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ABSTRACT: With a different attitude to conventional approaches and using curve and surface fitting, 
this paper proposes a straightforward Direct Design method for the design of eccentrically loaded RC 
columns and Uniformly Reinforced Shear Walls (URSWs) by which the longitudinal reinforcement ratio 
can be determined using the proposed equations and table. This method, which is proposed based on 
Canadian Standards Association (CSA 23.3-14) guidelines, is compatible with any applied axial load, 
moment, and cross-sectional dimensions which can decrease the graphical trial and error and be used 
in computer calculation and programming of RC structure. Several assessments on the effect of design 
parameters on the presentation manner of the proposed method have been carried out, and the validity 
and accuracy of the proposed method were investigated by comparison with conventional procedures. 
Averagely, there is a 3.48% difference between the required percentage of longitudinal reinforcement 
derived by the proposed method and design interaction diagrams. Also, the accuracy of all of the fitting 
processes carried out in this paper varies from 93.16% to 99% concerning the actual data points. It can 
be concluded that this method is suitable for a fast design of RC columns and URSWs with satisfying 
accuracy and validity.
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1- Introduction
By assuming a series of strain distributions and computing 

the related values of axial and bending capacities in each 
distribution, Short Column Interaction Diagrams are derived. 
Using such diagrams along principal axes of symmetry is a 
common and accepted approach for the design of RC under 
combined axial load and bending moments [1].

The general procedure of designing RC columns and 
URSWs is defined as a series of iterations in which a cross-
section is assumed, and the corresponding P-M (axial 
load-bending moment) interaction diagram (PMID) can 
be obtained. When the assumed cross-section satisfies the 
factored load and moment, which happens by falling applied 
[factored axial load, factored bending moment] point into 
the obtained PMID, then the iteration terminates. It means 
that the member with the assumed cross-section has adequate 
factored resistance (considering factored compressive 
strength of concrete and factored yield strength of steel) 
under the combination of factored axial load and moment [2]. 
Using interaction diagrams or other provided techniques may 
be confusing and time-consuming, which can be the reason 
for the increase in computational errors and decrease in 
accuracy, which is discussed in the next section. Any attempt 
at development in the design procedure without adding more 
computational cost and complexity can play an important role 

in structural design. 
Several studies were carried out in an attempt to 

develop analysis and design aids and to propose different 
innovative procedures. Bresler [3] developed a reciprocal 
interaction equation used in ACI 318 commentary. Whitney 
[4] introduced an equivalent compression zone of the cross-
section of RC members. Hsu [5] proposed a design aid 
relationship considering the nominal axial load and balanced 
axial load ratio. Fleming and Werner [6] developed design 
aids for columns subjected to biaxial bending. Nielsen [7] 
and Yen [8] introduced methods for the flexural capacity of 
cracked arbitrary concrete sections under axial load combined 
with biaxial bending. Bonet et al. [9] proposed an analytical 
approach for calculating failure surfaces in rectangular RC 
column cross-sections with symmetrical reinforcement. 
Paultre et al. [10] presented new equations for the design 
of confinement reinforcement for rectangular and circular 
columns. Barzegar and Erasito [11] developed interactive 
spreadsheets for concrete cross-section analysis under biaxial 
bending. Zenon et al. [12] introduced a method for designing 
RC short-tied columns using the optimization technique. 
Cedolin et al. [13] developed an approximate analytical 
solution for the failure envelope of rectangular RC columns. 
Mahamid and Houshiar [14] introduced a direct method and 
design diagrams for RC columns and shear walls. H. M. 
Afefy et al. [15] proposed a design procedure for braced RC 
columns with high-strength concrete, in which the columns 
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are under uniaxial and biaxial compression. H. M. Afefy 
and ET.M EL-Tony [16] presented a simplified procedure 
for designing RC columns based on the equivalent column 
concept. 

The characteristics of RC columns and their behavior 
under different loading conditions have been studied in 
recent decades. Chu and Pabarcius [17] studied the ultimate 
strength of biaxially loaded RC columns. Hsu and Mirza 
[18] studied adequate strength for biaxial bending and 
compression. Rodrigues et al. [19] studied the behavior of the 
RC column under biaxial cyclic loading. Lequesne-Pincheira 
[20] proposed revisions to the strength reduction factor for 
axially loaded members. Brondum- Wang-Hong [21] used 
the reciprocal load method for evaluating the capacity of RC 
columns of high-strength concrete.

Many researchers studied different shapes of the column 
and reported their design characteristics. Marin [22] developed 
design aids for L-Shaped RC columns. Hsu [23] presented 
theoretical and experimental results for biaxially loaded 
L-Shaped RC columns. Hsu [24] reported T-Shaped column 
behavior under biaxial bending and axial compression. Also, 
computer technology developments made researchers able 
to step into a different direction of RC column researches. 
Dinsmore [25] developed a program for column analysis with 
a programmable calculator. Ochoa [26] developed a computer 
algorithm for biaxial interaction diagrams for the short RC 
column of any cross-section. 

