
AUT Journal of Civil Engineering

AUT J. Civil Eng., 6(2) (2022) 295-318
DOI: 10.22060/ajce.2023.21732.5810

PSOHHO Hybrid Optimization Algorithm for Truss Optimization
M. Yassami, P. Ashtari*

Department of Engineering, Faculty of Civil Engineering, University of Zanjan, Zanjan, Iran.

ABSTRACT: Numerous algorithms have recently been invented with varying strengths and
weaknesses, none of which is the best for all cases. Herein, a hybrid optimization method known as
a PSOHHO optimization algorithm is presented. There are two methods for combining algorithms:
parallel and sequential. We adopted the parallel method and optimized the algorithm’s performance. We
cover the weaknesses of one algorithm with the strengths of another algorithm using a new method of
combination. In this method, using several formulas, the top populations are exchanged between the two
algorithms, and a new population is created. With this ability, the strengths of an algorithm can be used
to compensate for the weaknesses of the other algorithm. In this method, no changes are made to the
algorithms. The main goal is to use existing algorithms. This method aims to attain the optimal solution
in the shortest time possible. Two algorithms of particle swarm optimization (PSO) and Harris Hawks
optimization (HHO) were used to present this method and five truss samples were considered to confirm
the performance of this method. Based on the results, this method has rapid convergence speed and
acceptable results compared to the other methods. It also yields better results than its basic algorithms.

Review History:

Received: Aug, 29, 2022
Revised: Jan, 26, 2023
Accepted: Mar, 04, 2023
Available Online: Mar, 20, 2023

Keywords:

Meta-heuristic algorithms

Hybrid algorithm

Optimization

Truss

PSOHHO

295

1- Introduction
Optimization is a method to identify the best solution in

the shortest time possible. Due to the recent expansion in
parameters, mathematical models are not adequate anymore
and, as such, the use of meta-heuristic models has grown. The
solutions proposed by meta-heuristic algorithms are better
and more precise solutions for engineering problems [1,2].
The main difference between meta-heuristic and commercial
methods is that the former does not need a gradient to
solve problems. They are also superior due to their easier
application and their ability to search the entire space, which
will lead to better solutions. The majority of the optimization
algorithms are inspired by nature, animals’ behaviors, or laws
of physics. Generally, optimization algorithms can be divided
into three main categories: physics-based, population-based,
and evolutionary-based [3]. The genetic algorithm (GA) is
the most well-known optimization algorithm [4,5] and has
different stages including selection, crossover, and mutation.
These phases prevent the algorithm from being trapped
in local optima. In fact, randomness is a feature of this
algorithm. GA is frequently applied due to its simplicity and
the absence of numerous equations in it. Another population-
based algorithm is the particle swarm optimization (PSO)
algorithm, which is widely used today [6]. This algorithm
was developed based on the social behavior of some animals
and two parameters of speed and position, which are updated

in each stage. This algorithm is based on the best previous
experience of each population. The PSO has memory contrary
to GA. In practice, this ability helps find the local optimal
solution during the algorithm’s stages. In each state, the best
personal experience of the population is compared to the best
overall experience and is replaced if it is superior. This also
improves the convergence speed [7].

Many algorithms have been presented in recent years,
including GA [5], PSO [8], Harris Hawk’s optimization
(HHO) [9], charged system search (CSS) [10], ant colony
optimization (ACO) [11], grey wolf optimizer (GWO) [12],
pathfinder algorithm (PFA) [13], poor and rich optimization
algorithm (PRO) [14], Gaussian quantum-behaved particle
swarm optimization (QPSO) [15], weighted differential
evolution algorithm (WDE) [16], particle swarm optimization
+(PSO+) [17], and optimization booster algorithm (OBA)
[18].

Some papers have focused on optimizing two- and three-
dimensional trusses, including cyclical parthenogenesis
algorithm (CPA) [19], Jaya algorithm (JA) [20], improved
GWO (IGWO) [21], mean-variance mapping optimization
(MVMO) [22], accelerated multi-gravitational search
algorithm (AMGSA) [23], firefly algorithm (FA) [24],
chaotic coyote algorithm (COA) [25], spiral water cycle
algorithm (SWCA) [26], artificial bee colony algorithm
(ABC) [27], parameter-free Jaya algorithm (PFJA) [28],

*Corresponding author’s email: ashtari@znu.ac.ir

 Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article
 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information,
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

296

interactive fuzzy search algorithm (IFSA) [29], mixed integer
linear optimization (MILO) [30], hybrid artificial physics
optimization and big bang-big crunch (HPBA) [30], and
heuristic dragonfly algorithm (HAD) [31].

The hybridization of two or more algorithms, instead of
developing and proposing new optimization methods, has
also been popularized in recent years. The hybridization
of algorithms helps compensate for the weaknesses of
one algorithm with the strengths of another algorithm.
Numerous studies are focused on this topic [32,33]. Yaseen
[34] introduced a new hybrid optimization algorithm based
on a bat algorithm (BA) and the PSO algorithm (HB-SA).
Nenavath [35] used the hybrid sine–cosine algorithm with
the teaching–learning-based optimization algorithm (SCA–
TLBO). DEVARAPALLI adopted the sequential method
and optimized the algorithm’s performance. The velocity
function update in each iteration of the PSO technique has
been adopted to avoid being trapped in local search space
with HHO [36].

1- 1- PSO algorithm
The PSO algorithm is based on the social behavior of fish

and birds [6]. This algorithm searches the space based on the
existing population that is also present in the GA. Therefore,
PSO is a population-based algorithm. First, a large population
is randomly created. Subsequently, the speed, fitness, and
objective functions are determined for this population. A
member of this population is selected as the best member. In
the following stages, speed and position are calculated using
Eqs. (1) and (2). In this stage, after calculating the fitness
function, the best position is determined. If the best existing
position is superior to the previous best position, the previous

position will be replaced with this new position.

2

1. Introduction
Optimization is a method to identify the best solution in the shortest time possible. Due to the recent

expansion in parameters, mathematical models are not adequate anymore and, as such, the use of meta-heuristic
models has grown. The solutions proposed by meta-heuristic algorithms are better and more precise solutions
for engineering problems [1,2]. The main difference between meta-heuristic and commercial methods is that
the former does not need a gradient to solve problems. They are also superior due to their easier application
and their ability to search the entire space, which will lead to better solutions. The majority of the optimization
algorithms are inspired by nature, animals’ behaviors, or laws of physics. Generally, optimization algorithms
can be divided into three main categories: physics-based, population-based, and evolutionary-based [3]. The
genetic algorithm (GA) is the most well-known optimization algorithm [4,5] and has different stages including
selection, crossover, and mutation. These phases prevent the algorithm from being trapped in local optima. In
fact, randomness is a feature of this algorithm. GA is frequently applied due to its simplicity and the absence
of numerous equations in it. Another population-based algorithm is the particle swarm optimization (PSO)
algorithm, which is widely used today [6]. This algorithm was developed based on the social behavior of some
animals and two parameters of speed and position, which are updated in each stage. This algorithm is based
on the best previous experience of each population. The PSO has memory contrary to GA. In practice, this
ability helps find the local optimal solution during the algorithm’s stages. In each state, the best personal
experience of the population is compared to the best overall experience and is replaced if it is superior. This
also improves the convergence speed [7].

