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ABSTRACT: Optimization is an act of decision-making to reach a point in which the overall behavior 
of the considered system is acceptable by the field’s experts. In recent decades, construction companies 
have been willing to provide housing services with lower construction costs that people of different kinds 
can afford. Although academics have introduced form-dominant methods, using artificial intelligence 
(AI) in structural design has been one of the most critical challenges in recent years. In the current 
study, the applicability of the Crystal Structure Algorithm (CryStAl) as one of the recently developed 
metaheuristic algorithms is investigated in the optimum design of truss structures, in which the basic 
concepts of crystals, including the lattice and basis, are in perspective. For numerical purposes, the 10-
bar, 72-bar, and 200-bar truss structures are considered as design examples. Furthermore, for constraint-
handling purposes, a simple penalty approach is implemented in CryStAl. A complete statistical analysis 
is conducted through multiple optimization runs for comparative purposes; at the same time, other 
metaheuristic approaches have been derived from the literature. Based on the results of the CryStAl and 
other methods in dealing with truss optimization problems, the utilized method can provide better and 
more competitive results in most cases. 
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1- Introduction
Optimizing a system means minimizing or maximizing a 

function, a performance measure of the considered system. 
In the past, designers needed to build many knowledge-based 
models to reach a model with better characteristics. At the 
same time, these procedures can be done faster and more 
precisely by utilizing intelligent methods such as optimization 
algorithms. Over the past few decades, the development 
of these algorithms has made it possible for designers to 
perform designs more quickly through numerical simulation. 
However, these methods also involve a process of trial and 
error in the mathematical definition of the system problems 
and tuning internal parameters of the algorithms, so in many 
cases, these algorithms do not lead to an optimal solution, 
and the precise determination of these aspects alongside 
the delicate selection of the utilized algorithms are of great 
importance. Metaheuristic algorithms are some searching 
algorithms in which upper-level methodologies are utilized 
to reduce the complexity of the considered systems and the 
algorithms. Fire Hawk Optimizer [1], Genetic Algorithm (GA) 
[2], Grey Wolf Optimizer (GWO) [3], Material Generation 
Algorithm (MGA) [4], Chaos Game Optimization (CGO) 
[5, 6], Particle Swarm Optimizer (PSO) [7], Ant Colony 
Optimization (ACO) [8], Atomic Orbital Search (AOS) [9], 
and Crystal Structure Algorithm (CSA) [10] are some of the 

recently developed metaheuristic algorithms. 
Reducing the overall weight of the structures is one 

of the most critical factors considered in construction 
projects. Regarding population growth and the economic 
requirements of society, optimizing structures and reducing 
their weight has been of great importance in recent decades. 
Structural optimization should be conducted to achieve 
the best design, which meets the weight, cost, and other 
criteria selected for the structure in a loading condition, 
including strength, stiffness, stability, functionality, and even 
aesthetics. This issue has attracted the attention of many 
construction companies globally, and artificial intelligence 
experts have proposed many metaheuristic algorithms for 
structural optimization purposes. Sonmez [11] utilized an 
artificial bee colony algorithm to optimize truss structures. 
Jalili and Hosseinzadeh [12] proposed a hybrid algorithm 
for optimum truss structures by combining the migration 
strategy and the differential evolution algorithm. Kaveh 
and Zakian [13] investigated the optimal design of truss 
structures by developing an improved version of the grey 
wolf optimizer. Gebrail Bekdas, Sinan Melih Nigdeli, and 
Yang [14] utilized a flower pollination algorithm for the 
size optimization of truss structures. Javidi, Salajegheh, and 
Salajegheh [15] discussed the optimum design of structures 
utilizing the enhanced version of the crow search algorithm. 
Degertekin, Lamberti, and Ugur [16] investigated the truss 
structure’s topology, layout, and size optimization with the 
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Jaya algorithm. Dizangian [17] proposed a new methodology, 
border-search and jump reduction, for the optimum design of 
spatial truss structures. Le, Bui, Ngo, Nguyen, and Nguyen-
Xuan [18] investigated the optimization of truss structures 
by proposing a new hybrid algorithm combining the firefly 
algorithm and the electromagnetism-like mechanism. El 
Bouzouiki, Sedaghati, and Stiharu [19] discussed truss 
structures’ size and topology optimization by proposing a 
non-uniform cellular automata framework.