Although the mentioned researchers presented several 
standpoints on the analysis and design of RC columns 
and studied different shapes of RC columns, by which 
several innovations were added to the field of study, more 
developments of such design methods to simplify the design 
process are of particular interest for professionals in structural 
engineering. Load capacity tables and using computer 
programs, as alternatives with sufficient accuracy and lower 
level of complexity rather than conventional approaches, are 

the other accepted procedures for RC column design [23].
This paper proposed an accurate, efficient, straightforward, 

Direct Design method that does not need computer programs 
and solves complicated differential equations. By the use of 
the proposed procedure, the longitudinal reinforcement area 
to cross-section gross area ratio  (ρ ) required in the design 
process of eccentrically loaded RC columns and URSWs can 
be directly calculated using proposed equations and tables in 
the method. The coefficients used in the proposed equations 
are listed in the tables and vary with the mechanical properties 
of concrete and steel (compressive strength of concrete (

'
cf ) and yielding strength of steel ( yf )), the geometry of 

the cross-section (rectangular and circular cross-sections), 
and reinforcement arrangement (number of bars on each 
side and parameter  γ ). These six effective parameters in 
the design process are considered as design options in this 
approach, and their effect on the capacity of RC columns has 
been investigated in the next sections. The combination of 
these options is used to classify the final proposed tables and 
defined design cases presented in the tables. Due to being 
equation-based and universal, this method is distinguished 
from the others. Since the analysis used in the different stages 
of providing the final design equations is based on generally 
established theory, this method is accepted as an alternative 
design procedure for RC columns and URSWs [27]. Also, 
the effect of load and resistance safety factors are taken into 
account in the proposed method, so it should be noted that 
the safety level of the designed member using the proposed 
method corresponds to the safety level considered in CSA 
23.3-14 standard. 

2- Background
To achieve the goal of this paper, the modeling of 

the column is performed in MATLAB [28] based on the 
distribution theory, which is schematically shown in Fig. 1. 
Curve Fitting Application in MATLAB [28] also has been 

 
 

Fig. 1. Schematic representation of distribution theory for a column with a typical cross-section under eccentric loading. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic representation of distribution theory for a column with a typical cross-section under 
eccentric loading.
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used in determining the presented equations.

2- 1- Assumptions and modeling criteria
It should be noted that for deriving the PMID of a giving 

cross-section, the following three stages are performed for 
different values of  c  which is the distance from the fiber 
of maximum compressive strain to the neutral axis (N.A) 
(Nilson et al. [29]).

The longitudinal reinforcement is considered to be 
stress-perfect plastic, which means that the steel used for 
longitudinal reinforcement undergoes no work hardening 
after yield. The allowable interval for the percentage of 
longitudinal reinforcement in the cross-section is suggested 
to be 1 % 8%ρ≤ ≤  by CSA A23.3-14 [2].

2- 1- 1- Strain and stress distribution stage
The maximum strain at the extreme concrete compression 

fiber ( )cuε  is considered to be  0.003. The strain in the i th 
row of bars ( , ) s iε is defined as:
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where id  is the distance between i th row and fiber 
of maximum compressive strain. It is assumed that the 
trigonometric relationship is established between strains in 
the reinforcing bars and concrete. It should be noted that if the 
i th row of bars is placed at the compression zone, then ,s iε  
will be a positive value, and if the i th row of bars is situated 
at the tension zone, then ,s iε  will be a negative value. 

Since the tensile strength of concrete is approximately 
10 to 15 percent of the compressive strength, the tensile 
strength of concrete is neglected. Also, the use of a stress 
block to replace an accurate approximation of concrete stress 
distribution is taken into consideration [2]. In the defined 
block, uniformly distributed concrete stress of '0.85 cf  is 
assumed over an equivalent compressive region bounded by 
the edge of the cross-section and a straight line parallel to 
the neutral axis located a distance 1a cβ=  from the fiber of 
maximum compressive strain. The value of the coefficient 

1β  is suggested to be '
1 0.97 0.0025 0.67cfβ = − ≤  [2]. The 

following equations calculate the created stress in the i th 
row of bars at the tension zone, the i th row of bars at the 
compression zone 
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where sE  and s∅  are the modulus of elasticity of steel 
which equals 52 10  MPa×  and resistance factor for steel 
whose value of 0.85  is suggested by CSA A23.3-14 [2], 
respectively.

2- 1- 2- Force calculation stage
After determining stress distribution, and considering 
,s iA  as the total area of i th row of bars and cA  as the 

area of concrete in the compression zone, the force in each 
component of the cross-section is calculated as:
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where , s iF , cC  and c∅  are a force in i th row of bars, 

compressive force in concrete, and the resistance factor for 
concrete, respectively. 

In the square cross-sections, the area of compressive 
concrete is determined as:
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where b  is the width of the cross-section. In the circular 
cross-sections, this parameter is specified as:
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where θ  in radian is
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and ch  is the diameter of the circular cross-section.

2- 1- 3- Capacity calculation Stage
Finally, nominal compressive axial capacity ( ) , rP and the 

nominal flexural capacity of the column  ( )rM  are achieved 
according to the following relations:
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where n , cy  and ,s iy  are the number of bars on each 
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side, the distance between the centroid of the compressive 
zone of concrete and principal axis (P.A), and the distance 
between i th row of bars and P.A, respectively. 

2- 2- Curve and surface fitting
Curve and Surface Fitting is a process of constructing 

a mathematical function that has the best fit to a given 
series of data points (Molugaram et al. [30] and McClarren 
et al. [31]). The precision of fit is evaluated based on four 
parameters including R-square ( 2 )R , adjusted R-square, 
root mean square error (RMSE), and sum of squares due to 
error (SSE). A detailed discussion of these parameters is out 
of the beyond of this study. “Curve Fitting” is an application 
that is provided in MATLAB [28] and can fit appropriate 
curves in a 2-dimensional coordinate system and surfaces in 
the 3-dimensional coordinate system to the data points. To 
see more uses of this technique in different fields of research, 
refer to [32], [33], [34], [35], and [36]. 

3- Methodology
As discussed above, for reaching the desired PMID of 

a case of the cross-section with specific options including 
geometry, ' cf ,  yf , γ , and arrangement of bars, the three 
stages of the theory procedure have to be carried out for 
different values of c . Here, it is done for 300 values of c  
in the interval [ 20, / 20]h  where h  is the height of the 
cross-section, and this creates 300 loops of calculation in the 
modeling structure. Each one contains the theory procedure 
and the main idea of the study. All of the resultant points 
which fall into the fourth quarter of the derived PMIDs are 
neglected. 

