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ABSTRACT: Numerous algorithms have recently been invented with varying strengths and 
weaknesses, none of which is the best for all cases. Herein, a hybrid optimization method known as 
a PSOHHO optimization algorithm is presented. There are two methods for combining algorithms: 
parallel and sequential. We adopted the parallel method and optimized the algorithm’s performance. We 
cover the weaknesses of one algorithm with the strengths of another algorithm using a new method of 
combination. In this method, using several formulas, the top populations are exchanged between the two 
algorithms, and a new population is created. With this ability, the strengths of an algorithm can be used 
to compensate for the weaknesses of the other algorithm. In this method, no changes are made to the 
algorithms. The main goal is to use existing algorithms. This method aims to attain the optimal solution 
in the shortest time possible. Two algorithms of particle swarm optimization (PSO) and Harris Hawks 
optimization (HHO) were used to present this method and five truss samples were considered to confirm 
the performance of this method. Based on the results, this method has rapid convergence speed and 
acceptable results compared to the other methods. It also yields better results than its basic algorithms.
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1- Introduction
Optimization is a method to identify the best solution in 

the shortest time possible. Due to the recent expansion in 
parameters, mathematical models are not adequate anymore 
and, as such, the use of meta-heuristic models has grown. The 
solutions proposed by meta-heuristic algorithms are better 
and more precise solutions for engineering problems [1,2]. 
The main difference between meta-heuristic and commercial 
methods is that the former does not need a gradient to 
solve problems. They are also superior due to their easier 
application and their ability to search the entire space, which 
will lead to better solutions. The majority of the optimization 
algorithms are inspired by nature, animals’ behaviors, or laws 
of physics. Generally, optimization algorithms can be divided 
into three main categories: physics-based, population-based, 
and evolutionary-based [3]. The genetic algorithm (GA) is 
the most well-known optimization algorithm [4,5] and has 
different stages including selection, crossover, and mutation. 
These phases prevent the algorithm from being trapped 
in local optima. In fact, randomness is a feature of this 
algorithm. GA is frequently applied due to its simplicity and 
the absence of numerous equations in it. Another population-
based algorithm is the particle swarm optimization (PSO) 
algorithm, which is widely used today [6]. This algorithm 
was developed based on the social behavior of some animals 
and two parameters of speed and position, which are updated 

in each stage. This algorithm is based on the best previous 
experience of each population. The PSO has memory contrary 
to GA. In practice, this ability helps find the local optimal 
solution during the algorithm’s stages. In each state, the best 
personal experience of the population is compared to the best 
overall experience and is replaced if it is superior. This also 
improves the convergence speed [7].

Many algorithms have been presented in recent years, 
including GA [5], PSO [8], Harris Hawk’s optimization 
(HHO) [9], charged system search (CSS) [10], ant colony 
optimization (ACO) [11], grey wolf optimizer (GWO) [12], 
pathfinder algorithm (PFA) [13], poor and rich optimization 
algorithm (PRO) [14], Gaussian quantum-behaved particle 
swarm optimization (QPSO) [15], weighted differential 
evolution algorithm (WDE) [16], particle swarm optimization 
+(PSO+) [17], and optimization booster algorithm (OBA) 
[18]. 

Some papers have focused on optimizing two- and three-
dimensional trusses, including cyclical parthenogenesis 
algorithm (CPA) [19], Jaya algorithm (JA) [20], improved 
GWO (IGWO) [21], mean-variance mapping optimization 
(MVMO) [22], accelerated multi-gravitational search 
algorithm (AMGSA) [23], firefly algorithm (FA) [24], 
chaotic coyote algorithm (COA) [25], spiral water cycle 
algorithm (SWCA) [26], artificial bee colony algorithm 
(ABC) [27], parameter-free Jaya algorithm (PFJA) [28], 
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interactive fuzzy search algorithm (IFSA) [29], mixed integer 
linear optimization (MILO) [30], hybrid artificial physics 
optimization and big bang-big crunch (HPBA) [30], and 
heuristic dragonfly algorithm (HAD) [31].

The hybridization of two or more algorithms, instead of 
developing and proposing new optimization methods, has 
also been popularized in recent years. The hybridization 
of algorithms helps compensate for the weaknesses of 
one algorithm with the strengths of another algorithm. 
Numerous studies are focused on this topic [32,33]. Yaseen 
[34] introduced a new hybrid optimization algorithm based 
on a bat algorithm (BA) and the PSO algorithm (HB-SA). 
Nenavath [35] used the hybrid sine–cosine algorithm with 
the teaching–learning-based optimization algorithm (SCA–
TLBO). DEVARAPALLI adopted the sequential method 
and optimized the algorithm’s performance. The velocity 
function update in each iteration of the PSO technique has 
been adopted to avoid being trapped in local search space 
with HHO [36].

1- 1- PSO algorithm
The PSO algorithm is based on the social behavior of fish 

and birds [6]. This algorithm searches the space based on the 
existing population that is also present in the GA. Therefore, 
PSO is a population-based algorithm. First, a large population 
is randomly created. Subsequently, the speed, fitness, and 
objective functions are determined for this population. A 
member of this population is selected as the best member. In 
the following stages, speed and position are calculated using 
Eqs. (1) and (2). In this stage, after calculating the fitness 
function, the best position is determined. If the best existing 
position is superior to the previous best position, the previous 

position will be replaced with this new position. 
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will make the search of the space random, ensuring that the algorithm remains random; these random numbers 
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where Xi(t) is the existing position, Vi(t) is the existing 
speed, C1 and C2 are constants, PPbest is the best personal 
experience or the best local position, Pgbest is the best 
general position, W helps us approach optimization solutions 
as the optimization process proceeds, and rand1 and rand2 
are constant numbers that will make the search of the space 
random, ensuring that the algorithm remains random; these 
random numbers vary from 0 to 1. Table 1 presents some 
algorithms hybridized with the PSO. Among the weaknesses 
of the PSO algorithm, we can mention exploration weakness 
that leads to a local optimum convergence. Different aspects 
of the PSO algorithm can be improved; initial population, 
inertia parameter w, and acceleration factors c1 and c2 are 
a few examples of these aspects. The PSO algorithm only 
accepts better solution positions but overlooks inferior 
solution positions with the potential to find the global optimal 
solution, which makes the algorithm easily fall into premature 
convergence [37].