The main contribution and reason for developing and 
proposing a novel metaheuristic algorithm are to evaluate its 
performance in dealing with different optimization problems. 
For this purpose, the experts in the field of optimization 
should solve different problems with the standard algorithms 
at the first stage to provide a stable base for future attempts 
in which the improved version of the algorithms can be 
proposed and tested in dealing with the same problems. In 
this research work, the applicability of the Crystal Structure 
Algorithm (CryStAl) is investigated in the optimum design 
of truss structures. CryStAl is one of the recently developed 
metaheuristic algorithms by Talatahari, Azizi, Tolouei, 
Talatahari, and Sareh [10]; the basic concepts of crystals, 
including the lattice and basis, are utilized as inspirational 
concepts for developing a searching algorithm. For numerical 
purposes, the 10-bar, 72-bar, and 200-bar truss structures 
are considered as design examples. For constraint-handling 
purposes, a simple penalty approach is implemented in 
CryStAl. A complete statistical analysis is conducted through 
multiple optimization runs for comparative purposes, while 
other metaheuristic approaches have been derived from the 
literature. Based on the results of the CryStAl and other 
methods in dealing with truss optimization problems, the 
utilized method can provide better and more competitive 
results in most cases.

2- Crystal Structure Algorithm
The regular and unlimited repetition makes a crystal of 

building blocks of atoms or molecules in space. This building 
unit has one atom in very simple crystals, and in complex 
crystals, it consists of several atoms or molecules. The word 
“crystal” comes from the ancient Greek word “krustallos,” 
which means “rock crystal” and “ice,” and the scientific study 
of crystals is called crystallography. Examples of everyday 
materials encountered as crystals are salt (sodium chloride 
or halite crystals), sugar (sucrose), and snowflakes. Many 
gemstones are crystals, including quartz and diamonds. Since 
a crystal is a network of material expanded in three dimensions 
with frequent units, it has a recognizable structure. Large 
crystals display tight areas (faces) and well-defined angles. 
Crystals with flat faces are called divine crystals, while those 
without are called rock crystals. A schematic presentation of 
different types of crystals is provided in Fig. 1.

The crystals’ fundamental and most critical component is 
the “lattice.” This aspect refers to the periodic array of points 
in space. The “basis” as another component is for potion 
determination of the atoms inside the crystals. These two 
aspects are combined to generally present the configuration 

of crystals (Fig. 1-b).
To mathematically represent the configuration of the 

crystals in the space, an infinite lattice shape is presumed by 
utilization of a vector for precise determination of the lattice 
points as follows (Fig. 1-c):
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where ia  denotes the shortest vector along with the 
principal crystallographic directions; in  represents an integer 
number, and i determines the total number of crystal corners.

The mentioned aspects of the crystals are utilized as the 
inspirational concept of the Crystal Structure Algorithm 
(CryStAl) as a recently developed metaheuristic algorithm. In 
the first step, the initialization process is conducted as follows 
in which each of the solution candidates is determined to be 
a crystal in the space:
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where d is the optimization problem’s dimension; n 
represents the initial number of candidates; (0)j

ix  is the 
initial values of the decision variables, and ,max

j
ix  are the 

lower and upper bounds of the variables in the search space, 
and ξ  determines a randomly generated number in the range 
of [0,1].

The position updating process for the crystals (candidates) 
in the search space is conducted in the main loop of the 
CryStAl, in which the basic and advanced aspects of the 
crystallography are utilized for this purpose. The paramount 
crystals are determined as the corner pints in the crystal (

bCr ), selected randomly, while the crystal with the best 
configuration is also defined accordingly. The mean of the 
main crystals, which have been determined randomly, is also 
calculated cF . For position updating, the common varieties 
of the cubic crystal system (Fig. 1-d) are utilized as an 
inspirational concept in which the following equations are 
being used:
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Fig. 1. (a) Schematic presentation of Galena as a natural crystal, (b) Crystal configuration by adding lattice to a basis, (c) 
Different configurations of a lattice, and (d) Three common varieties of the cubic crystal system. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (a) Schematic presentation of Galena as a natural crystal, (b) Crystal configuration by adding 
lattice to a basis, (c) Different configurations of a lattice, and (d) Three common varieties of the cubic 

crystal system.
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where newCr  represents the new position vector for the 
crystals, oldCr is the previous position vector of the crystals 

1r  , 2r  and 3r are three randomly created numbers in the range 
of [0, 1].