3- 1- Introduction of the main idea
According to the design aids provided by Nilson et al. 

[29], each slanted line cutting the curves of design diagrams 
shows a unique value of:
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As can be figured out from the equations, e  and S  
are the value of eccentricity and eccentricity to a height of 
the cross-section ratio, respectively. In this section of the 
paper, P  and M  are defined as nominal values to achieve 
eccentricity of the cross-section in each  c . Since there is one 
unique point ( ),n nM P  for each  c , there is one value of  e  
for each  c . 

Two dimensionless parameters
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where W, Q and gA  are dimensionless axial capacity, 
dimensionless flexural capacity, and gross cross-sectional 
area (  gA b h=  for the square section and 2 / 4g cA hπ=  for 
circular section), respectively, establish the design diagrams. 
In this paper, two parameters of W  and S  are considered 
significant parameters. In other words, the presented equations 
for determining the percentage of longitudinal reinforcement 
in the cross-section are two-variable functions of W  and S . 

Since the column behavior is assessed in each integer 
percentage of  ρ , 1%  to  8% , the diameter of bars D  
considered in rectangular cross-section is derived as:
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where bn  is the total number of bars in the cross-section. 
After determining  rP and rM  of each ρ  of any case for 
300  c , ,W  and S  are easily computed. Fig. 2 illustrates the 
fundamental steps of transposing the diagrams for a case with
 50 h b cm= = , '  28 cf MPa= ,   420 yf MPa= ,  0.8γ = ,
 4%ρ = , and 5 bars at each side. 

3- 2- Fitting process
After determining 600 values of each desired 

dimensionless parameter, ,W  and  S , for eight ρ  in each 
case and then neglecting negative values, the fitting process 
has to be applied to the data series. A 2D fitting is used to 
establish the equation ( )W f S=  for each ρ .

3- 2- 1- Formulation in curve fitting
There are different built-in types of 2D fitting available 

in the curve fitting application provided in MATLAB [28], 
which can be selected for the fitting process by the user 
according to the behavior of the data set of points. Each built-
in type uses a unique mathematical model. Also, there is a 
custom type in which the mathematical model can be applied 
manually. It is evident that each mathematical model, either 
built-in or manually applied, shows unique precision of fit in 
the fitting process. The type of 2D fitting used in this paper is 
a built-in type named Rational in which the numerator degree 
and denominator degree are selected 2 and 3, respectively. 
The general mathematical model used in this type is defined 
as:
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where 1p  to 3p  and 1q  to 3q  are the coefficients whose 
determination is the main objective of this fitting process. It 
should be noted that ( )f x  and x  are related to W  and  S
, respectively. It is useful to mention that the highest power 
of x  is 2 in the numerator (numerator degree) and 3 in the 
denominator (denominator degree). As the 2D fitting is carried 
out only for initializing data for 3D fitting, the number of 
coefficients does not play an important role in the simplicity 
of the proposed method. But the values which describe the 
precision of fitting are considerable because they affect the 
final accuracy of the method. Fig. 3(a) shows the data points 
and fitted curve for 4%ρ =  of a case with a rectangular 
cross-section, '  28 cf MPa= ,   420 yf MPa= ,  0.8,γ =  and 5 
bars on each side. By doing this for eight ρ  of a case,  WS  
diagram of this case is derived, which is shown in Fig. 3(b). 

To represent the accuracy of the fitting process, the values 
specifying the precision of fit for each ρ  of this case are 
listed in Table 1. When the value of 2R  which varies in the 
interval [ ],1−∞  is obtained equal to 1 in the fitting process, 
which means that the curve or surface is perfectly fitted to the 
data set of points. 

3- 2- 2- Formulation in surface fitting
To present the main equation  ( ,f W Sρ = ), a series of 

data points is needed. After applying 40 points in the interval 
[0,2] of S  at the ( )W f S=  for every eight ρ  , which is 
derived from the 2D fitting, the data points for eight ρ  on 
each case are available. These sets of data are used for 3D 
fitting in which a Polynomial type of fitting is considered. 

The selection of the mathematical model for formulation 
used in this paper is carried out according to (1) fewer 
coefficients to make the design procedure simpler, (2) higher 

2R  to improve the accuracy of the method. As the built-in 
types of 3D fitting do not show an adequate behavior to the 
data set of points due to their unique mathematical model, 
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Fig. 2. Stepwise graphical process of transposing diagrams from (a) PMID to (b) W-Q interaction diagram and then to (c) 
W-S diagram for a cross-section with 𝒉𝒉 = 𝒃𝒃 = 𝟓𝟓𝟓𝟓 𝒄𝒄𝒄𝒄, 𝒇𝒇𝒄𝒄′ =  𝟐𝟐𝟐𝟐 𝑴𝑴𝑴𝑴𝑴𝑴, 𝒇𝒇𝒚𝒚 =  𝟒𝟒𝟒𝟒𝟒𝟒 𝑴𝑴𝑴𝑴𝑴𝑴, 𝜸𝜸 = 𝟎𝟎. 𝟖𝟖 and 5 bars on each side 
(𝝆𝝆 = 𝟒𝟒%) 
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Fig. 2. Stepwise graphical process of transposing diagrams from (a) PMID to (b) W-Q interaction dia-
gram and then to (c) W-S diagram for a cross-section with h=b=50 cm, 28='

c f   MPa , fy= 420 MPa, γ=0.8 
and 5 bars on each side (ρ=4%)
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a numerical comparison among the best possible custom 
(manually applied) mathematical models is provided in Table 
2 for rectangular cross-section and Table 3 for the circular 
cross-section. Also, the value of RMSE for each model is 
listed in the tables for more information. This comparison 
is performed for a case with '  28 cf MPa= ,   420 yf MPa= ,