1- 2- HHO algorithm
The HHO algorithm is inspired by the participatory 

behavior and chasing of the prey by Harris hawks  in nature 
[9]. HHO is basically a gradient-free population-based 
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PSO hybridization 
with  References  Proposed  Conclusion 

Grey wolf 
optimization 

(GWO) 
 [38]  Improving the 

exploration of PSO  Convergence to more optimal solutions with 
fewer iterations 

       

Sine cosine 
algorithm (SCA)  [39]  Escaping the local 

optima  
Successfully applied to real constrained 

engineering problems and provides better 
solutions than other methods 

       

Whale optimization 
algorithm (WOA)  [40]  

For the exploration phase 
in an uncertain 
environment 

 Very good convergence 

       

Spotted hyena 
optimization (SHO)  [41]  

Improving the hunting 
strategy of the spotted 

hyena optimizer 
 The algorithm performs better than other 

metaheuristic algorithms. 

       

Gravitational search 
algorithm (GSA)  [42]  Improving the 

exploration of PSO  

Superior performance in terms of accuracy, 
reliability, and efficiency compared to PSO, 
GSA, and other recently developed hybrid 

variants 
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optimization algorithm. The central idea of HHO is based 
on the cooperative hunting behavior of Harris hawk bird, 
especially their chasing style of prey which is called surprise 
pounce or also known as the ‘seven kill’ strategy. In this smart 
process, several hawks collaborate to chase the prey from 
different directions to confuse it. Evidently, the prey’s escape 
pattern is proportional to the hawks’ pursuit model. Birds 
collaborate in the attack. The leader of the group attacks the 
target, follows it, and abruptly soars out of sight, and the next 
Harris Hawk joins the chase. These hawks can demonstrate 
a variety of chasing patterns based on the dynamic nature of 
scenarios and the prey’s escape patterns. This mathematically 
mimics the dynamic behaviors to develop an optimization 
algorithm. The HHO algorithm has three phases. The first 
phase is the exploration ability, which is formulated as 
follows:

Exploration phase:

3 

c1 and c2 are a few examples of these aspects. The PSO algorithm only accepts better solution positions but 
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Traps in the local optima and weak exploration are also some of the weak points of the HHO algorithm, 

which some researchers have tried to fix. Dhawale in his paper, improved the exploration and exploitation 
phase of HHO using a chaotic variant of the present optimizer [43]. Table 2 briefly presents some algorithms 
hybridized using the HHO algorithm. 
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Traps in the local optima and weak exploration are also 
some of the weak points of the HHO algorithm, which some 
researchers have tried to fix. Dhawale in his paper, improved 
the exploration and exploitation phase of HHO using a chaotic 
variant of the present optimizer [43]. Table 2 briefly presents 
some algorithms hybridized using the HHO algorithm.
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Herein, we propose a novel hybrid method based on the 
two algorithms of PSO and HHO to optimize truss structures. 
This new method is called the PSOHHO hybrid algorithm, 
and all its stages will be presented in MATLAB. One of the 
main goals of this article is to provide a method to use the 
capabilities of the existing algorithms.

The remainder of this study is organized as follows: 
Section 2 shows the proposed optimization methods. The 
optimization examples and results are discussed in Section 3, 
where extensive comparisons with methods in the literature 
are presented. Finally, Section 4 summarizes the main 
findings of the study. 

2- Proposed Optimization Methods
There are two methods for merging algorithms:
1) In the first method, two algorithms are used 

simultaneously. In the beginning, the population of each 
algorithm is half the initial population (e.g., if the hybrid 
algorithm has a total initial population of 100 members, the 
population of each algorithm is 50). When algorithms are run, 
the objective function values of the algorithms are compared 
at each stage, and the one that has a higher fitness value 
shares its population with the other. However, the population 
of each algorithm remains constant from the beginning to the 
end. The proposed algorithm leads to faster convergence and 
better responses.

2) In the second method, similar to the first one, the 
two algorithms are run simultaneously with half the initial 
population. However, by comparing the function values in the 
following steps, the algorithm that has a better function value 
will have more population in proportion. For instance, if the 
initial population includes 100 members, each algorithm has 
50 members at the beginning; nevertheless, by comparing 
the fitness values in the next steps, the population of one 
algorithm may reach 60 members and the other algorithm 
will have 40 members. 