For termination purposes, a predefined maximum number 
of iterations or the maximum number of function evaluations 
are utilized, while a boundary control flag is also determined 

for the variables outside the predefined bounds. The pseudo-
code of the algorithm is presented in Fig. 2.

The utilized Crystal Structure Algorithm (CryStAl) is a 
parameter-free algorithm in which there are not any internal 
parameters to be tuned.

3- Problem Statement
In this section, a structural design optimization problem 

is formulated in which a weight minimization procedure is 
conducted by considering the required design constraints 
of the related codes and standards. The objective function 
is regarded as the structure’s overall weight, while discrete 
design variables are considered for assigning predefined 
design sections to the structural elements during the 
optimization process. The mathematical presentation of these 
aspects is as follows:
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where A  represents a vector including the cross-sectional 
area of the design sections ( iA ); iρ  is the density of the 
utilized material; iI  is the length of the structural elements;  
n   and e  are the total numbers of nodes and elements in 
the structure; nc  represents the total number of structural 
elements subjected to compressive loading; iσ  and iδ  are 
the nodal stress and displacement in the structure; b

iσ  is the 
allowable buckling stress, and S  is the predefined set of 
discrete cross-sectional areas.

Since structural design optimization is a constraint 
optimization problem, a constraint handling approach should 
be utilized for conducting the optimization procedure. For 
this purpose, a penalty function is determined as follows, 
which is part of the penalty constraints handling method used 
in this paper:
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where q  represents the total number of design constraints;  
v  is the summation of the violated design constraints;  

( )ig A  
represents the ith design constraints; 1ε  and 2ε  

denotes the control values for determining the penalty during 

the optimization process.

4- Numerical Investigations
In this section, the structural details of the truss structures 

are presented, and the results of the optimization procedures 
are reported in detail. A total of 30 independent optimization 
runs are conducted in each case for statistical purposes, while 
the results of the CryStAl are compared to the result of other 
metaheuristic approaches in the literature.

4- 1- 10-bar truss structure
This truss structure has 10 members and 6 nodes with 

stress and displacement limitations of ±25 ksi and ±2 in., 
respectively. The modulus of elasticity is 104 ksi, and the 
density of the utilized steel material is 0.1 lb/in3. The discrete 
design variables for this problem are as S = {1.62,1.80,1.99
,2.13,2.38,2.62,2.63,2.88,2.93,3.09,3.13,3.38,3.47,3.55,3.63
,3.84,3.87,3.88,4.18,4.22,4.49,4.59,4.80,4.97,5.12,5.74,7.22
,7.97,11.50,13.50,13.90,14.20,15.50,16.00,16.90,18.80,19.9
0,22.00,22.90,26.50,30.00,33.50} (in.2) while the complete 
description of loading scenario and other characteristics of 
this problem is provided by Ho-Huu, Nguyen-Thoi, Vo-Duy, 
and Nguyen-Trang [20]. The schematic presentation of this 
structure is illustrated in Fig. 3.

For the CryStAl as the utilized optimization algorithm, the 
convergence history for the best and all of the 30 independent 
runs are presented in Fig. 4, considering the 10-bar truss 
design example. 

Table 1 presents the best result of the multiple optimization 
runs by the CryStAl in dealing with the 10-bar truss problem. 
The discrete design variables are also provided for comparative 
purposes. The lowest possible weight for the structure is 
calculated for the CryStAl. The results of other alternative 
metaheuristics are also derived from the literature to have a 
better perspective on the capability of the CryStAl. Based on 
the results, the CryStAl can reach 5490.7379 lb, which is way 
better than the previously reported results in the literature, 
so the CryStAl has outranked these alternative approaches; 
the utilized algorithm in this paper has better performance in 

 
 

Fig. 3. 10-bar truss structure. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. 10-bar truss structure.
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Fig. 4. Convergence history of CryStAl for 10-bar truss structure. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Convergence history of CryStAl for 10-bar truss structure.