 0.8,γ =  and 4 bars on each side for the rectangular cross-
section and eight total bars on the circular cross-section. 
According to Table 2, the model with four coefficients and 
a value of 0.9900 for 2R  is achieved which benefits from 
the best 2R  value and relatively fewer coefficients among 
others. Also, the model with five coefficients and a value of 

 
(a) 

 
(b) 

Fig. 3. (a) Data points and fitted W-S curve for 𝝆𝝆 = 𝟖𝟖%, and (b) fitted W-S curves for eight 𝝆𝝆 of a case with a 
rectangular cross-section, 𝒇𝒇𝒄𝒄′ =  𝟐𝟐𝟐𝟐 𝑴𝑴𝑴𝑴𝑴𝑴, 𝒇𝒇𝒚𝒚 =  𝟒𝟒𝟒𝟒𝟒𝟒 𝑴𝑴𝑴𝑴𝑴𝑴, 𝜸𝜸 = 𝟎𝟎. 𝟖𝟖 and 4 bars on each side 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.4

0.8

1.2

1.6

2

0 0.4 0.8 1.2 1.6 2

    W-S data points

    Fitted Curve

      .  

  
   
  

 

      .  

  
   
  

 

      .  

  
   
  

 

      .  

  
   
  

 

      .  

  
   
  

 

      .  

  
   
  

 

      .  

  
   
  

 

      .  

  
   
  

 

      .  

  
   
  

 

      .  

  
   
  

 

      .  

  
   
  

 

   % 

 
   
%
 

0

0.4

0.8

1.2

1.6

2

0 0.4 0.8 1.2 1.6 2

    1%     2%

    3%     4%

    5%     6%

    7%     8%

      .  

  
   
  

 

      .  

  
   
  

 

      .  

  
   
  

 

      .  

  
   
  

 

      .  

  
   
  

 

      .  

  
   
  

 

      .  

  
   
  

 

      .  

  
   
  

 

      .  

  
   
  

 

      .  

  
   
  

 

      .  

  
   
  

 

   % 

 
   
%
 

Fig. 3. a) Data points and fitted W-S curve for ρ=8%, and (b) fitted W-S curves for eight ρ of a case 
with a rectangular cross-section, 28='

c f   MPa , fy= 420 MPa, γ=0.8 and 4 bars on each side

Table 1. The precision of fitting performed in Fig. 8(b)Table 1. The precision of fitting performed in Fig. 8(b) 
 

 Values of 𝝆𝝆 

Precision of fit 1% 2% 3% 4% 5% 6% 7% 8% 

𝑹𝑹𝟐𝟐 1 1 1 1 1 1 1 1 

RMSE 0.00097 0.00115 0.001341 0.001516 0.001757 0.001886 0.002072 0.002273 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. A comparison between the best possible models for obtaining ρ in rectangular cross-sections.

 

 

 

Table 3. A comparison between the best possible models for obtaining 𝝆𝝆 in circular cross-sections. 
 

Mathematical Model of 𝒇𝒇(𝒙𝒙, 𝒚𝒚) Num. of Coefficients 𝑹𝑹𝟐𝟐 RMSE 

𝑢𝑢1 + 𝑢𝑢2𝑥𝑥 + 𝑢𝑢3𝑥𝑥𝑥𝑥 3 0.6791 0.01304 

𝑢𝑢1 + 𝑢𝑢2𝑦𝑦 + 𝑢𝑢3𝑥𝑥𝑥𝑥 3 0.8230 0.00968 

𝑢𝑢1 + 𝑢𝑢2𝑥𝑥2 + 𝑢𝑢3𝑥𝑥𝑥𝑥 3 0.6701 0.01322 

𝑢𝑢1 + 𝑢𝑢2𝑦𝑦2 + 𝑢𝑢3𝑥𝑥𝑥𝑥 3 0.9083 0.00697 

𝑢𝑢1 + 𝑢𝑢2𝑥𝑥2 + 𝑢𝑢3𝑦𝑦 + 𝑢𝑢4𝑥𝑥𝑥𝑥 4 0.8989 0.00733 

𝑢𝑢1 + 𝑢𝑢2𝑥𝑥 + 𝑢𝑢3𝑦𝑦2 + 𝑢𝑢4𝑥𝑥𝑥𝑥 4 0.9722 0.00385 

𝑢𝑢1 + 𝑢𝑢2𝑥𝑥 + 𝑢𝑢3𝑥𝑥2 + 𝑢𝑢4𝑦𝑦2 + 𝑢𝑢5𝑥𝑥𝑥𝑥 5 0.9851 0.00282 

𝑢𝑢1 + 𝑢𝑢2𝑥𝑥2 + 𝑢𝑢3𝑦𝑦 + 𝑢𝑢4𝑦𝑦2 + 𝑢𝑢5𝑥𝑥𝑥𝑥 5 0.9800 0.00326 
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0.9851 for 2R  shows the best results to be considered as a 
suitable model for formulation. 

So, Eqs. (16) and (17) show the general mathematical 
models which are defined for cases with a rectangular and 
circular cross-section, respectively. 
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where the coefficients 1u  to 5u  are the main objectives 
that should be calculated. The variables  x , y, and ( ),f x y  
represent  S , , W and  ρ , respectively. 

The 3D visualization of the data points and the final fitted 
surface are shown in Fig. 4. Finally, the results of the fitting 
shown in Fig. 9 are listed in Table 4. It is essential to mention 
that the output of the proposed equation for ρ  is calculated 
in percentage so that this obtained value has to be divided by 
100.

4- Sensitivity of the Model to Options
As can be realized from the conventional design diagrams, 

the dimension option is neglected in the list of options for each 
case, because the axial capacity is divided by the dimension 
of the cross-section. It means that these diagrams apply to 

any desired dimensions. But, despite dividing the capacity by
' cf  in dimensionless axial capacity, ' cf  remains as an option 

in each case. Therefore, a detailed practical evaluation of the 
effectiveness of each option on capacity values can be useful, 
which is carried out in this section. This assessment is carried 
out by comparison of W-Q interaction diagrams. Any effect 
on this diagram is similar to the W-S diagram, which is the 
basis of the method. Since the cross-section geometry is an 
inevitable fixed option for a case, the effect of this option is 
not evaluated in this section.