In this paper, we employed the first method using a 
proposed relation. However, Eqs. (17) and (18) can also 
be used for other optimization methods. The proposed 
combination makes it possible to use existing algorithms 
without any alterations. Each algorithm has certain advantages 
and disadvantages, and it cannot be said with certainty which 
algorithm is the best. As such, when we use a combination 
of algorithms, the disadvantages of one method are covered 
by the other one’s advantages. This combination is simple 
because it does not alter the original algorithms. The basic 
algorithms have been selected as an example, and this method 
can be used to combine other algorithms, which is a critical 
advantage of this method. Here, we used PSO and HHO for 
the presentation of our method. The reason for using PSO 
and HHO algorithms is because of the investigated impact 
of different computational complexity in the performance of 
each of these algorithms, which improves the performance 
of the presented method. PSO has a convincing exploitation 
ability but poor exploration ability (required for a good 
starting position), on the other hand, the HHO algorithm has 
a high exploration ability hence it gives a good starting point. 
Therefore, these two unique features of both algorithms are 
fused to obtain a hybrid PSO-HHO

If best fitness PSO < best fitness HHO:
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If best fitness PSO < best fitness HHO: 
 (17) 

If best fitness PSO ≥ best fitness HHO: 
 (18) 

where Xnew is the new location, Xm is the mean ith best location of PSO and HHO, rand1 and rand2 are 
random numbers between 0 and 1, and F1 and F2 are the constants and equal to 1.5; XbPSO is the ith best location 
of PSO, and XbHHO is the ith best location of HHO. 
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In Eqs. (17) and (18), locations move toward a better 
point due to using the mean and best locations. This type 
of movement leads to more space searches, and the mean 
location moves toward more optimization. This formula aims 
to find the local optimum. However, it does not lose Xm from 
its memory.

In the end, a value is added or subtracted. This point 
avoids getting stuck in the local optimum, and it is obtained 
by the following equation:
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a generated random number between -1 and 1. Table 3 presents the algorithm pseudo-code of the PSOHHO 
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where j Lb   and jUb   are the lower and upper bounds 
of the data, respectively, and rand (-1,1) indicates a generated 
random number between -1 and 1. Table 3 presents the 
algorithm pseudo-code of the PSOHHO algorithm. Fig. 1 
shows the PSOHHO flowchart.

3- Numerical Examples
In the present study, the PSHHO hybridization method is 

adopted to optimize truss structures. To assess the method’s 
efficiency, five truss structures, including 10-bar 2D, 25-bar 

3D, 72-bar 3D, 200-bar 2D, and 942-bar 3D trusses, were 
examined. All these examples were from known cases that 
have recently been examined by numerous researchers. In the 
truss structure, the objective function and the constraints are 
obtained from Eq. (20).
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where j , jA , and jL  indicate the specific weight, cross-section area, and length, respectively. 
Moreover, n denotes the number of truss cross-sections. The cross-sections in these problems are assumed to 
be variable and chosen between Amin and Amax. j  and Δk denote stress and displacement, respectively. 

Since most metaheuristic methods were originally developed to solve unconstrained optimization tasks, it 
is first necessary to convert the present design problem into an unconstrained one. In this study, a normalized 
constraint handling methodology is adopted where stress/ displacement values for every structural member 
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where jγ , jA , and jL  indicate the specific weight, 
cross-section area, and length, respectively. Moreover, 
n denotes the number of truss cross-sections. The cross-
sections in these problems are assumed to be variable and 
chosen between Amin and Amax. jσ  and Δk denote stress and 
displacement, respectively.

Since most metaheuristic methods were originally 
developed to solve unconstrained optimization tasks, it is 
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Inputs: Population size (N) and maximum number of iterations (T) 
Outputs: The location of the population and its fitness value 

Create the random population X (i = 1, 2, . . . ,N) for every algorithm 
While (the stopping condition is not met) do 

Run PSO 
Update the placement and velocity of the present agent by Eqs. (1) & (2) 

Run HHO 
Calculate the fitness values of the Hawks 

Set Xrabbit as the placement of the rabbit (best location) 
For (each hawk (Xi)) do 

Update the first energy E0 and jump strength 
Update the E using Eq. (5) 

if (|E| ≥ 1) then 
Update Eq. (3) 

if (|E| < 1) 
if (r ≥ 0.5 and |E| ≥ 0.5 ) 

Update the placement vector using Eq. (6) 
else if (r ≥ 0.5 and |E| < 0.5 ) 

Update the location vector using Eq. (9) 
else if (r < 0.5 and |E| ≥ 0.5 

Update the location vector using Eq. (13) 
else if (r < 0.5 and |E| < 0.5 ) 

Update the placement vector using Eq. (14) 
Return Xrabbit 

If best fitness PSO < best fitness HHO 
Update the placement vector using Eq. (17) 

If best fitness PSO ≥ best fitness HHO 
Update the placement vector using Eq. (18) 

For n = 1: N mutation 
d = 0.012*unifrnd (-1,1)*(UB(j)-LB(j)) 

Xn(i)+d 
if 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖) obtains better fitness function values Eq. (19) 

Replace Xi with Xnew 
Update Xb 
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first necessary to convert the present design problem into 
an unconstrained one. In this study, a normalized constraint 
handling methodology is adopted where stress/ displacement 
values for every structural member and node are compared 
with the maximum allowable stress and displacement limits. 
The modified structural constraints are hence written as:
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where ( )ig xσ  is the normalized normal stress constraint 
for the ith member, σmax is the maximum allowable normal 
stress limit for both tension and compression, ( )ig xδ  is the 
normalized displacement constraint for the ith node, δmax is 
the maximum permissible nodal displacement value, nN is 
the number of nodes in the truss, and nE is the number of 
elements in the truss.
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where the variables ε, E, and N in Eq. (26) are the penalty 
exponent, element, and node, respectively. The results 
were compared with those of other studies. The number of 
independent runs was chosen as 30, and the population size 
of 100 was selected. Finally, the best solution, the average 
of solutions, the standard deviation (Std), and the number of 
function evaluations (NFE) required for convergence were 
obtained.