Table 1. Comparative results of CryStAl and other approaches in dealing with the 10-bar truss problem.
Table 1. Comparative results of CryStAl and other approaches in dealing with the 10-bar truss problem. 

 

Design Variables (in.2) GA 
[21] 

HPSO 
[22] 

MBA 
[23] CryStAl 

A1 33.5 30 30 33.5 

A2 1.62 1.62 1.62 1.62 

A3 22 22.9 22.9 22.9 

A4 15.5 13.5 16.9 14.2 

A5 1.62 1.62 1.62 1.62 

A6 1.62 1.62 1.62 1.62 

A7 14.2 7.97 7.97 7.97 

A8 19.9 26.5 22.9 22.9 

A9 19.9 22 22.9 22 

A10 2.62 1.8 1.62 1.62 

Weight (lb) 5613.84 5531.98 5507.75 5490.7379 

Worst weight (lb) – – 5536.965 5637.5228 

Mean weight (lb) – – 5527.296 5536.2248 

Standard deviation (lb) – 3.8402 11.38 31.8862 
HPSO: Heuristic Particle Swarm Optimization 

MBA: Mine Blast Algorithm 
DE: Differential Evolution 
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dealing with this problem. Regarding the statistical analysis, 
the results of the CryStAl are competitive by considering the 
means of worst results of multiple optimization nuns.

The design constraints, including the displacement and 
stress limitations for the best optimization run by CryStAl, are 
presented in Fig. 5, in which the capability of the constraint 
handling approach is in perspective.

4- 2- 72-bar truss structure
This truss structure has 72 members and 20 nodes with 

stress limitations of ±25 ksi. The modulus of elasticity is 104 
ksi, and the density of the utilized steel material is 0.1 lb/
in3. The discrete design variables for this problem are as S = 

{0.111, 0.141, 0.196, 0.25, 0.307, 0.391,0.442, 0.563, 0.602, 
0.766, 0.785, 0.994, 1, 1.228, 1.266, 1.457, 1.563   1.62, 1.8 
1.99, 2.13,  2.38,   2.62, 2.63,  2.88, 2.93 3.09, 1.13 3.38, 3.47,  
3.55  3.63, 3.84, 3.87, 3.88, 4.1 4.22 4.49, 4.59,  4.8, 4.97 
5.12, 5.74, 7.22, 7.97 8.53  9.3 10.85, 11.5, 13.5,  13.9, 14.2, 
15.5, 16 16.9 18.8 19.9  22,  22.9, 24.5, 26.5,  28,30, 33.5} 
(in.2) while the complete description of loading scenario 
and other characteristics of this problem is provided by Ho-
Huu, Nguyen-Thoi, Vo-Duy, and Nguyen-Trang [20]. The 
schematic presentation of this structure is illustrated in Fig. 6.

The convergence history of the CryStAl in dealing with 
the 72-bar truss design example is illustrated in Fig. 7, in 
which the convergence curves for best, worst, and mean of 
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Fig. 5. (a) Displacement and (b) stress design constraints for 10-bar truss problem. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. (a) Displacement and (b) stress design constraints for 10-bar truss problem.
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Fig. 6. 72-bar truss structure. 
 

 

 

 

 

 

 

 

 

 

 

Fig. 6. 72-bar truss structure.

 

 
 

Fig. 7. Convergence history of CryStAl for 72-bar truss structure. 
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the 30 independent optimization runs are presented.
For a better perspective on the overall performance of the 

CryStAl optimization algorithm, the discrete design variables 
for the best results of the optimization procedures are 
presented in Table 2 for comparative purposes. Based on the 
results, CryStAl can provide 389.3341 lb, which is the lowest 
possible weight for this structure based on the reported results 
in the literature. Furthermore, the statistical results indicate 
that the utilized algorithm can calculate 389.8477 lb as the 
mean of multiple optimization runs, which is the best among 
other approaches. 

The design constraints, including the displacement and 
stress limitations for the best optimization run by CryStAl 
regarding the two main load cases of the 72-bar truss 
problem, are presented in Fig. 8, in which the capability of 
the constraint handling approach is in perspective.