4- 1- Cross-sectional dimensions
Fig. 5(a) shows the W-Q diagrams for two cross-sections 

with rectangular geometry and dimensions of 40 h cm=  
and 50b cm=  and square geometry and dimensions of
 100 h b cm= = , assuming '  28 cf MPa= ,   420 yf MPa=
,  0.8γ = ,  4%,ρ =  and 5 bars on each side. The perfect 
match between the data series of two cross-sections shows 
that eliminating the dimension option from each case is 
reasonable. Also, this is shown that this method is suitable 
for designing both RC columns and URSWs with different 
dimensions. It can help the generalization of the method by 
which the value of ρ  can be determined for any desired 
dimension. It is useful to mention that the geometry of the 
column, which is considered as a lateral option in each case, 
is latent in the dimension option. In this paper, dimensions 
of 50 h b cm= =  and 200 h b cm= =  are simultaneously 

Table 3. A comparison between the best possible models for obtaining ρ in circular cross-sections.

 

 

 

Table 3. A comparison between the best possible models for obtaining 𝝆𝝆 in circular cross-sections. 
 

Mathematical Model of 𝒇𝒇(𝒙𝒙, 𝒚𝒚) Num. of Coefficients 𝑹𝑹𝟐𝟐 RMSE 
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𝑢𝑢1 + 𝑢𝑢2𝑥𝑥2 + 𝑢𝑢3𝑥𝑥𝑥𝑥 3 0.6701 0.01322 

𝑢𝑢1 + 𝑢𝑢2𝑦𝑦2 + 𝑢𝑢3𝑥𝑥𝑥𝑥 3 0.9083 0.00697 

𝑢𝑢1 + 𝑢𝑢2𝑥𝑥2 + 𝑢𝑢3𝑦𝑦 + 𝑢𝑢4𝑥𝑥𝑥𝑥 4 0.8989 0.00733 

𝑢𝑢1 + 𝑢𝑢2𝑥𝑥 + 𝑢𝑢3𝑦𝑦2 + 𝑢𝑢4𝑥𝑥𝑥𝑥 4 0.9722 0.00385 

𝑢𝑢1 + 𝑢𝑢2𝑥𝑥 + 𝑢𝑢3𝑥𝑥2 + 𝑢𝑢4𝑦𝑦2 + 𝑢𝑢5𝑥𝑥𝑥𝑥 5 0.9851 0.00282 

𝑢𝑢1 + 𝑢𝑢2𝑥𝑥2 + 𝑢𝑢3𝑦𝑦 + 𝑢𝑢4𝑦𝑦2 + 𝑢𝑢5𝑥𝑥𝑥𝑥 5 0.9800 0.00326 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Results of the surface fitting shown in Fig. 9

 

 

 

 

 

 

Table 4. Results of the surface fitting shown in Fig. 9 
 

𝒖𝒖𝟏𝟏 𝒖𝒖𝟐𝟐 𝒖𝒖𝟑𝟑 𝒖𝒖𝟒𝟒 𝑹𝑹𝟐𝟐 

-2.308 0.8088 3.114 21.2 0.9900 
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Fig. 4. 3D visualization of (a) data points, (b) view1 of fitted surface, and (c) view2 of fitted surface, according to the 

selected general model of obtaining 𝝆𝝆, for a case with rectangular cross-section,  𝒇𝒇𝒄𝒄′ =  𝟐𝟐𝟐𝟐 𝑴𝑴𝑴𝑴𝑴𝑴, 𝒇𝒇𝒚𝒚 =  𝟒𝟒𝟒𝟒𝟒𝟒 𝑴𝑴𝑴𝑴𝑴𝑴, 𝜸𝜸 = 𝟎𝟎. 𝟖𝟖, 
and 4 bars on each side. 

 

 

 

Fig. 4. 3D visualization of (a) data points, (b) view1 of fitted surface, and (c) view2 of fitted surface, 
according to the selected general model of obtaining ρ, for a case with rectangular cross-section, 

28='
c f   MPa , fy= 420 MPa, γ=0.8 and 4 bars on each side
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(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 5. Effect of (a) Cross-sectional dimensions, (b) 𝐟𝐟𝐜𝐜′, (c) 𝐟𝐟𝐲𝐲, (d) Parameter 𝛄𝛄, and (e) Arrangement of Bars on W-Q 
diagram. 
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Fig. 5. Effect of (a) Cross-sectional dimensions, (b) ' cf , (c) fy, (d) Parameter γ, and (e) Arrangement of 
Bars on W-Q diagram.
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studied for each case for more assurance.

4- 2- Compressive strength of concrete
The parameters  50 h b cm= = ,  420 yf MPa= ,  0.8γ =

,  4%,ρ =  and the arrangement of 5 bars on each side is 
considered for '  28 cf MPa=  and '  35 cf MPa=  in this 
section. The curve related to '  28 cf MPa=  is shifted to the 
right, which means that the cross-section with '  28 cf MPa=  
benefits from more dimensionless capacity, when compared 
to the cross-section with '  35 cf MPa=  (see Fig. 5(b)). So, this 
mismatch between the two curves is a reason for considering 
this parameter as an option in the method. 

4- 3- Tensile strength of steel
Since yf  does not cooperate in the task of dividing the 

capacity, this parameter cannot be dismissed from the list of 
options of a case. The interaction diagrams of a cross-section 
with  50 h b cm= = , '   28 cf MPa= ,  0.8γ = ,  4%ρ =  and 
arrangement of 5 bars on each side for 350 yf MPa=  and 

420 yf MPa=  are displayed in Fig. 5(c), which is graphical 
proof to this fact. In contrast with the ' cf  option, the cross-
section with higher yielding strength of steel ( 420 yf MPa=
) shows an increase in dimensionless capacity.