3- 1- The 10-bar 2D truss
This case aims to minimize the 10-bar 2D truss depicted 

in Fig. 2 [48]. This example has 10 variables of (A1, ..., A10). 
where W is the objective function, g is the constraint, 

σ  denotes the stress, δ  indicates the displacement, L is 
the length of the beam, allowσ   is the maximum allowable 
stress, δ max is the maximum allowable displacement, 
and A is the cross-section. In this example, the elasticity 
coefficient is 107 psi and the specific gravity is 0.1 lb/in3. 
The stress limit is 25 ksi and the maximum horizontal and 
vertical displacement of the truss points is assumed to be 
2 in. The cross-section limit for this case is 0.1 in2 and 35 
in2. Two loadings are assumed for the 10-bar truss. In the 
first case, P2 = 0 and P1 = 100 kips, while in the second 
case, P2 = 50 kips and P1 = 150 kips. To determine the best 
final solution, in both loading states, 3000 analyses were 
performed. Figs. 3 and 4 depict the convergence trend for 
loading states 1 and 2.

Tables 4 and 5 list the results for loading states 1 and 2. 
For case 1 (Table 4), the best solution was achieved for the 
proposed PSOHHO algorithm (5060.80 lb), and the best rank 
was first. Evidently, the outcome of this method can compete 
with that of other methods, and this method has a faster 
convergence speed. In the second case (Table 5), 4677.26 
lb was achieved as the best outcome. The best rank for the 
second state was second. The best outcome was obtained 
after 2417 analyses in the first state, while it was attained 
after 2386 analyses in the second state. 

 
Fig. 2. The 10-bar truss problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The 10-bar truss problem.
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Fig. 3. The convergence curve of the 10-bar truss (Case 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The convergence curve of the 10-bar truss (Case 1).

 
Fig. 4. The convergence curve of the 10-bar truss (Case 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The convergence curve of the 10-bar truss (Case 2).
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Table 4. The results of the 10-bar truss problem (Case 1).

 

Table 4. The results of the 10-bar truss problem (Case 1). 
 

Optimal cross-sectional areas (in2) Variables 

PSOHHO HHO PSO [49] [50] [51] [52] [53]  

30.3810 33.7109 30.6279 30.501 30.5069 30.5755 30.5383 30.5349 A1 
0.1 0.8885 0.1 0.1 0.1 0.1 0.1 0.1 A2 

23.2979 28.9113 22.9722 23.198 23.302 23.3368 23.1759 23.1893 A3 
15.2853 11.5141 15.1772 15.247 15.165 15.1497 15.2483 15.2035 A4 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 A5 
0.5616 0.8456 0.5386 0.5551 0.5436 0.5276 0.55377 0.5490 A6 
7.4291 13.2335 7.5060 7.4562 7.4612 7.4458 7.45847 7.4613 A7 
20.9283 17.6452 21.2239 21.035 21.113 20.9892 21.0269 21.0572 A8 
21.6454 21.88 21.4247 21.526 21.413 21.5236 21.5223 21.5170 A9 

0.1 0.8601 0.1 0.1 0.1 0.1 0.1 0.1 A10 
5060.80 5464.75 5061.13 5060.85 5060.99 5060.99 5060.85 5060.85 Best weight(lb) 
5061.61 5464.76 5061.72 5061.23 N/A 5062.09 5060.87 5065.41 Average weight(lb) 

0.011 0.1 1.41 0.53 N/A 2.05 0.0215 5.2797 Std 
4834 15320 5800 7920 13800 19540 20000 14200 NFE 

1 5 4 2 3 3 2 2 Rank 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. The results of the 10-bar truss problem (Case 2).

 

Table 5. The results of the 10-bar truss problem (Case 2). 
 

Optimal cross-sectional areas (in2) Variables 
PSOHHO HHO PSO [54] [53] [51] [50] [49]  

23.6251 22.4243 23.6954 23.6319 23.523 23.5804 23.5236 23.62 A1 
0.1 0.1 0.1 0.1 0.1 0.1003 0.1 0.1 A2 

25.2417 21.881 26.0611 25.3424 25.285 25.1582 25.2852 25.434 A3 
14.4404 11.8223 14.5368 14.5964 14.371 14.1801 14.3716 14.351 A4 

0.1 0.1 0.1 0.1 0.1 0.1002 0.1 0.1 A5 
1.9695 2.2627 1.9696 1.9769 1.969 1.9708 1.9697 1.9701 A6 
12.3305 13.9816 12.0814 12.3446 12.391 12.4511 12.3917 12.339 A7 
12.6087 16.4234 12.1956 12.6697 12.833 12.9349 12.8332 12.712 A8 
20.5317 21.9958 20.5517 20.2586 20.328 20.3595 20.3288 20.346 A9 

0.1 0.1 0.1 0.1 0.1 0.1001 0.1 0.1 A10 
4676.96 4782.15 4680.06 4676.92 4776.92 4677.31 4676.92 4677.06 Best weight(lb) 
4679.72 4795.23 4683.17 4680.30 4692.71 4679.06 4692.71 4677.97 Average weight(lb) 

0.044 10.04 1.95 3.82 45.7824 2.07 45.7824 0.33 Std 
4772 16800 6100 5000 14000 19890 13640 7920 NFE 

2 7 5 1 6 4 1 3 Rank 
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3- 2- The 25-bar 3D truss
Fig. 5 displays the 25-bar 3D truss. The specific gravity 

and elasticity coefficient are assumed to be 0.1 lb/in3 and 107 

psi, respectively. The maximum displacement is assumed to 
be 0.35 in. The 25 bars of this structure are divided into eight 
groups. The two types of loading for this truss are given in 
Table 6. The stress limit is presented in Table 7. The cross-
section limit is assumed to be 0.01 to 3.4 in2. The number of 

analyses for reaching the final solution is assumed to be 3000.
The final results for the 25-bar truss are presented in 

Table 8. For the proposed method, the value of 544.15 lb 
was attained after 2989 iterations, which indicates a high 
convergence speed. The final weight can compete with that 
presented in other sources. The rank of the proposed method 
was 1.

 
Fig. 5. The spatial 25-bar truss problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The spatial 25-bar truss problem.