Many algorithms have been presented in recent years, including GA [5], PSO [8], Harris Hawk’s
optimization (HHO) [9], charged system search (CSS) [10], ant colony optimization (ACO) [11], grey wolf
optimizer (GWO) [12], pathfinder algorithm (PFA) [13], poor and rich optimization algorithm (PRO) [14],
Gaussian quantum-behaved particle swarm optimization (QPSO) [15], weighted differential evolution
algorithm (WDE) [16], particle swarm optimization +(PSO+) [17], and optimization booster algorithm (OBA)
[18].

Some papers have focused on optimizing two- and three-dimensional trusses, including cyclical
parthenogenesis algorithm (CPA) [19], Jaya algorithm (JA) [20], improved GWO (IGWO) [21], mean-
variance mapping optimization (MVMO) [22], accelerated multi-gravitational search algorithm (AMGSA)
[23], firefly algorithm (FA) [24], chaotic coyote algorithm (COA) [25], spiral water cycle algorithm (SWCA)
[26], artificial bee colony algorithm (ABC) [27], parameter-free Jaya algorithm (PFJA) [28], interactive fuzzy
search algorithm (IFSA) [29], mixed integer linear optimization (MILO) [30], hybrid artificial physics
optimization and big bang-big crunch (HPBA) [30], and heuristic dragonfly algorithm (HAD) [31].

The hybridization of two or more algorithms, instead of developing and proposing new optimization
methods, has also been popularized in recent years. The hybridization of algorithms helps compensate for the
weaknesses of one algorithm with the strengths of another algorithm. Numerous studies are focused on this
topic [32,33]. Yaseen [34] introduced a new hybrid optimization algorithm based on a bat algorithm (BA) and
the PSO algorithm (HB-SA). Nenavath [35] used the hybrid sine–cosine algorithm with the teaching–learning-
based optimization algorithm (SCA–TLBO). DEVARAPALLI adopted the sequential method and optimized
the algorithm's performance. The velocity function update in each iteration of the PSO technique has been
adopted to avoid being trapped in local search space with HHO [36].

1.1. PSO algorithm

The PSO algorithm is based on the social behavior of fish and birds [6]. This algorithm searches the space
based on the existing population that is also present in the GA. Therefore, PSO is a population-based algorithm.
First, a large population is randomly created. Subsequently, the speed, fitness, and objective functions are
determined for this population. A member of this population is selected as the best member. In the following
stages, speed and position are calculated using Eqs. (1) and (2). In this stage, after calculating the fitness
function, the best position is determined. If the best existing position is superior to the previous best position,
the previous position will be replaced with this new position.

(1)

 (2)
where Xi(t) is the existing position, Vi(t) is the existing speed, C1 and C2 are constants, PPbest is the best

personal experience or the best local position, Pgbest is the best general position, W helps us approach
optimization solutions as the optimization process proceeds, and rand1 and rand2 are constant numbers that
will make the search of the space random, ensuring that the algorithm remains random; these random numbers
vary from 0 to 1. Table 1 presents some algorithms hybridized with the PSO. Among the weaknesses of the
PSO algorithm, we can mention exploration weakness that leads to a local optimum convergence. Different
aspects of the PSO algorithm can be improved; initial population, inertia parameter w, and acceleration factors

() () ()() ()()1 1 2 21 1 1i i Pbest i gbest iV t W V t C rand P X t C rand P X t=  − +  − − +   − −

() () ()1i i iX t X t V t= − +

2

1. Introduction
Optimization is a method to identify the best solution in the shortest time possible. Due to the recent

expansion in parameters, mathematical models are not adequate anymore and, as such, the use of meta-heuristic
models has grown. The solutions proposed by meta-heuristic algorithms are better and more precise solutions
for engineering problems [1,2]. The main difference between meta-heuristic and commercial methods is that
the former does not need a gradient to solve problems. They are also superior due to their easier application
and their ability to search the entire space, which will lead to better solutions. The majority of the optimization
algorithms are inspired by nature, animals’ behaviors, or laws of physics. Generally, optimization algorithms
can be divided into three main categories: physics-based, population-based, and evolutionary-based [3]. The
genetic algorithm (GA) is the most well-known optimization algorithm [4,5] and has different stages including
selection, crossover, and mutation. These phases prevent the algorithm from being trapped in local optima. In
fact, randomness is a feature of this algorithm. GA is frequently applied due to its simplicity and the absence
of numerous equations in it. Another population-based algorithm is the particle swarm optimization (PSO)
algorithm, which is widely used today [6]. This algorithm was developed based on the social behavior of some
animals and two parameters of speed and position, which are updated in each stage. This algorithm is based
on the best previous experience of each population. The PSO has memory contrary to GA. In practice, this
ability helps find the local optimal solution during the algorithm’s stages. In each state, the best personal
experience of the population is compared to the best overall experience and is replaced if it is superior. This
also improves the convergence speed [7].

Many algorithms have been presented in recent years, including GA [5], PSO [8], Harris Hawk’s
optimization (HHO) [9], charged system search (CSS) [10], ant colony optimization (ACO) [11], grey wolf
optimizer (GWO) [12], pathfinder algorithm (PFA) [13], poor and rich optimization algorithm (PRO) [14],
Gaussian quantum-behaved particle swarm optimization (QPSO) [15], weighted differential evolution
algorithm (WDE) [16], particle swarm optimization +(PSO+) [17], and optimization booster algorithm (OBA)
[18].

Some papers have focused on optimizing two- and three-dimensional trusses, including cyclical
parthenogenesis algorithm (CPA) [19], Jaya algorithm (JA) [20], improved GWO (IGWO) [21], mean-
variance mapping optimization (MVMO) [22], accelerated multi-gravitational search algorithm (AMGSA)
[23], firefly algorithm (FA) [24], chaotic coyote algorithm (COA) [25], spiral water cycle algorithm (SWCA)
[26], artificial bee colony algorithm (ABC) [27], parameter-free Jaya algorithm (PFJA) [28], interactive fuzzy
search algorithm (IFSA) [29], mixed integer linear optimization (MILO) [30], hybrid artificial physics
optimization and big bang-big crunch (HPBA) [30], and heuristic dragonfly algorithm (HAD) [31].

