 862 466 242 20 15 

B 64 81 91 115 29 8 2 89 72 116 13 3 8 2 12 14 2 1 

C 24 42 147 570 153 7 0 15 104 257 70 4 6 26 184 524 53 6 

D 1 6 71 897 3244 152 0 1 44 701 2926 171 0 6 112 1009 3129 123 

E 0 0 4 56 455 72 0 1 3 68 746 52 0 1 1 72 763 142 

F 0 0 3 1 70 43 3 2 3 18 64 37 0 0 0 0 1 0 

S3 

A 110 262 77 34 9 6 

 

242 910 547 190 32 4 

 

166 415 113 45 24 7 

B 186 1042 734 584 341 76 81 507 515 335 59 6 146 1001 853 512 127 12 

C 40 210 448 370 131 15 14 109 242 400 106 7 20 106 248 317 124 1 

D 7 32 107 330 136 15 9 20 60 400 318 49 13 36 153 510 360 58 

E 5 13 8 72 119 11 2 13 10 65 205 52 3 1 8 30 131 45 

F 0 0 1 24 30 0 0 0 1 24 46 5 0 0 0 0 0 0 

S4 

A 2699 941 105 38 8 0 

 

2034 591 67 17 2 0 

 

2842 1101 114 46 8 0 

B 551 694 87 37 11 0 1100 815 103 33 8 0 401 644 104 15 3 0 

C 43 415 129 62 6 0 145 609 142 91 12 0 50 315 107 48 9 0 

D 0 23 20 29 7 0 12 51 27 22 10 0 0 13 16 57 12 0 

E 0 0 0 0 0 0 2 7 2 3 0 0 0 0 0 0 0 0 

F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S5 

A 3857 1609 194 41 8 0 

 

3907 1611 206 23 7 0 

 

3776 1377 102 13 4 0 

B 424 442 124 63 6 1 271 405 117 116 12 2 478 648 245 161 30 5 

C 32 51 32 42 0 0 127 69 29 31 0 0 59 81 15 24 0 0 

D 0 5 11 57 18 1 7 21 10 36 18 3 0 1 0 10 3 0 

E 0 0 1 5 5 3 1 1 0 2 0 0 0 0 0 0 0 0 

F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

 

 

 

 