Table 6. Load cases for the spatial 25-bar truss.
 

Table 6. Load cases for the spatial 25-bar truss. 
 

node Case 1   Case 2   

 Fx(kips) Fy(kips) Fz(kips) Fx(kips) Fy(kips) Fz(kips) 
1 0 20 -5 1 10 -5 
2 0 -20 -5 0 10 -5 
3 0 0 0 0.5 0 0 
6 0 0 0 0.5 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Stresses for the 3D 25-bar truss.Table 7. Stresses for the 3D 25-bar truss. 
 

Element Group Compressive stress 
limitations (ksi) 

Tensile stress 
limitations (ksi) 

1 A1 35.092 40.0 
2 A2-A5 11.590 40.0 
3 A6-A9 17.305 40.0 
4 A10-A11 35.092 40.0 
5 A12-A13 35.092 40.0 
6 A14-A17 6.759 40.0 
7 A18-A21 6.959 40.0 
8 A22-A25 11.082 40.0 
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Fig. 6. The convergence curve of the 25-bar truss. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The convergence curve of the 25-bar truss.

Table 8. The results of the 25-bar truss problem.

 

Table 8. The results of the 25-bar truss problem. 
 

 Optimal cross-sectional areas (in2) Variables 

PSOHHO HHO PSO [55] [53] [52] [51] [21]  
0.01 0.01 0.01 0.01 0.0100 0.0100 0.01 0.0124 A1 

1.9664 2.1293 1.9177 2.007 1.9903 1.9825 1.9814 1.9624 A2-A5 
3.0260 2.7317 3.0952 3.001 2.9881 3.0004 3.0023 3.0204 A6-A9 

0.01 0.0100 0.01 0.01 0.1 0.0100 0.0100 0.0266 A10-A11 
0.01 0.0100 0.01 0.01 0.1 0.0100 0.0100 0.0109 A12-A13 

0.6782 0.7082 0.6875 0.661 0.6857 0.6832 0.6827 0.6841 A14-A17 
1.6800 1.7095 1.6911 1.620 1.6764 1.6775 1.6778 1.6862 A18-A21 
2.6600 2.6919 2.6272 2.668 2.6613 2.6610 2.6612 2.6526 A22-A25 
544.15 547.11 545.31 544.92 545.16 545.16 545.16 545.48 Best weight(lb) 
545.23 548.15 545.36 545.13 545.91 545.16 545.22 549.67 Average weight(lb) 
0.031 1.024 0.123 0.401 1.0893 0.00162 0.083 2.8113 Std 
5978 11500 7340 N/A 6500 20000 19750 5640 NFE 

1 6 4 2 3 3 3 5 Rank 
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Fig. 8. The convergence curve of the 72-bar truss. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The convergence curve of the 72-bar truss.

 
Fig. 7. The spatial 72-bar truss problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The spatial 72-bar truss problem.

3- 3- The 72-bar 3D truss
This truss is displayed in Fig. 7. It contains 72 bars 

classified into 16 groups. The allowable stress for this case 
is 25 ksi at the assumed pressure and traction. The elasticity 
coefficient is assumed to be 107 psi, and the specific gravity 
in cross-sections is considered to be 0.1 lb/in3. The maximum 
displacement of the point is 0.25 in. In the optimization 
process, the minimum cross-section area of 0.1 in2 is applied. 
The magnitude of the loads applied and their classification 

are given in Table 9. Table 10 shows the member group of 
the spatial 72-bar truss. The results of this case after 2000 
analyses are presented in Table 11. Fig. 8 depicts the process 
of optimization.

According to Table 11, the value of 379.54 lb was obtained 
by the PSOHHO algorithm after 1931 analyses, indicating 
the rapid convergence of this method. The best rank for the 
72-bar truss was two. Fig. 8 shows that the proposed method 
has faster convergence than the HHO and PSO algorithms. 
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Fig. 9. The 200-bar truss problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The 200-bar truss problem.

3- 4- The 200-bar 2D truss
The 200-bar 2D truss is a well-known truss in optimization 

(Fig. 9). It comprises 200 bars classified into 2 groups 
(Table 13). There are three states for loading (Table 12). The 
elasticity coefficient of 107 psi and the specific gravity of 
0.273 lb/in3 are assumed for the bars. The allowable stress at 
the pressure and traction is 10 ksi, and there is no constraint 
on displacement. The minimum cross-section area is 0.1 in2. 

The solutions of this case after 4000 analyses are presented 
in Table 14.

The final solution obtained by the PSOHHO method is 
25076.43 lb after 3884 analyses, demonstrating its rapid 
convergence. A comparison of the convergence speed of the 
proposed method and other algorithms is presented in Fig. 10. 
In this example, the best rank for PSOHHO was one.
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Table 10. Member group of the spatial 72-bar truss.
 

Table 10. Member group of the spatial 72-bar truss. 
 

group element group element 

1 A1-A4 9 A37-A40 
2 A5-A12 10 A41-A48 
3 A13-A16 11 A49-A52 
4 A17-A18 12 A53-A54 
5 A19-A22 13 A55-A58 
6 A23-A30 14 A59-A66 
7 A31-A34 15 A67-A70 
8 A35-A36 16 A71-A72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11. The results of the 72-bar truss problem.

 
 

Table 11. The results of the 72-bar truss problem. 
 