The hybridization of two or more algorithms, instead of developing and proposing new optimization
methods, has also been popularized in recent years. The hybridization of algorithms helps compensate for the
weaknesses of one algorithm with the strengths of another algorithm. Numerous studies are focused on this
topic [32,33]. Yaseen [34] introduced a new hybrid optimization algorithm based on a bat algorithm (BA) and
the PSO algorithm (HB-SA). Nenavath [35] used the hybrid sine–cosine algorithm with the teaching–learning-
based optimization algorithm (SCA–TLBO). DEVARAPALLI adopted the sequential method and optimized
the algorithm's performance. The velocity function update in each iteration of the PSO technique has been
adopted to avoid being trapped in local search space with HHO [36].

1.1. PSO algorithm

The PSO algorithm is based on the social behavior of fish and birds [6]. This algorithm searches the space
based on the existing population that is also present in the GA. Therefore, PSO is a population-based algorithm.
First, a large population is randomly created. Subsequently, the speed, fitness, and objective functions are
determined for this population. A member of this population is selected as the best member. In the following
stages, speed and position are calculated using Eqs. (1) and (2). In this stage, after calculating the fitness
function, the best position is determined. If the best existing position is superior to the previous best position,
the previous position will be replaced with this new position.

(1)

 (2)
where Xi(t) is the existing position, Vi(t) is the existing speed, C1 and C2 are constants, PPbest is the best

personal experience or the best local position, Pgbest is the best general position, W helps us approach
optimization solutions as the optimization process proceeds, and rand1 and rand2 are constant numbers that
will make the search of the space random, ensuring that the algorithm remains random; these random numbers
vary from 0 to 1. Table 1 presents some algorithms hybridized with the PSO. Among the weaknesses of the
PSO algorithm, we can mention exploration weakness that leads to a local optimum convergence. Different
aspects of the PSO algorithm can be improved; initial population, inertia parameter w, and acceleration factors

() () ()() ()()1 1 2 21 1 1i i Pbest i gbest iV t W V t C rand P X t C rand P X t=  − +  − − +   − −

() () ()1i i iX t X t V t= − +

 (1)

2

1. Introduction
Optimization is a method to identify the best solution in the shortest time possible. Due to the recent

expansion in parameters, mathematical models are not adequate anymore and, as such, the use of meta-heuristic
models has grown. The solutions proposed by meta-heuristic algorithms are better and more precise solutions
for engineering problems [1,2]. The main difference between meta-heuristic and commercial methods is that
the former does not need a gradient to solve problems. They are also superior due to their easier application
and their ability to search the entire space, which will lead to better solutions. The majority of the optimization
algorithms are inspired by nature, animals’ behaviors, or laws of physics. Generally, optimization algorithms
can be divided into three main categories: physics-based, population-based, and evolutionary-based [3]. The
genetic algorithm (GA) is the most well-known optimization algorithm [4,5] and has different stages including
selection, crossover, and mutation. These phases prevent the algorithm from being trapped in local optima. In
fact, randomness is a feature of this algorithm. GA is frequently applied due to its simplicity and the absence
of numerous equations in it. Another population-based algorithm is the particle swarm optimization (PSO)
algorithm, which is widely used today [6]. This algorithm was developed based on the social behavior of some
animals and two parameters of speed and position, which are updated in each stage. This algorithm is based
on the best previous experience of each population. The PSO has memory contrary to GA. In practice, this
ability helps find the local optimal solution during the algorithm’s stages. In each state, the best personal
experience of the population is compared to the best overall experience and is replaced if it is superior. This
also improves the convergence speed [7].

Many algorithms have been presented in recent years, including GA [5], PSO [8], Harris Hawk’s
optimization (HHO) [9], charged system search (CSS) [10], ant colony optimization (ACO) [11], grey wolf
optimizer (GWO) [12], pathfinder algorithm (PFA) [13], poor and rich optimization algorithm (PRO) [14],
Gaussian quantum-behaved particle swarm optimization (QPSO) [15], weighted differential evolution
algorithm (WDE) [16], particle swarm optimization +(PSO+) [17], and optimization booster algorithm (OBA)
[18].

Some papers have focused on optimizing two- and three-dimensional trusses, including cyclical
parthenogenesis algorithm (CPA) [19], Jaya algorithm (JA) [20], improved GWO (IGWO) [21], mean-
variance mapping optimization (MVMO) [22], accelerated multi-gravitational search algorithm (AMGSA)
[23], firefly algorithm (FA) [24], chaotic coyote algorithm (COA) [25], spiral water cycle algorithm (SWCA)
[26], artificial bee colony algorithm (ABC) [27], parameter-free Jaya algorithm (PFJA) [28], interactive fuzzy
search algorithm (IFSA) [29], mixed integer linear optimization (MILO) [30], hybrid artificial physics
optimization and big bang-big crunch (HPBA) [30], and heuristic dragonfly algorithm (HAD) [31].

The hybridization of two or more algorithms, instead of developing and proposing new optimization
methods, has also been popularized in recent years. The hybridization of algorithms helps compensate for the
weaknesses of one algorithm with the strengths of another algorithm. Numerous studies are focused on this
topic [32,33]. Yaseen [34] introduced a new hybrid optimization algorithm based on a bat algorithm (BA) and
the PSO algorithm (HB-SA). Nenavath [35] used the hybrid sine–cosine algorithm with the teaching–learning-
based optimization algorithm (SCA–TLBO). DEVARAPALLI adopted the sequential method and optimized
the algorithm's performance. The velocity function update in each iteration of the PSO technique has been
adopted to avoid being trapped in local search space with HHO [36].

1.1. PSO algorithm

The PSO algorithm is based on the social behavior of fish and birds [6]. This algorithm searches the space
based on the existing population that is also present in the GA. Therefore, PSO is a population-based algorithm.
First, a large population is randomly created. Subsequently, the speed, fitness, and objective functions are
determined for this population. A member of this population is selected as the best member. In the following
stages, speed and position are calculated using Eqs. (1) and (2). In this stage, after calculating the fitness
function, the best position is determined. If the best existing position is superior to the previous best position,
the previous position will be replaced with this new position.