4- 4- Parameterγ
The behavior of two cross-sections with  50h b cm= = ,

'  28 cf MPa= ,   420 yf MPa= ,  4%,ρ =  and 5 bars on each 
side for 0.7γ =  and 0.8γ =  is illustrated in Fig. 5(d). As 
can be seen in the figure, the distance between the two curves 
increases from the compression zone to the tension zone. In 
other words, the effect of this parameter on the capacity of the 
cross-section is more intense in the tension zone. Therefore, 
this parameter remains an option in each case. 

4- 5- Arrangement of bars
The mismatch between the two diagrams illustrated 

in Fig. 5(e) which is corresponded to a cross-section with
 50 h b cm= = , '   28 cf MPa= ,   420 yf MPa= ,  0.8γ = ,
 4%ρ =  for two arrangements of 4 and 5 bars on each side 
shows that the option of bars arrangement cannot be deleted 
from the list of options of a case. This figure shows the most 
extreme mismatch among the other figures, which relate to 
the effectiveness of the design parameter, and also specifies 
the importance of this parameter in the capacity of cross-
section, which is neglected in the design diagrams presented 
in the design aids such as [37]. In this design aid, the number 
of bars on each side is not listed as an option for provided 
design diagrams, but an equal number of bars on all of the 
faces is considered as the criteria related to the arrangement 
of bars in the cross-section. 

5- Results and Discussion
The described procedure for proposing the Direct Design 

method is carried out for different cases with commonly 
used options. The final proposed tables and equations used 
in the Direct Design method are provided in Tables 5 to 7 
The considered mathematical models which are compatible 
with all of the cases in the corresponding table are provided. 
Instead of using design diagrams, these tables of this method 
can be used for the design of eccentrically loaded columns 
and URSWs.

For a given factored load uP  and factored bending 
moment  uM , the following steps are proposed for designing 
columns and URSWs:

Calculate eccentricity  /u ue M P= .
Select cross-sectional dimensions b  and h  for URSWs 

and rectangular, or ch  for the circular cross-section.

Table 5. Direct design method for rectangular cross-section and 4 bars on each side.

 

 

 

 

Table 6. Direct design method for rectangular cross-section and 4 bars on each side. 
 

Short RC Columns and Uniformly Reinforced Shear Walls 
 Rectangular Cross-section 

 4 Bars on Each Side of Cross-section 

Case 
Option 

𝒇𝒇𝒄𝒄′  and 𝒇𝒇𝒚𝒚 in MPa 

𝝆𝝆𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝒖𝒖𝟏𝟏 + 𝒖𝒖𝟐𝟐𝑺𝑺 + 𝒖𝒖𝟑𝟑𝑾𝑾𝟐𝟐 + 𝒖𝒖𝟒𝟒𝑺𝑺 𝑾𝑾

𝒆𝒆   =  𝑴𝑴𝒖𝒖
𝑷𝑷𝒖𝒖

         ,        𝑺𝑺   = 𝒆𝒆
𝒉𝒉          ,        𝑾𝑾 = 𝑷𝑷𝒖𝒖

∅𝒇𝒇𝒚𝒚𝑨𝑨𝒈𝒈

 

𝒇𝒇𝒄𝒄′  𝒇𝒇𝒚𝒚 𝜸𝜸 𝒖𝒖𝟏𝟏 𝒖𝒖𝟐𝟐 𝒖𝒖𝟑𝟑 𝒖𝒖𝟒𝟒 𝑹𝑹𝟐𝟐 

1 28 420 0.6 -2.558 0.7818 3.488 29.31 0.9676 

2 28 420 0.7 -2.187 0.4749 3.156 25.00 0.9661 

3 28 420 0.8 -2.308 0.8088 3.114 21.20 0.9900 

4 28 420 0.9 -1.953 0.6385 2.817 18.01 0.9886 

5 35 420 0.6 -2.460 0.6543 3.996 33.20 0.9377 

6 35 420 0.7 -3.017 1.1860 4.239 29.58 0.9789 

7 35 420 0.8 -2.674 1.0340 3.911 25.13 0.9828 

8 35 420 0.9 -2.438 0.9443 3.655 21.56 0.9883 
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Table 6. Direct Design method for Rectangular cross-section and 5 bars on each side. 

 

 

 

 

Table 7. Direct Design method for Rectangular cross-section and 5 bars on each side.  
 

Short RC Columns and Uniformly Reinforced Shear Walls 
 Rectangular Cross-section 

 5 Bars on Each Side of Cross-section 

Case 

Option 
𝒇𝒇𝒄𝒄′  and 𝒇𝒇𝒚𝒚 in MPa 

𝝆𝝆𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝒖𝒖𝟏𝟏 + 𝒖𝒖𝟐𝟐𝑺𝑺 + 𝒖𝒖𝟑𝟑𝑾𝑾𝟐𝟐 + 𝒖𝒖𝟒𝟒𝑺𝑺 𝑾𝑾

𝒆𝒆   =  𝑴𝑴𝒖𝒖
𝑷𝑷𝒖𝒖

         ,        𝑺𝑺   = 𝒆𝒆
𝒉𝒉          ,        𝑾𝑾 = 𝑷𝑷𝒖𝒖

∅𝒇𝒇𝒚𝒚𝑨𝑨𝒈𝒈

 

𝒇𝒇𝒄𝒄′  𝒇𝒇𝒚𝒚 𝜸𝜸 𝒖𝒖𝟏𝟏 𝒖𝒖𝟐𝟐 𝒖𝒖𝟑𝟑 𝒖𝒖𝟒𝟒 𝑹𝑹𝟐𝟐 

1 28 420 0.6 -2.101 0.4621 2.527 24.36 0.9790 

2 28 420 0.7 -1.776 0.3583 2.304 19.97 0.9863 

3 28 420 0.8 -1.547 0.2818 2.104 16.86 0.9890 

4 28 420 0.9 -1.304 0.2398 1.922 14.18 0.9893 

5 35 420 0.6 -2.367 0.4099 3.171 29.02 0.9608 

6 35 420 0.7 -2.217 0.6778 3.038 23.64 0.9810 

7 35 420 0.8 -2.056 0.6382 2.831 20.19 0.9854 

8 35 420 0.9 -1.672 0.4486 2.553 17.05 0.9870 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Direct design method for Circular cross-section and 8 total bars on the cross-section.