    Optimal cross-sectional areas (in2) Variables 
PSOHHO HHO PSO [56] [53] [52] [51] [21]  

1.9066 1.3536 1.9119 1.8910 1.929788435 1.88468 1.8618 1.8585 A1 
0.5140 0.5107 0.5101 0.5131 0.508996112 0.51372 0.5206 0.5021 A2 

0.1 0.1534 0.1 0.1 0.1 0.1 0.0105 0.1002 A3 
0.1 0.1798 0.1 0.1 0.1 0.1 0.0100 0.1 A4 

1.2490 1.9478 1.2514 1.2697 1.246709769 1.27107 1.2455 1.3011 A5 
0.5131 0.5925 0.5154 0.5097 0.512783923 0.51080 0.5177 0.5151 A6 

0.1 0.1 0.1 0.1 0.1 0.1 0.0101 0.1 A7 
0.1 0.1805 0.1 0.1 0.1 0.1 0.0100 0.1001 A8 

0.5330 0.4296 0.5191 0.5201 0.52977944 0.52589 0.5327 0.5311 A9 
0.5169 0.5840 0.5176 0.5175 0.517240625 0.51627 0.5109 0.5122 A10 

0.1 0.1 0.1 0.1 0.1 0.1 0.0100 0.1008 A11 
0.1 0.6109 0.1 0.1 0.100000001 0.1 0.1205 0.1030 A12 

0.1565 0.1440 0.1565 0.1566 0.156445307 0.15647 0.1655 0.1560 A13 
0.5417 0.6557 0.5449 0.5457 0.543968566 0.54479 0.5397 0.5472 A14 
0.4086 0.3395 0.4033 0.4107 0.41055331 0.41210 0.4554 0.4202 A15 
0.5678 0.2729 0.5727 0.5679 0.562437566 0.56840 0.5995 0.5793 A16 
379.54 420.00 379.64 379.56 379.65 379.61 363.98 379.76 Best weight(lb) 
379.73 450.02 379.79 379.67 380.29 379.62 364.35 380.68 Average weight(lb) 
0.0021 33.831 0.0032 0.127 0.5243 0.0038 0.2188 0.7315 Std 
3862 9580 4660 9000 12000 33600 19860 11960 NFE 

2 8 5 3 6 4 1 7 Rank 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9. Load cases for the spatial 72-bar truss.

 

Table 9. Load cases for the spatial 72-bar truss. 
 

node Case 1   Case 2   

 Fx(kips) Fy(kips) Fz(kips) Fx(kips) Fy(kips) Fz(kips) 
17 5 5 -5 0 0 -5 
18 0 0 0 0 0 -5 
19 0 0 0 0 0 -5 
20 0 0 0 0 0 -5 
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Table 12. Load cases for the planner 200-bar truss.Table 12. Load cases for the planner 200-bar truss. 
 

node Case 1   Case 2 Case 3 
Load(lb) 1000   10000  

Direction X   Y  

Nodes 1,6,15,20,29,34,43, 
48,57,62,71   

1-6,8,10,12,14-20,22,24,26, 
28-34, 36,38,40, 42-48,50, 52,54,56- 62, 

64,66,68,70-75 

Load cases 1 and 2 
acting simultaneously 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 13. Member grouping details for the planar 200-bar truss.Table 13. Member grouping details for the planar 200-bar truss. 
 

Group Member Number Group Member Number 

A1 1, 2, 3,4 A16 82, 83, 85, 86, 88, 89, 91, 92, 103,104, 106, 107, 109, 
110, 112, 113 

A2 5, 8, 11, 14, 17 A17 115, 116, 117, 118 

A3 19, 20, 21, 22, 23, 24 A18 119, 122, 125, 128, 131 
A4 25, 56, 63, 94, 101, 132, 139, 170, 177 A19 133, 134, 135, 136, 137, 138 

A5 26, 29, 32, 35, 38 A20 140, 143, 146, 149, 152 

A6 6, 7, 9, 10, 12, 13, 15, 16, 27, 28, 30, 31, 
33, 34, 36, 37 A21 120, 121, 123, 124, 126, 127, 129, 130, 141, 142, 144, 

145, 147, 148, 150, 151 
A7 39, 40, 41, 42 A22 153, 154, 155, 156 

A8 43, 46, 49, 52, 55 A23 157, 160, 163, 166, 169 
A9 57, 58, 59, 60, 61, 62 A24 171, 172, 173, 174, 175, 176 

A10 64, 67, 70, 73, 76 A25 178, 181, 184, 187, 190 

A11 44, 45, 47, 48, 50, 51, 53, 54, 65, 66, 68, 
69, 71, 72, 74, 75 A26 158, 159, 161, 162, 164, 165, 167, 168, 179, 180, 182, 

183, 185, 186, 188, 189 
A12 77, 78, 79, 80 A27 191, 192, 193, 194 

A13 81, 84, 87, 90, 93 A28 195, 197, 198, 200 
A14 95, 96, 97, 98, 99, 100 A29 196,199 

A15 102, 105, 108, 111, 114   
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Table 14. The results of the 200-bar truss problem.
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Variables Optimal cross-sectional areas (in2) 