(1)

 (2)
where Xi(t) is the existing position, Vi(t) is the existing speed, C1 and C2 are constants, PPbest is the best

personal experience or the best local position, Pgbest is the best general position, W helps us approach
optimization solutions as the optimization process proceeds, and rand1 and rand2 are constant numbers that
will make the search of the space random, ensuring that the algorithm remains random; these random numbers
vary from 0 to 1. Table 1 presents some algorithms hybridized with the PSO. Among the weaknesses of the
PSO algorithm, we can mention exploration weakness that leads to a local optimum convergence. Different
aspects of the PSO algorithm can be improved; initial population, inertia parameter w, and acceleration factors

() () ()() ()()1 1 2 21 1 1i i Pbest i gbest iV t W V t C rand P X t C rand P X t=  − +  − − +   − −

() () ()1i i iX t X t V t= − + (2)

where Xi(t) is the existing position, Vi(t) is the existing
speed, C1 and C2 are constants, PPbest is the best personal
experience or the best local position, Pgbest is the best
general position, W helps us approach optimization solutions
as the optimization process proceeds, and rand1 and rand2
are constant numbers that will make the search of the space
random, ensuring that the algorithm remains random; these
random numbers vary from 0 to 1. Table 1 presents some
algorithms hybridized with the PSO. Among the weaknesses
of the PSO algorithm, we can mention exploration weakness
that leads to a local optimum convergence. Different aspects
of the PSO algorithm can be improved; initial population,
inertia parameter w, and acceleration factors c1 and c2 are
a few examples of these aspects. The PSO algorithm only
accepts better solution positions but overlooks inferior
solution positions with the potential to find the global optimal
solution, which makes the algorithm easily fall into premature
convergence [37].

1- 2- HHO algorithm
The HHO algorithm is inspired by the participatory

behavior and chasing of the prey by Harris hawks in nature
[9]. HHO is basically a gradient-free population-based

Table 1. PSO hybridizations.Table 1. PSO hybridizations.

PSO hybridization
with References Proposed Conclusion

Grey wolf
optimization

(GWO)
 [38] Improving the

exploration of PSO Convergence to more optimal solutions with
fewer iterations

Sine cosine
algorithm (SCA) [39] Escaping the local

optima
Successfully applied to real constrained

engineering problems and provides better
solutions than other methods

Whale optimization
algorithm (WOA) [40]

For the exploration phase
in an uncertain
environment

 Very good convergence

Spotted hyena
optimization (SHO) [41]

Improving the hunting
strategy of the spotted

hyena optimizer
 The algorithm performs better than other

metaheuristic algorithms.

Gravitational search
algorithm (GSA) [42] Improving the

exploration of PSO

Superior performance in terms of accuracy,
reliability, and efficiency compared to PSO,
GSA, and other recently developed hybrid

variants

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

297

optimization algorithm. The central idea of HHO is based
on the cooperative hunting behavior of Harris hawk bird,
especially their chasing style of prey which is called surprise
pounce or also known as the ‘seven kill’ strategy. In this smart
process, several hawks collaborate to chase the prey from
different directions to confuse it. Evidently, the prey’s escape
pattern is proportional to the hawks’ pursuit model. Birds
collaborate in the attack. The leader of the group attacks the
target, follows it, and abruptly soars out of sight, and the next
Harris Hawk joins the chase. These hawks can demonstrate
a variety of chasing patterns based on the dynamic nature of
scenarios and the prey’s escape patterns. This mathematically
mimics the dynamic behaviors to develop an optimization
algorithm. The HHO algorithm has three phases. The first
phase is the exploration ability, which is formulated as
follows:

Exploration phase:

3

c1 and c2 are a few examples of these aspects. The PSO algorithm only accepts better solution positions but
overlooks inferior solution positions with the potential to find the global optimal solution, which makes the
algorithm easily fall into premature convergence [37].

Table 1. PSO hybridizations.

PSO hybridization
with References Proposed Conclusion

Grey wolf
optimization

(GWO)
 [38] Improving the

exploration of PSO Convergence to more optimal solutions
with fewer iterations

Sine cosine
algorithm (SCA) [39] Escaping the local

optima
Successfully applied to real constrained

engineering problems and provides better
solutions than other methods

Whale optimization
algorithm (WOA) [40]

For the exploration
phase in an uncertain

environment
 Very good convergence

Spotted hyena
optimization (SHO) [41]

Improving the hunting
strategy of the spotted

hyena optimizer
 The algorithm performs better than other

metaheuristic algorithms.

Gravitational search
algorithm (GSA) [42] Improving the

exploration of PSO

Superior performance in terms of accuracy,
reliability, and efficiency compared to

PSO, GSA, and other recently developed
hybrid variants

1.2. HHO algorithm

The HHO algorithm is inspired by the participatory behavior and chasing of the prey by Harris hawks in
nature [9]. HHO is basically a gradient-free population-based optimization algorithm. The central idea of HHO
is based on the cooperative hunting behavior of Harris hawk bird, especially their chasing style of prey which
is called surprise pounce or also known as the ‘seven kill’ strategy. In this smart process, several hawks
collaborate to chase the prey from different directions to confuse it. Evidently, the prey’s escape pattern is
proportional to the hawks’ pursuit model. Birds collaborate in the attack. The leader of the group attacks the
target, follows it, and abruptly soars out of sight, and the next Harris Hawk joins the chase. These hawks can
demonstrate a variety of chasing patterns based on the dynamic nature of scenarios and the prey’s escape
patterns. This mathematically mimics the dynamic behaviors to develop an optimization algorithm. The HHO
algorithm has three phases. The first phase is the exploration ability, which is formulated as follows:
Exploration phase:

(3)

where X(t) is the current position, X(t+1) is the next position of the hawk, Xrabbit(t) is the prey’s position,
q, r1, r2, r3, r4 are random numbers between 0 and 1, Xrand(t) is the random position selected from among the
available positions, Xm(t) is the average of the existing positions, and LB and UB are the lower and upper
bounds of the data, respectively. Xm(t) is calculated using the equation below:

 (4)

where Xi(t) is the hawk’s position in iteration t and N is the total number of hawks. After certain stages,
the hawk approaches the target (prey). Then, convergence must increase. This is why the energy equations are
used:

 (5)

E0 is the baseline energy, T is the maximum value of iteration, t is the current stage, and E is energy. In
this phase, if |E0| ≥ 1 is the search phase and |E0| < 1, the exploitation phase will occur.
Exploitation Phase:

In the next stage, hawks surprise the prey and hunt it. Four cases may arise:

()
() () ()
() () ()()

1 2

3 4

 2 0.5
1

() 0.5
rand rand

rabbit m

X t r X t r X t q
X t

X t X t r LB r UB LB q

 − −+ =  − − + −

≥

<

() ()
1

1
N

m i
i

X t X t
N =

= 

02 1 tE E
T

  = −  
 

 (3)

where X(t) is the current position, X(t+1) is the next
position of the hawk, Xrabbit(t) is the prey’s position, q, r1, r2, r3,
r4 are random numbers between 0 and 1, Xrand(t) is the random
position selected from among the available positions, Xm(t)
is the average of the existing positions, and LB and UB are
the lower and upper bounds of the data, respectively. Xm(t) is
calculated using the equation below:

3

c1 and c2 are a few examples of these aspects. The PSO algorithm only accepts better solution positions but
overlooks inferior solution positions with the potential to find the global optimal solution, which makes the
algorithm easily fall into premature convergence [37].