4- 3- 200-bar truss structure
This truss structure has 200 members and 6 nodes with 

stress limitations of ±10 ksi, 30000 ksi as modulus of elasticity, 
and 0.283 lb/in3 as the density of the utilized steel material. 
The discrete design variables for this problem are as S = 
{0.100, 0.347, 0.440, 0.539, 0.954, 1.081, 1.174, 1.333, 1.488, 
1.764, 2.142, 2.697, 2.800, 3.131, 3.565, 3.813, 4.805, 5.952, 
6.572, 7.192, 8.525, 9.300, 10.850, 13.330, 14.290, 17.170, 
19.180, 23.680, 28.080, 33.700} (in.2) while the complete 
description of loading scenario and other characteristics of 
this problem is provided by Ho-Huu, Nguyen-Thoi, Vo-Duy, 
and Nguyen-Trang [20]. The schematic presentation of this 
structure is illustrated in Fig. 9.

The results of the CryStAl in dealing with the 200-
bar truss problem are presented in Table 3. Besides, the 
results of other alternative approaches are also provided for 

Table 2. Comparative results of CryStAl and other approaches in dealing with the 72-bar truss problem.Table 2. Comparative results of CryStAl and other approaches in dealing with the 72-bar truss problem. 
 

Design 
Variables 

(in.2) 

SGA 
[24] 

DHPSACO 
[25] 

HPSO 
[22] 

MBA 
[23] 

CBO 
[26] 

ECBO 
[27] 

WCA 
[28] 

IMBA 
[28] DE [20] AEDE 

[20] CryStAl 

A1 0.196 1.800 4.970 0.196 1.620 1.990 1.990 1.990 1.990 1.990 1.99 

A2 0.602 0.442 1.228 0.563 0.563 0.563 0.442 0.442 0.563 0.563 0.563 

A3 0.307 0.141 0.111 0.442 0.111 0.111 0.111 0.111 0.111 0.111 0.111 

A4 0.766 0.111 0.111 0.602 0.111 0.111 0.111 0.111 0.111 0.111 0.111 

A5 0.391 1.228 2.880 0.442 1.457 1.228 1.228 1.228 1.228 1.228 1.228 

A6 0.391 0.563 1.457 0.442 0.442 0.442 0.563 0.563 0.442 0.442 0.442 

A7 0.141 0.111 0.141 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 

A8 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 

A9 1.800 0.563 1.563 1.266 0.602 0.563 0.563 0.563 0.563 0.563 0.563 

A10 0.602 0.563 1.228 0.563 0.563 0.563 0.563 0.563 0.563 0.563 0.563 

A11 0.141 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 

A12 0.307 0.250 0.196 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 

A13 1.563 0.196 0.391 1.800 0.196 0.196 0.196 0.196 0.196 0.196 0.196 

A14 0.766 0.563 1.457 0.602 0.602 0.563 0.563 0.563 0.563 0.563 0.563 

A15 0.141 0.442 0.766 0.111 0.391 0.391 0.391 0.391 0.391 0.391 0.391 

A16 0.111 0.563 1.563 0.111 0.563 0.563 0.563 0.563 0.563 0.563 0.563 
Weight 

(lb) 427.203 393.380 933.09 390.73 391.07 389.33 389.334 389.334 389.334 389.334 389.3341 

Worst 
weight (lb) – – – 399.49 495.97 – 393.778 389.457 394.170 393.325 391.8370 

Mean 
weight (lb) – – – 395.432 403.71 391.59 389.941 389.823 390.531 390.913 389.8477 

Standard 
deviation 

(lb) 
– – – 3.04 24.8 – 1.43 0.84 1.400 1.161 0.6157 

DHPSAC: Harmony Search Algorithm 
CBO: Colliding bodies optimization 

WCA: Water cycle algorithm 
IMBA: Improved Mine Blast Algorithm 
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comparative purposes. Based on the provided results, the 
CryStAl can calculate 28006.2276 lb, which is a competitive 
result, while the results of other approaches are better than 
this value. Based on the fact that the different approaches 
have not reported statistical results, the provided results of 
the CryStAl can be utilized in the comparative investigations 

of future research works.
The design constraints, including the stress limitations 

for the best optimization run by CryStAl, are presented 
in Fig. 10 for three different load cases, in which the 
capability of the constraint handling approach is in 
perspective.