 [20] [21] [51] [52] [53] PSO HHO PSOHHO 
A1 0.147258 0.1024 0.1144 0.144758 0.1471 0.1270 11.5191 0.1691 
A2 0.940434 0.9654 0.9443 0.943058 0.9399 0.9777 1.4260 1.0384 
A3 0.100109 0.1391 0.1310 0.101225 0.1000 0.1000 0.9944 0.2174 
A4 0.100098 0.1741 0.1016 0.100001 0.1 0.1000 4.1363 0.1 
A5 1.941704 1.9613 2.0353 1.943059 1.9399 1.9897 3.2044 2.0074 
A6 0.296783 0.2899 0.3126 0.296271 0.2965 0.1204 5.9409 0.1998 
A7 0.100096 0.1294 0.1679 0.103267 0.1000 0.4548 0.9317 0.1241 
A8 3.106749 3.1511 3.1541 3.114355 3.1049 3.8642 3.6499 3.2032 
A9 0.100095 0.1251 0.1003 0.102462 0.1000 0.1000 1.9094 0.1094 
A10 4.108109 4.0627 4.1005 4.114354 4.1049 4.2385 3.9358 4.4946 
A11 0.403975 0.4131 0.4350 0.400374 0.4037 0.3514 0.8594 0.2454 
A12 0.193079 0.4043 0.1148 0.113995 0.1906 0.1000 1.6149 0.1536 
A13 5.434236 5.3357 5.3823 5.388609 5.4298 6.8563 13.3499 5.5229 
A14 0.100095 0.2632 0.1607 0.100012 0.1006 1.1606 2.8119 0.1106 
A15 6.434203 6.3226 6.4152 6.388601 6.4298 6.6874 6.3849 6.3991 
A16 0.575306 0.7972 0.5629 0.533194 0.5739 0.5956 1.6907 0.3312 
A17 0.135485 0.1791 0.4010 0.394526 0.1332 0.1000 1.4669 0.6629 
A18 7.980200 8.1268 7.9735 7.941942 7.9744 7.4970 5.3782 7.4228 
A19 0.100157 0.1141 0.1092 0.100949 0.1000 1.0235 2.2753 0.3712 
A20 8.980345 9.1337 9.0155 8.941920 8.9744 8.4960 6.2781 8.4226 
A21 0.709002 0.8000 0.8628 0.834785 0.7064 0.9117 4.2669 0.8138 
A22 0.437247 0.2487 0.2220 0.151136 0.4339 0.1000 9.4266 1.0067 
A23 10.89123 11.2008 11.025 10.94004 10.8790 10.4553 10.1191 10.3599 
A24 0.100150 0.1136 0.1397 0.100028 0.1 0.1000 11.0087 0.1 
A25 11.89141 12.1703 12.034 11.94004 11.8790 11.4526 14.5686 11.3601 
A26 1.049144 0.9947 1.0043 0.897270 1.0453 0.7150 3.4915 1.1006 
A27 6.610648 6.3377 6.5762 6.848813 6.6300 7.3215 4.0494 8.5567 
A28 10.77913 10.5338 10.726 10.88481 10.7827 15.00 14.8294 11.3949 
A29 13.87830 14.0917 13.966 13.74952 13.8691 15.00 14.8329 13.4384 

Best weight(lb) 25463.53 25771.77 25374.8 25453.77 25448.88 27200.46 49343.06 25076.43 
Average weight(lb) 25477.47 26699.19 26613.4 25455.67 25531.69 27351.22 49343.11 26258.22 

Std 24.12 410.401 702.8 2.337 42.1634 180.21 0.12 18.68 
NFE 31580 23760 19410 80500 96600 14250 17980 7768 
Rank 5 6 2 4 3 7 8 1 
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3- 5- The 942-bar 3D truss
The final case is a 942-bar 3D truss. This structure has 26 

stories and 942 bars classified into 59 groups (Fig. 11). In this 
case, like the previous structures, the elasticity coefficient 
of 107 psi and the specific gravity of 0.1 lb/in3 are assumed. 
Six types of loads are considered for loading (Table 15). The 
cross-section limits are in the 1-200 in2 range. The stress 
constraint for both states of pressure and traction is 25 ksi. 

The maximum displacement for the upper points is 15 in. 
Solutions of this case after 13000 analyses are presented in 
Table 16.

According to Table 16, the solution of the PSOHHO 
method is 131044.45 lb, which is acceptable compared to the 
other methods. In this example, the best rank for PSOHHO 
was one. The convergence speed of the proposed method is 
presented in Fig. 12.

Table 15. Load cases for the spatial 942-bar truss.
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Case number Load (Ib) Direction Nodes 
1 -3000 Z Each node in the first section 
2 -6000 Z At each node in the second section 
3 -9000 Z At each node in the third section 
4 1000 X At each node on the right side 
5 1500 X At each node on the left side 
6 1000 Y All nodes of the tower 

 
 
 
 

Table 16. The results of the 942-bar truss problem. 
 

    Optimal cross-sectional areas (in2) Variables 
PSOHHO HHO PSO [57] [58] [56] [53] [21] [20]  

1.002 1.024 1.00 1.00 1 1.000106287 4.2489 1.045258 A1 
1.002 1.000 1.00 1.00 1 1.000000908 1.7702 1.001630 A2 
3.321 3.3541 6.999 3.01 1 3.166316514 1.5892 3.549999 A3 
1.824 1.9647 3.00 1.75 1 1.815748019 1.5235 1.924590 A4 

1.0387 1.0057 2.00 1.00 1 1.000004059 1.0265 1.000032 A5 
14.586 14.9675 17 14.27 14 14.47644046 15.3979 15.337079 A6 
3.1351 3.4672 3 2.93 4 3.00668249 2.8825 3.108905 A7 
7.986 7.0534 20 1.00 5 7.035993176 6.9912 6.589077 A8 

16.148 17.8646 38 1.00 5 16.37606449 11.2039 16.569661 A9 
2.459 2.4682 9 9.38 22 2.379222386 2.7262 2.553777 A10 
6.458 6.3947 2 4.43 1 6.438189777 8.1921 6.433946 A11 
5.726 5.6487 8 4.54 4 5.602718173 6.2178 5.812166 A12 

15.1347 15.9647 23 16.14 19 15.1181383 16.5585 15.836882 A13 
2.214 2.3245 3 2.33 2 2.124871462 2.3668 2.196943 A14 
4.236 4.3651 26 7.51 4 4.098857115 4.1519 4.324553 A15 
1.254 1.0000 1 1.00 1 1.000000108 1.2370 1.000047 A16 