Table 1. PSO hybridizations.

PSO hybridization
with References Proposed Conclusion

Grey wolf
optimization

(GWO)
 [38] Improving the

exploration of PSO Convergence to more optimal solutions
with fewer iterations

Sine cosine
algorithm (SCA) [39] Escaping the local

optima
Successfully applied to real constrained

engineering problems and provides better
solutions than other methods

Whale optimization
algorithm (WOA) [40]

For the exploration
phase in an uncertain

environment
 Very good convergence

Spotted hyena
optimization (SHO) [41]

Improving the hunting
strategy of the spotted

hyena optimizer
 The algorithm performs better than other

metaheuristic algorithms.

Gravitational search
algorithm (GSA) [42] Improving the

exploration of PSO

Superior performance in terms of accuracy,
reliability, and efficiency compared to

PSO, GSA, and other recently developed
hybrid variants

1.2. HHO algorithm

The HHO algorithm is inspired by the participatory behavior and chasing of the prey by Harris hawks in
nature [9]. HHO is basically a gradient-free population-based optimization algorithm. The central idea of HHO
is based on the cooperative hunting behavior of Harris hawk bird, especially their chasing style of prey which
is called surprise pounce or also known as the ‘seven kill’ strategy. In this smart process, several hawks
collaborate to chase the prey from different directions to confuse it. Evidently, the prey’s escape pattern is
proportional to the hawks’ pursuit model. Birds collaborate in the attack. The leader of the group attacks the
target, follows it, and abruptly soars out of sight, and the next Harris Hawk joins the chase. These hawks can
demonstrate a variety of chasing patterns based on the dynamic nature of scenarios and the prey’s escape
patterns. This mathematically mimics the dynamic behaviors to develop an optimization algorithm. The HHO
algorithm has three phases. The first phase is the exploration ability, which is formulated as follows:
Exploration phase:

(3)

where X(t) is the current position, X(t+1) is the next position of the hawk, Xrabbit(t) is the prey’s position,
q, r1, r2, r3, r4 are random numbers between 0 and 1, Xrand(t) is the random position selected from among the
available positions, Xm(t) is the average of the existing positions, and LB and UB are the lower and upper
bounds of the data, respectively. Xm(t) is calculated using the equation below:

 (4)

where Xi(t) is the hawk’s position in iteration t and N is the total number of hawks. After certain stages,
the hawk approaches the target (prey). Then, convergence must increase. This is why the energy equations are
used:

 (5)

E0 is the baseline energy, T is the maximum value of iteration, t is the current stage, and E is energy. In
this phase, if |E0| ≥ 1 is the search phase and |E0| < 1, the exploitation phase will occur.
Exploitation Phase:

In the next stage, hawks surprise the prey and hunt it. Four cases may arise:

()
() () ()
() () ()()

1 2

3 4

 2 0.5
1

() 0.5
rand rand

rabbit m

X t r X t r X t q
X t

X t X t r LB r UB LB q

 − −+ =  − − + −

≥

<

() ()
1

1
N

m i
i

X t X t
N =

= 

02 1 tE E
T

  = −  
 

 (4)

where Xi(t) is the hawk’s position in iteration t and N is
the total number of hawks. After certain stages, the hawk
approaches the target (prey). Then, convergence must
increase. This is why the energy equations are used:

3

c1 and c2 are a few examples of these aspects. The PSO algorithm only accepts better solution positions but
overlooks inferior solution positions with the potential to find the global optimal solution, which makes the
algorithm easily fall into premature convergence [37].

Table 1. PSO hybridizations.

PSO hybridization
with References Proposed Conclusion

Grey wolf
optimization

(GWO)
 [38] Improving the

exploration of PSO Convergence to more optimal solutions
with fewer iterations

Sine cosine
algorithm (SCA) [39] Escaping the local

optima
Successfully applied to real constrained

engineering problems and provides better
solutions than other methods

Whale optimization
algorithm (WOA) [40]

For the exploration
phase in an uncertain

environment
 Very good convergence

Spotted hyena
optimization (SHO) [41]

Improving the hunting
strategy of the spotted

hyena optimizer
 The algorithm performs better than other

metaheuristic algorithms.

Gravitational search
algorithm (GSA) [42] Improving the

exploration of PSO

Superior performance in terms of accuracy,
reliability, and efficiency compared to

PSO, GSA, and other recently developed
hybrid variants

1.2. HHO algorithm

The HHO algorithm is inspired by the participatory behavior and chasing of the prey by Harris hawks in
nature [9]. HHO is basically a gradient-free population-based optimization algorithm. The central idea of HHO
is based on the cooperative hunting behavior of Harris hawk bird, especially their chasing style of prey which
is called surprise pounce or also known as the ‘seven kill’ strategy. In this smart process, several hawks
collaborate to chase the prey from different directions to confuse it. Evidently, the prey’s escape pattern is
proportional to the hawks’ pursuit model. Birds collaborate in the attack. The leader of the group attacks the
target, follows it, and abruptly soars out of sight, and the next Harris Hawk joins the chase. These hawks can
demonstrate a variety of chasing patterns based on the dynamic nature of scenarios and the prey’s escape
patterns. This mathematically mimics the dynamic behaviors to develop an optimization algorithm. The HHO
algorithm has three phases. The first phase is the exploration ability, which is formulated as follows:
Exploration phase:

(3)

where X(t) is the current position, X(t+1) is the next position of the hawk, Xrabbit(t) is the prey’s position,
q, r1, r2, r3, r4 are random numbers between 0 and 1, Xrand(t) is the random position selected from among the
available positions, Xm(t) is the average of the existing positions, and LB and UB are the lower and upper
bounds of the data, respectively. Xm(t) is calculated using the equation below:

 (4)

where Xi(t) is the hawk’s position in iteration t and N is the total number of hawks. After certain stages,
the hawk approaches the target (prey). Then, convergence must increase. This is why the energy equations are
used:

 (5)

E0 is the baseline energy, T is the maximum value of iteration, t is the current stage, and E is energy. In
this phase, if |E0| ≥ 1 is the search phase and |E0| < 1, the exploitation phase will occur.
Exploitation Phase:

In the next stage, hawks surprise the prey and hunt it. Four cases may arise:

()
() () ()
() () ()()

1 2

3 4

 2 0.5
1

() 0.5
rand rand

rabbit m

X t r X t r X t q
X t

X t X t r LB r UB LB q

 − −+ =  − − + −

≥

<

() ()
1

1
N

m i
i

X t X t
N =

= 

02 1 tE E
T

  = −  
 

 (5)

E0 is the baseline energy, T is the maximum value of
iteration, t is the current stage, and E is energy. In this phase,
if is the search phase and , the exploitation phase will occur.