 

(a) 

 
(b) 

Fig. 8. (a) Displacement and (b) stress design constraints for 72-bar truss problem. 
 

 

 

 

 

 

 

 

 

 

Fig. 8. (a) Displacement and (b) stress design constraints for 72-bar truss problem.



M.Azizi et al., AUT J. Civil Eng., 6(2) (2022) 205-220, DOI: 10.22060/ajce.2022.20919.5783

215

 
 

Fig. 9. 200-bar truss structure. 
 

 

 

 

 

 

 

 

 

 

Fig. 9. 200-bar truss structure.
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Table 3. Comparative results of CryStAl and other approaches in dealing with the 200-bar truss problem.(Continued)
Table 3. Comparative results of CryStAl and other approaches in dealing with the 200-bar truss problem. 

 

El. No. 
Members 

of the 
group 

IGA [29] HACOHS-
T [30] 

ARCGA 
[31] 

MABC 
[31] 

ESASS 
[31] 

DE 
[20] AEDE [20] CryStAl 

1 1, 2, 3, 4 0.347 0.1 0.1 0.1 0.1 0.1000 0.1000 0.347 

2 5, 8, 11, 14, 
17 1.081 1.081 1.081 1.333 0.954 0.9540 0.9540 0.954 

3 19, 20, 21, 
22, 23, 24 0.1 0.347 0.1 0.1 0.1 0.3470 0.3470 0.347 

4 

18, 25, 56, 
63, 94, 101, 
132, 139, 
170, 177 

0.1 0.1 0.1 0.1 0.1 0.1000 0.1000 0.347 

5 26, 29, 32, 
35, 38 2.142 2.142 2.142 2.697 2.142 2.1420 2.1420 2.142 

6 

6, 7, 9, 10, 
12, 13, 15, 
16, 27, 28, 
30, 31, 33, 
34, 36, 37 

0.347 0.347 0.347 0.347 0.347 0.5390 0.3470 0.44 

7 39, 40, 41, 
42 0.1 0.1 0.1 0.1 0.1 0.1000 0.1000 0.1 

8 43, 46, 49, 
52, 55 3.565 3.131 3.131 3.131 3.131 3.5650 3.1310 3.565 

9 57, 58, 59, 
60, 61, 62 0.347 0.1 0.1 0.1 0.1 0.3470 0.3470 0.1 

10 64, 67, 70, 
73, 76 4.805 4.805 4.805 4.805 4.805 4.8050 4.8050 4.805 

11 

44, 45, 47, 
48, 50, 51, 
53, 54, 65, 
66, 68, 69, 
71, 72, 74, 

75 

0.44 0.44 0.347 0.44 0.347 0.5390 0.5390 0.44 

12 77, 78, 79, 
80 0.44 0.1 0.1 0.539 0.1 0.1000 0.3470 0.1 

13 81, 84, 87, 
90, 93 5.952 5.952 5.952 5.952 5.952 5.9520 5.9520 5.952 

14 95,96, 97, 
98, 99, 100 0.347 0.1 0.1 0.1 0.1 0.3470 0.1000 0.539 

15 
102, 105, 
108, 111, 

114 
6.572 6.572 6.572 6.572 6.572 6.5720 6.5720 6.572 

16 

82, 83, 85, 
86, 88, 89, 
91, 92, 103, 

104, 106, 
107, 109, 
110, 112, 

113 

0.954 0.539 0.539 1.081 0.44 0.9540 0.9540 0.954 

17 115, 116, 
117, 118 0.347 1.174 1.081 0.347 0.539 0.3470 0.4400 0.539 

18 
119, 122, 
125, 128, 

131 
8.525 8.525 7.192 8.525 7.192 8.5250 8.5250 8.525 
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19 
133, 134, 
135, 136, 
137, 138 