 

 

 

 

 

 

Table 8. Direct design method for Circular cross-section and 8 total bars on the cross-section. 
 

Short RC Columns 
 Circular Cross-section 

 8 total Bars on Cross-section 

Case 

Option 
𝒇𝒇𝒄𝒄′  and 𝒇𝒇𝒚𝒚 in MPa 

𝝆𝝆𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 𝒖𝒖𝟏𝟏 + 𝒖𝒖𝟐𝟐𝑺𝑺 + 𝒖𝒖𝟑𝟑𝑺𝑺𝟐𝟐 + 𝒖𝒖𝟒𝟒𝑾𝑾𝟐𝟐 + 𝒖𝒖𝟓𝟓𝑺𝑺𝑺𝑺

𝒆𝒆   =  𝑴𝑴𝒖𝒖
𝑷𝑷𝒖𝒖

         ,        𝑺𝑺   = 𝒆𝒆
𝒉𝒉          ,        𝑾𝑾 = 𝑷𝑷𝒖𝒖

∅𝒇𝒇𝒚𝒚𝑨𝑨𝒈𝒈

 

𝒇𝒇𝒄𝒄′  𝒇𝒇𝒚𝒚 𝜸𝜸 𝒖𝒖𝟏𝟏 𝒖𝒖𝟐𝟐 𝒖𝒖𝟑𝟑 𝒖𝒖𝟒𝟒 𝒖𝒖𝟓𝟓 𝑹𝑹𝟐𝟐 

1 28 420 0.6 -4.346 4.333 -1.739 4.840 48.38 0.9316 

2 28 420 0.7 -5.047 4.483 -1.602 5.181 47.66 0.9646 

3 28 420 0.8 -4.669 3.834 -1.138 5.030 42.11 0.9851 

4 28 420 0.9 -4.159 4.483 -1.650 4.869 34.82 0.9761 

5 35 420 0.6 -5.697 5.986 -2.265 6.442 57.84 0.9353 

6 35 420 0.7 -5.464 6.355 -2.444 6.422 50.13 0.9503 

7 35 420 0.8 -5.991 6.349 -2.243 6.726 49.10 0.9666 

8 35 420 0.9 -5.378 5.288 -1.660 6.377 43.69 0.9782 
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Calculate /S e h=  and ' /   u c c gW P f A= ∅ .
Calculate ( ) ,f S Wρ =  according to the corresponding 

table.
Calculate the total longitudinal steel longitudinal 

reinforcement area  /100stA bhρ= .
According to the effectiveness assessments (see Section 

4), the proposed values in these tables are only applicable 
to mentioned corresponding options. Fig. 6 shows the 
flowchart of the overall process of obtaining the equations 
and corresponding coefficients for designing RC columns 
and URSWs, which can be used for deriving this information 
for other options which are not provided in this study.

6- Method Validation and Accuracy
As discussed in Section 2, it is obvious that the Direct 

Design method can make the design process faster and also 
can provide more accurate results using provided equations 
and tables in comparison with other methods, but it is crucial 
to assess the accuracy of the method and validate the method. 
The validation is carried out through an example in which 
the results derived by the proposed method are compared to 
the results of the other method, i.e., using design interaction 
diagrams.

6- 1- Method accuracy
The value of 2 ,R  which is the main component of the 

precision of fitting parameters, was used to evaluate the 
accuracy of the method. Table 8 presents a brief assessment 
of three proposed tables according to 2R  values. It is clear 
from this table that the best results are achieved for case 3 of 
Table 5, which corresponds to the rectangular cross-section 
with 4 bars at each side. This case has a minimum error of 
1%, and the maximum error of 8.84% relates to case 1 of 
Table 8 with 2 0.9116R = . 

6- 2- Examples
A cross-section with properties of '  35 cf MPa=  (5 ksi),

  420 yf MPa=  (60 ksi),  0.8γ =  which is subjected to 
3200 uP = kN (719.3 kips) and 480 uM = kN.m (353.7 

kips. ft) is assumed. Calculate the value of ρ  for commonly 
used dimensions of 1) square cross-section with 4 bars at 
each side (see Fig. 1, assuming h b=  and only 4 bars at 
each side), 2) circular cross-section with a total of 8 bars, and 
3) rectangular cross-section of URSW with 5 bars at each side 
(see Fig. 1, same bars arrangement and assuming 3 h m= ).

6- 2- 1- Solutions
First of all, 0.15e =  m. Using the mentioned steps and 

Case 7 in Tables 6 to 8 for examples 1 to 3, respectively, the 
solution continues in Table 9. Also, the results from the design 
interaction diagrams based on visual inspections are provided 
to make a comparison of two procedures, i.e., the proposed 
Direct Design method and design interaction diagrams 
presented in Pillai and Kirk [37]. This reference provides 
design interaction diagrams based on the specifications and 
guidelines of CSA 23.3-14. Since the visual inspection is 
used for obtaining results from design interaction diagrams, 

 

 
Fig. 6. Flowchart of the overall process of deriving equations and corresponding coefficients. 