Exploitation Phase:
In the next stage, hawks surprise the prey and hunt it. Four

cases may arise:
- Soft besiege: When r ≥ 0.5 and |E| ≥ 0.5

4

- Soft besiege: When r ≥ 0.5 and |E| ≥ 0.5

(6)

 (7)

 (8)

- Hard besiege: When r ≥ 0.5 and |E| < 0.5

 (9)

- Soft besiege with rapid dives: When |E| ≥ 0.5 still but r < 0.5

 (10)

 (11)
Here, D is the dimension of the problem, and S is the random function with the size D x 1. LF is the Levy

flight function obtained from Eq. (12).

(12)

where u and v are random values between 0 and 1.  is a default constant set to 1.5.

(13)

- Hard besiege with rapid dives: When |E| < 0.5 and r < 0.5

(14)

Here, Z and Y are calculated based on Eqs. (15) and (16).

 (15)

 (16)
Traps in the local optima and weak exploration are also some of the weak points of the HHO algorithm,

which some researchers have tried to fix. Dhawale in his paper, improved the exploration and exploitation
phase of HHO using a chaotic variant of the present optimizer [43]. Table 2 briefly presents some algorithms
hybridized using the HHO algorithm.

Table 2. HHO hybridizations.

HHO hybridization
with References Proposed Conclusion

Imperialist competitive
algorithm (ICA) [44] Improving the

exploration of HHO
Competitive performance compared to

HHO, ICA, and some other well-
established algorithms

Moth-flame

optimization (MFO) [45] Improving the
exploration of HHO The HHO-MFO algorithm outperforms its

competitors in a majority of case studies.

Simulate annealing
(SA) [46] Escaping the local

optima Superior results compared to other
algorithms

() () () ()1 rabbitX t X t E JX t X t+ =  − −

() () ()rabbitX t X t X t = −

()52 1J r= −

() () ()1 rabbitX t X t E X t+ = − 

() () () rabbit rabbitY X t E JX t X t= − −

()Z Y S LF D= + 

()
()

1

1 1
2

Γ 1 sin
20.01 ,

1Γ 2
2

uLF X
v







 

 
 −   
 

     +        =  =    +         

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

() () () rabbit rabbit mY X t E JX t X t= − −

()Z Y S LF D= + 

 (6)

4

- Soft besiege: When r ≥ 0.5 and |E| ≥ 0.5

(6)

 (7)

 (8)

- Hard besiege: When r ≥ 0.5 and |E| < 0.5

 (9)

- Soft besiege with rapid dives: When |E| ≥ 0.5 still but r < 0.5

 (10)

 (11)
Here, D is the dimension of the problem, and S is the random function with the size D x 1. LF is the Levy

flight function obtained from Eq. (12).

(12)

where u and v are random values between 0 and 1.  is a default constant set to 1.5.

(13)

- Hard besiege with rapid dives: When |E| < 0.5 and r < 0.5

(14)

Here, Z and Y are calculated based on Eqs. (15) and (16).

 (15)

 (16)
Traps in the local optima and weak exploration are also some of the weak points of the HHO algorithm,

which some researchers have tried to fix. Dhawale in his paper, improved the exploration and exploitation
phase of HHO using a chaotic variant of the present optimizer [43]. Table 2 briefly presents some algorithms
hybridized using the HHO algorithm.

Table 2. HHO hybridizations.

HHO hybridization
with References Proposed Conclusion

Imperialist competitive
algorithm (ICA) [44] Improving the

exploration of HHO
Competitive performance compared to

HHO, ICA, and some other well-
established algorithms

Moth-flame

optimization (MFO) [45] Improving the
exploration of HHO The HHO-MFO algorithm outperforms its

competitors in a majority of case studies.

Simulate annealing
(SA) [46] Escaping the local

optima Superior results compared to other
algorithms

() () () ()1 rabbitX t X t E JX t X t+ =  − −

() () ()rabbitX t X t X t = −

()52 1J r= −

() () ()1 rabbitX t X t E X t+ = − 

() () () rabbit rabbitY X t E JX t X t= − −

()Z Y S LF D= + 

()
()

1

1 1
2

Γ 1 sin
20.01 ,

1Γ 2
2

uLF X
v







 

 
 −   
 

     +        =  =    +         

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

() () () rabbit rabbit mY X t E JX t X t= − −

()Z Y S LF D= + 

 (7)

4

- Soft besiege: When r ≥ 0.5 and |E| ≥ 0.5

(6)

 (7)

 (8)

- Hard besiege: When r ≥ 0.5 and |E| < 0.5

 (9)

- Soft besiege with rapid dives: When |E| ≥ 0.5 still but r < 0.5

 (10)

 (11)
Here, D is the dimension of the problem, and S is the random function with the size D x 1. LF is the Levy

flight function obtained from Eq. (12).

(12)

where u and v are random values between 0 and 1.  is a default constant set to 1.5.

(13)

- Hard besiege with rapid dives: When |E| < 0.5 and r < 0.5

(14)

Here, Z and Y are calculated based on Eqs. (15) and (16).

 (15)

 (16)
Traps in the local optima and weak exploration are also some of the weak points of the HHO algorithm,

which some researchers have tried to fix. Dhawale in his paper, improved the exploration and exploitation
phase of HHO using a chaotic variant of the present optimizer [43]. Table 2 briefly presents some algorithms
hybridized using the HHO algorithm.

Table 2. HHO hybridizations.

HHO hybridization
with References Proposed Conclusion

Imperialist competitive
algorithm (ICA) [44] Improving the

exploration of HHO
Competitive performance compared to

HHO, ICA, and some other well-
established algorithms

Moth-flame

optimization (MFO) [45] Improving the
exploration of HHO The HHO-MFO algorithm outperforms its

competitors in a majority of case studies.

Simulate annealing
(SA) [46] Escaping the local

optima Superior results compared to other
algorithms

() () () ()1 rabbitX t X t E JX t X t+ =  − −

() () ()rabbitX t X t X t = −

()52 1J r= −

() () ()1 rabbitX t X t E X t+ = − 

() () () rabbit rabbitY X t E JX t X t= − −

()Z Y S LF D= + 

()
()

1

1 1
2

Γ 1 sin
20.01 ,

1Γ 2
2

uLF X
v







 

 
 −   
 

     +        =  =    +         

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

() () () rabbit rabbit mY X t E JX t X t= − −

()Z Y S LF D= + 

 (8)

- Hard besiege: When r ≥ 0.5 and |E| < 0.5

4

- Soft besiege: When r ≥ 0.5 and |E| ≥ 0.5

(6)

 (7)

 (8)

- Hard besiege: When r ≥ 0.5 and |E| < 0.5

 (9)

- Soft besiege with rapid dives: When |E| ≥ 0.5 still but r < 0.5

 (10)

 (11)
Here, D is the dimension of the problem, and S is the random function with the size D x 1. LF is the Levy

flight function obtained from Eq. (12).