21.125 21.5672 50.98 22.47 21 21.68022386 22.3006 21.973772 A17 
2.432 2.7698 3 2.70 3 2.597362396 2.9996 2.674909 A18 
7.532 7.9621 26 13.58 14 7.870074834 7.7559 8.722646 A19 
1.02 1.0000 1 1.00 1 1.000000101 1.1283 1.000032 A20 

27.232 28.3547 20 28.93 35 27.75329707 28.2646 29.898613 A21 
3.125 3.8632 2 3.23 3 3.135263149 3.1924 3.249223 A22 

15.631 16.3254 20 23.87 18 15.84340544 16.3965 16.995624 A23 
26.352 26.8134 30 41.67 24 26.31743388 22.6095 25.510407 A24 
41.332 39.6340 66.98 36.02 36 40.69496614 40.0759 37.634066 A25 
1.624 1.4302 22 6.41 1 1.149987375 5.3549 1.220731 A26 

11.035 12.0364 2 23.79 11 11.64990143 9.2695 11.944077 A27 
16.927 16.8032 10 28.39 14 16.07570037 15.0911 16.515003 A28 
13.024 14.6325 15 19.38 14 13.90458804 14.0704 14.822892 A29 
14.726 14.9364 14 20.31 23 14.52601036 15.1962 15.983565 A30 
35.932 35.6327 31 31.41 38 35.38504225 37.1490 38.514252 A31 

 
Fig. 10. The convergence curve of the 200-bar truss. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The convergence curve of the 200-bar truss.
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3.021 3.7340 4 2.57 3 3.207432961 3.1643 3.323571 A32 
2.825 3.5237 5 4.18 2 2.532916182 3.4414 3.189674 A33 
2.453 2.7032 2 3.33 3 2.506554054 2.2813 2.822370 A34 

1 1.0000 1 1.00 1 1.000000003 1.0166 1.001323 A35 
1 1.0000 1 1.00 1 1.00000006 1.4089 1.002606 A36 

56.276 58.6378 45.98 47.11 70 57.28451296 59.6649 59.530117 A37 
4.054 3.6210 4 2.35 3 3.163254209 3.3173 3.250054 A38 
2.635 2.7302 12 3.79 2 2.146376942 2.0249 2.068093 A39 
2.721 2.8371 4 3.30 3 2.850268391 2.3953 3.084539 A40 

1 1.0005 1 1.00 1 1.000000264 1.0554 1.000717 A41 
1 1.0273 6 1.00 1 1.000616023 1.2294 1.239938 A42 

75.586 79.3619 54 63.33 91 76.72647796 79.5798 79.891179 A43 
4.324 3.5067 3 3.21 3 3.154725029 3.2875 3.299488 A44 
2.254 2.0396 8 4.86 2 2.064116875 1.9028 1.964128 A45 
2.864 3.4631 8 2.22 2 3.279900541 3.2460 3.489718 A46 
1.001 1.0024 2 1.00 1 1.000079442 1.0277 1.000032 A47 
1.035 1.0000 3 1.00 1 1.000000176 1.0898 1.000032 A48 

92.132 91.9642 56 76.93 102 91.16688452 93.8836 97.181471 A49 
3.665 3.5487 3 3.54 4 3.23458801 3.0634 3.322281 A50 
2.924 1.0003 8 3.91 1 1.000000003 1.7246 1.002997 A51 
3.756 3.8964 4 2.25 3 3.600181305 3.9313 3.651629 A52 
6.246 6.9547 31 11.44 10 6.583921302 8.1063 7.226228 A53 
3.486 3.5314 24 11.64 11 3.785500472 9.8391 4.544599 A54 

41.336 45.3984 87.97 36.94 46 41.72633586 42.7529 41.411074 A55 
1.001 1.2358 6 1.00 1 1.000000003 1.1219 1.002207 A56 

62.468 67.5319 36 48.10 65 63.417437 63.0179 64.803517 A57 
2.247 2.9365 12 5.88 3 2.3264112 2.6542 2.525618 A58 
1.022 1.0024 4 1.00 1 1.0000000 1.6685 1.000054 A59 

131,044.45 138,862.34 157,984.29 134,120 141,860 131,984.40 136,311.1322 137,344.35 Best 
weight(lb) 

135328.61 140,531.24 177196.69 135244.7 144,231 135,768.12 137453.6697 137379.616 Average 
weight(lb) 

1832.27 2863.42 13073.63 1497.06 3342 2289.1491 673.8566 38.346 Std 
14608 10458 41174 75000 32500 140800 28000 58274 NFE 

1 6 8 3 7 2 4 5 Rank 
 

 

 

 

 

 

 

 

 

 

4- Conclusion
Here, truss structures were optimized using a novel 

PSOHHO hybrid method. This algorithm uses a distinct 
combination of PSO and HHO. The proposed algorithm 
consistently outperforms the standard PSO and HHO. In 
this method, the two algorithms work in parallel, but the 
population is exchanged using the proposed relation. This 
relation can be applied to other similar algorithms. The main 
purpose of this proposed relation is to use the capabilities 
of existing algorithms without modifying the principle of 
the algorithm. Both these algorithms have certain strengths 
and drawbacks; with this method, one method’s strengths 
compensate for the other’s weaknesses. It can be concluded 
that the hybrid algorithm PSOHHO yielded the best results 

among the examined algorithms. Five well-known trusses 
were assumed to evaluate the performance and functioning of 
the proposed algorithm. Based on the findings, the proposed 
hybrid method had rapid convergence and the final solutions 
were more acceptable than those of the other algorithms. In 
most examples, this method’s rank was satisfactory. 

It is recommended that other algorithms be combined 
using the proposed method. Various structural examples 
can also be utilized to test the performance of the proposed 
algorithm.
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Fig. 11. The spatial 942-bar truss problem. 
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Fig. 12. The convergence curve of the 942-bar truss. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. The convergence curve of the 942-bar truss.
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