Fig. 6. Flowchart of the overall process of deriving 
equations and corresponding coefficients.
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approximate values of ρ  are determined. An acceptable 
amount of difference is seen between ρ  derived by the 
proposed method and the corresponding ρ  calculated based 
on Pillai and Kirk [37]. So, the results obtained based on the 
design interaction diagrams of Pillai and Kirk [37] seem to 
be suitable benchmarks for comparison and validation. The 
average percentage of differences between the results of the 
proposed method and design diagrams presented by Pillai and 
Kirk [37] is 3.48%, which shows that the proposed method 
benefits from adequate validity to be used for designing RC 
columns and URSWs. 

7- Conclusion
In this paper, using the 3D fitting process, a straightforward 

equation-based Design method is proposed by which the 

values of ρ  in the design process of RC columns and URSWs 
can be calculated. The proposed design tables are applicable 
for common values of mechanical properties and bars 
arrangement in RC columns’ cross-section. The comparison 
between the required reinforcement ratios obtained according 
to the proposed approach and conventional methods provided 
by Canadian Code, for assumed cross-sectional properties 
and applied loads, shows a reasonable and satisfactory small 
difference (average of 3.48% error), which is on the safe 
side in the case of Square and Circular cross-sections. The 
concluded key points according to the work carried out in this 
paper can be summarized as follows. 

Direct Design method is applicable for designing columns 
and uniformly reinforced shear walls with any desired 
dimensions.

Table 8. Evaluation of method accuracy according to R2 values.

 

 

 

 

 

 

 

 
 Table 9. Evaluation of method accuracy according to 𝑹𝑹𝟐𝟐 values. 

 

 Table 6 Table 7 Table 8 All tables 

 Mean 
Value Maximum Mean 

Value Maximum Mean 
Value Maximum Mean 

Value Maximum 

𝑹𝑹𝟐𝟐 value 0.9750 0.9900 0.9822 0.9893 0.9585 0.9851 0.9719 0.9900 

Case 
Number - 3 - 4 - 3 - 3 (Table 6) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9. Values of ρ derived using the Direct Design method and design interaction diagrams presented in [37].

 

 

 

 

 

 

 

Table 10. Values of 𝝆𝝆 derived using the Direct Design method and design interaction diagrams presented in [37]. 
 

Geometry of 
Cross-section 

Dimensions 
[𝐜𝐜𝐜𝐜] ([𝐢𝐢𝐢𝐢]) S [%] W [%] 

Direct Design Method Design interaction diagram [37] 

𝝆𝝆 [%] 𝝆𝝆 [%] 

1) Square 45×45 (17.7×17.7) 0.3333 0.6946 5.3754 ≈ 5.40 

 50×50 (19.7×19.7) 0.3000 0.5629 2.5404 ≈ 2.50 

 55×55 (21.7×21.7) 0.2727 0.4649 1.6392 ≈ 1.50 

      

2) Circular 55 (21.7) 0.2727 0.5923 5.8638 ≈ 5.40 

 60 (23.6) 0.2500 0.4977 3.2314 ≈ 3.10 

 65 (25.6) 0.2308 0.4241 1.3689 ≈ 1.30 

      

3) Rectangular 20×300 (7.9×118.1) 0.7500 0.2344 2.1276 ≈ 2.20 

(URSW) 23×300 (9.1×118.1) 0.6521 0.2039 1.1624 ≈ 1.30 

 25×300 (9.8×118.1) 0.6000 0.1875 0.6975 ≈ 0.70 
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The derived value of ρ  by this method is the exact 
required amount in the design process.

The Direct Design method permits faster and more 
accurate results.

The options, including the geometry of the cross-section, 
the arrangement of bars, '

cf , yf  and parameter γ  cannot be 
neglected from the list of options of proposed tables. 

The idea of using the fitting technique is responsive to the 
final goal of this paper and can be used for generating more 
information for any required option.

The effect of slenderness is not considered in this method 
and may be considered in a future study.
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Nomenclature

𝑎𝑎 height of the stress block of the concrete 
compression zone 𝑛𝑛𝑏𝑏 total number of bars at the cross-section 

𝐴𝐴𝑐𝑐 area of the concrete compression zone P.A 
principal axis 
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𝑐𝑐 distance from the fiber of maximum 
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coefficients of the denominator in 
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distance from the fiber of maximum 

compressive strain to the centroid of 𝑖𝑖th 
row of bars 
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𝐷𝐷 diameter of bar 𝑅𝑅2 R-squared value in the precision of fit 
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distance from the centroid of the 
concrete compression zone to the 

principal axis 

𝐹𝐹𝑠𝑠,𝑖𝑖 force in 𝑖𝑖th row of bars 𝑦̅𝑦𝑠𝑠,𝑖𝑖 
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𝑀𝑀𝑢𝑢 factored bending moment 𝜃𝜃 angle in a circular cross-section which 
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𝑀𝑀𝑟𝑟 nominal flexural capacity 𝜀𝜀𝑐𝑐𝑐𝑐 the maximum compressive strain of 
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coefficients of the denominator in 
2Dfitting 

 

𝑑𝑑𝑖𝑖 
distance from the fiber of maximum 
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section 
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𝐹𝐹𝑠𝑠,𝑖𝑖 force in 𝑖𝑖th row of bars 𝑦̅𝑦𝑠𝑠,𝑖𝑖 
distance between 𝑖𝑖th row of bars and 
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distance between the first and last row 
of bars to the height of cross-section 
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ℎ height of cross-section ∅ strength reduction factor 

ℎ𝑐𝑐 diameter of circular cross-section 
𝜌𝜌 

 

reinforcement area to cross-section 
gross area ratio 

𝑀𝑀𝑢𝑢 factored bending moment 𝜃𝜃 angle in a circular cross-section which 
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