(12)

where u and v are random values between 0 and 1.  is a default constant set to 1.5.

(13)

- Hard besiege with rapid dives: When |E| < 0.5 and r < 0.5

(14)

Here, Z and Y are calculated based on Eqs. (15) and (16).

 (15)

 (16)
Traps in the local optima and weak exploration are also some of the weak points of the HHO algorithm,

which some researchers have tried to fix. Dhawale in his paper, improved the exploration and exploitation
phase of HHO using a chaotic variant of the present optimizer [43]. Table 2 briefly presents some algorithms
hybridized using the HHO algorithm.

Table 2. HHO hybridizations.

HHO hybridization
with References Proposed Conclusion

Imperialist competitive
algorithm (ICA) [44] Improving the

exploration of HHO
Competitive performance compared to

HHO, ICA, and some other well-
established algorithms

Moth-flame

optimization (MFO) [45] Improving the
exploration of HHO The HHO-MFO algorithm outperforms its

competitors in a majority of case studies.

Simulate annealing
(SA) [46] Escaping the local

optima Superior results compared to other
algorithms

() () () ()1 rabbitX t X t E JX t X t+ =  − −

() () ()rabbitX t X t X t = −

()52 1J r= −

() () ()1 rabbitX t X t E X t+ = − 

() () () rabbit rabbitY X t E JX t X t= − −

()Z Y S LF D= + 

()
()

1

1 1
2

Γ 1 sin
20.01 ,

1Γ 2
2

uLF X
v







 

 
 −   
 

     +        =  =    +         

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

() () () rabbit rabbit mY X t E JX t X t= − −

()Z Y S LF D= + 

 (9)

- Soft besiege with rapid dives: When |E| ≥ 0.5 still but r
< 0.5

4

- Soft besiege: When r ≥ 0.5 and |E| ≥ 0.5

(6)

 (7)

 (8)

- Hard besiege: When r ≥ 0.5 and |E| < 0.5

 (9)

- Soft besiege with rapid dives: When |E| ≥ 0.5 still but r < 0.5

 (10)

 (11)
Here, D is the dimension of the problem, and S is the random function with the size D x 1. LF is the Levy

flight function obtained from Eq. (12).

(12)

where u and v are random values between 0 and 1.  is a default constant set to 1.5.

(13)

- Hard besiege with rapid dives: When |E| < 0.5 and r < 0.5

(14)

Here, Z and Y are calculated based on Eqs. (15) and (16).

 (15)

 (16)
Traps in the local optima and weak exploration are also some of the weak points of the HHO algorithm,

which some researchers have tried to fix. Dhawale in his paper, improved the exploration and exploitation
phase of HHO using a chaotic variant of the present optimizer [43]. Table 2 briefly presents some algorithms
hybridized using the HHO algorithm.

Table 2. HHO hybridizations.

HHO hybridization
with References Proposed Conclusion

Imperialist competitive
algorithm (ICA) [44] Improving the

exploration of HHO
Competitive performance compared to

HHO, ICA, and some other well-
established algorithms

Moth-flame

optimization (MFO) [45] Improving the
exploration of HHO The HHO-MFO algorithm outperforms its

competitors in a majority of case studies.

Simulate annealing
(SA) [46] Escaping the local

optima Superior results compared to other
algorithms

() () () ()1 rabbitX t X t E JX t X t+ =  − −

() () ()rabbitX t X t X t = −

()52 1J r= −

() () ()1 rabbitX t X t E X t+ = − 

() () () rabbit rabbitY X t E JX t X t= − −

()Z Y S LF D= + 

()
()

1

1 1
2

Γ 1 sin
20.01 ,

1Γ 2
2

uLF X
v







 

 
 −   
 

     +        =  =    +         

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

() () () rabbit rabbit mY X t E JX t X t= − −

()Z Y S LF D= + 

 (10)

4

- Soft besiege: When r ≥ 0.5 and |E| ≥ 0.5

(6)

 (7)

 (8)

- Hard besiege: When r ≥ 0.5 and |E| < 0.5

 (9)

- Soft besiege with rapid dives: When |E| ≥ 0.5 still but r < 0.5

 (10)

 (11)
Here, D is the dimension of the problem, and S is the random function with the size D x 1. LF is the Levy

flight function obtained from Eq. (12).

(12)

where u and v are random values between 0 and 1.  is a default constant set to 1.5.

(13)

- Hard besiege with rapid dives: When |E| < 0.5 and r < 0.5

(14)

Here, Z and Y are calculated based on Eqs. (15) and (16).

 (15)

 (16)
Traps in the local optima and weak exploration are also some of the weak points of the HHO algorithm,

which some researchers have tried to fix. Dhawale in his paper, improved the exploration and exploitation
phase of HHO using a chaotic variant of the present optimizer [43]. Table 2 briefly presents some algorithms
hybridized using the HHO algorithm.

Table 2. HHO hybridizations.

HHO hybridization
with References Proposed Conclusion

Imperialist competitive
algorithm (ICA) [44] Improving the

exploration of HHO
Competitive performance compared to

HHO, ICA, and some other well-
established algorithms

Moth-flame

optimization (MFO) [45] Improving the
exploration of HHO The HHO-MFO algorithm outperforms its

competitors in a majority of case studies.

Simulate annealing
(SA) [46] Escaping the local

optima Superior results compared to other
algorithms

() () () ()1 rabbitX t X t E JX t X t+ =  − −

() () ()rabbitX t X t X t = −

()52 1J r= −

() () ()1 rabbitX t X t E X t+ = − 

() () () rabbit rabbitY X t E JX t X t= − −

()Z Y S LF D= + 

()
()

1

1 1
2

Γ 1 sin
20.01 ,

1Γ 2
2

uLF X
v







 

 
 −   
 

     +        =  =    +         

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

() () () rabbit rabbit mY X t E JX t X t= − −

()Z Y S LF D= + 

 (11)

Here, D is the dimension of the problem, and S is the
random function with the size D x 1. LF is the Levy flight
function obtained from Eq. (12).