0.1 0.1 0.539 0.1 0.44 0.1000 0.1000 0.539 

20 
140, 143, 
146, 149, 

152 
9.3 9.3 8.525 9.3 8.525 9.3000 9.3000 9.3 

21 

120, 121, 
123, 124, 
126, 127, 
129, 130, 

141, 
142, 144, 
145, 147, 
148, 150, 

151 

0.954 1.333 1.333 0.954 0.954 0.9540 0.9540 1.333 

22 153, 154, 
155, 156 1.764 0.539 1.081 1.764 1.174 1.3330 1.0810 0.539 

23 
157, 160, 
163, 166, 

169 
13.3 13.33 10.85 13.33 10.85 13.3300 13.3300 13.33 

24 
171, 172, 
173, 174, 
175, 176 

0.347 1.174 0.1 0.44 0.44 0.3470 0.5390 0.44 

25 
178, 181, 
184, 187, 

190 
13.3 13.33 13.33 13.33 10.85 13.3300 14.2900 14.29 

26 

158, 159, 
161, 162, 
164, 165, 
167, 168, 

179, 
180, 182, 
183, 185, 
186, 188, 

189 

2.142 2.697 1.488 2.142 1.764 2.1420 2.1420 1.764 

27 191, 192, 
193, 194 4.805 3.565 5.952 3.813 8.525 3.8130 3.8130 3.813 

28 195, 197, 
198, 200 9.3 8.525 13.33 8.525 13.33 8.5250 8.5250 8.525 

29 196, 199 17.17 17.17 14.29 19.18 13.33 17.1700 17.1700 17.17 
Weight 

(lb)  28544.014 28030.20 28347.594 28366.365 28075.488 27901.5830 27858.5000 28006.2276 

Worst 
weight 

(lb) 
 – – – – – 29652.8910 29415.0000 29568.5188 

Mean 
weight 

(lb) 
 – – – – – 28470.1140 28425.8710 28772.3089 

Standard 
deviation 

(lb) 
 – – – – – 457.4670 481.5900 362.815636 

 

IGA: Improved Genetic Algorithm 
HACOHS-T: Hybridized Ant Colony–Harmony Search-Genetic Algorithm 

ARCGA: Adaptive Real-Coded Genetic Algorithm 
MABC: Modified Artificial Bee Colony Algorithm 

ESASS: Elitist Self-Adaptive Step-Size Search 
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5- Conclusion
In this research work, the applicability of the Crystal 

Structure Algorithm (CryStAl) as one of the recently 
developed metaheuristic algorithms is investigated in the 
optimum design of truss structures in which the basic concepts 
of crystals, including the lattice and basis, are in perspective. 
For numerical purposes, the 10-bar, 72-bar, and 200-bar truss 
structures are considered as design examples. For constraint-
handling purposes, a simple penalty approach is implemented 
in CryStAl. A complete statistical analysis is conducted 
through multiple optimization runs for comparative purposes, 
while other metaheuristic approaches have been derived 
from the literature. Based on the results of the CryStAl and 
other methods in dealing with truss optimization problems, 
the utilized method can provide better and more competitive 
results in most cases. Based on the results, the CryStAl is 
capable of reaching 5490.7379 lb in dealing with a 10-
bar truss problem, which is way better than the previously 
reported results in the literature, so the CryStAl has outranked 
these alternative approaches, and the utilized algorithm in this 
paper has better performance in dealing with this problem.

Regarding the statistical analysis, the results of the 
CryStAl are competitive by considering the means of worst 
results of multiple optimization nuns. The CryStAl can 
provide 389.3341 lb, the lowest possible weight for the 72-bar 
truss structure based on the reported results in the literature. 
Besides, the statistical results denote that the utilized 
algorithm can calculate 389.8477 lb as the mean of multiple 

optimization runs, which is the best among other approaches. 
Besides, the CryStAl can calculate 28006.2276 lb as the best 
optimum weight of the 200-bar structure, while the results of 
other approaches are lower than this value. Based on the fact 
that the other approaches have not reported statistical results, 
the provided results of the CryStAl can be utilized in the 
comparative investigations of future research works.

For future challenges, the applicability of the Crystal 
Structure Algorithm (CryStAl) in different applications, 
including the optimal design of large-scale frame structures 
and the optimization of resource trade-offs in construction 
projects, can be considered, while the improved and 
hybridized versions of this algorithm can also be proposed 
for optimization purposes.
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