4

- Soft besiege: When r ≥ 0.5 and |E| ≥ 0.5

(6)

 (7)

 (8)

- Hard besiege: When r ≥ 0.5 and |E| < 0.5

 (9)

- Soft besiege with rapid dives: When |E| ≥ 0.5 still but r < 0.5

 (10)

 (11)
Here, D is the dimension of the problem, and S is the random function with the size D x 1. LF is the Levy

flight function obtained from Eq. (12).

(12)

where u and v are random values between 0 and 1.  is a default constant set to 1.5.

(13)

- Hard besiege with rapid dives: When |E| < 0.5 and r < 0.5

(14)

Here, Z and Y are calculated based on Eqs. (15) and (16).

 (15)

 (16)
Traps in the local optima and weak exploration are also some of the weak points of the HHO algorithm,

which some researchers have tried to fix. Dhawale in his paper, improved the exploration and exploitation
phase of HHO using a chaotic variant of the present optimizer [43]. Table 2 briefly presents some algorithms
hybridized using the HHO algorithm.

Table 2. HHO hybridizations.

HHO hybridization
with References Proposed Conclusion

Imperialist competitive
algorithm (ICA) [44] Improving the

exploration of HHO
Competitive performance compared to

HHO, ICA, and some other well-
established algorithms

Moth-flame

optimization (MFO) [45] Improving the
exploration of HHO The HHO-MFO algorithm outperforms its

competitors in a majority of case studies.

Simulate annealing
(SA) [46] Escaping the local

optima Superior results compared to other
algorithms

() () () ()1 rabbitX t X t E JX t X t+ =  − −

() () ()rabbitX t X t X t = −

()52 1J r= −

() () ()1 rabbitX t X t E X t+ = − 

() () () rabbit rabbitY X t E JX t X t= − −

()Z Y S LF D= + 

()
()

1

1 1
2

Γ 1 sin
20.01 ,

1Γ 2
2

uLF X
v







 

 
 −   
 

     +        =  =    +         

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

() () () rabbit rabbit mY X t E JX t X t= − −

()Z Y S LF D= + 

 (12)

where u and v are random values between 0 and 1. β is a
default constant set to 1.5.

4

- Soft besiege: When r ≥ 0.5 and |E| ≥ 0.5

(6)

 (7)

 (8)

- Hard besiege: When r ≥ 0.5 and |E| < 0.5

 (9)

- Soft besiege with rapid dives: When |E| ≥ 0.5 still but r < 0.5

 (10)

 (11)
Here, D is the dimension of the problem, and S is the random function with the size D x 1. LF is the Levy

flight function obtained from Eq. (12).

(12)

where u and v are random values between 0 and 1.  is a default constant set to 1.5.

(13)

- Hard besiege with rapid dives: When |E| < 0.5 and r < 0.5

(14)

Here, Z and Y are calculated based on Eqs. (15) and (16).

 (15)

 (16)
Traps in the local optima and weak exploration are also some of the weak points of the HHO algorithm,

which some researchers have tried to fix. Dhawale in his paper, improved the exploration and exploitation
phase of HHO using a chaotic variant of the present optimizer [43]. Table 2 briefly presents some algorithms
hybridized using the HHO algorithm.

Table 2. HHO hybridizations.

HHO hybridization
with References Proposed Conclusion

Imperialist competitive
algorithm (ICA) [44] Improving the

exploration of HHO
Competitive performance compared to

HHO, ICA, and some other well-
established algorithms

Moth-flame

optimization (MFO) [45] Improving the
exploration of HHO The HHO-MFO algorithm outperforms its

competitors in a majority of case studies.

Simulate annealing
(SA) [46] Escaping the local

optima Superior results compared to other
algorithms

() () () ()1 rabbitX t X t E JX t X t+ =  − −

() () ()rabbitX t X t X t = −

()52 1J r= −

() () ()1 rabbitX t X t E X t+ = − 

() () () rabbit rabbitY X t E JX t X t= − −

()Z Y S LF D= + 

()
()

1

1 1
2

Γ 1 sin
20.01 ,

1Γ 2
2

uLF X
v







 

 
 −   
 

     +        =  =    +         

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

() () () rabbit rabbit mY X t E JX t X t= − −

()Z Y S LF D= + 

 (13)

- Hard besiege with rapid dives: When |E| < 0.5 and r < 0.5

4

- Soft besiege: When r ≥ 0.5 and |E| ≥ 0.5

(6)

 (7)

 (8)

- Hard besiege: When r ≥ 0.5 and |E| < 0.5

 (9)

- Soft besiege with rapid dives: When |E| ≥ 0.5 still but r < 0.5

 (10)

 (11)
Here, D is the dimension of the problem, and S is the random function with the size D x 1. LF is the Levy

flight function obtained from Eq. (12).

(12)

where u and v are random values between 0 and 1.  is a default constant set to 1.5.

(13)

- Hard besiege with rapid dives: When |E| < 0.5 and r < 0.5

(14)

Here, Z and Y are calculated based on Eqs. (15) and (16).

 (15)

 (16)
Traps in the local optima and weak exploration are also some of the weak points of the HHO algorithm,

which some researchers have tried to fix. Dhawale in his paper, improved the exploration and exploitation
phase of HHO using a chaotic variant of the present optimizer [43]. Table 2 briefly presents some algorithms
hybridized using the HHO algorithm.

Table 2. HHO hybridizations.

HHO hybridization
with References Proposed Conclusion

Imperialist competitive
algorithm (ICA) [44] Improving the

exploration of HHO
Competitive performance compared to

HHO, ICA, and some other well-
established algorithms

Moth-flame

optimization (MFO) [45] Improving the
exploration of HHO The HHO-MFO algorithm outperforms its

competitors in a majority of case studies.

Simulate annealing
(SA) [46] Escaping the local

optima Superior results compared to other
algorithms

() () () ()1 rabbitX t X t E JX t X t+ =  − −

() () ()rabbitX t X t X t = −

()52 1J r= −

() () ()1 rabbitX t X t E X t+ = − 

() () () rabbit rabbitY X t E JX t X t= − −

()Z Y S LF D= + 

()
()

1

1 1
2

Γ 1 sin
20.01 ,

1Γ 2
2

uLF X
v







 

 
 −   
 

     +        =  =    +         

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

() () () rabbit rabbit mY X t E JX t X t= − −

()Z Y S LF D= + 

 (14)

Here, Z and Y are calculated based on Eqs. (15) and (16).

4

- Soft besiege: When r ≥ 0.5 and |E| ≥ 0.5

(6)

 (7)

 (8)

- Hard besiege: When r ≥ 0.5 and |E| < 0.5

 (9)

- Soft besiege with rapid dives: When |E| ≥ 0.5 still but r < 0.5

 (10)

 (11)
Here, D is the dimension of the problem, and S is the random function with the size D x 1. LF is the Levy

flight function obtained from Eq. (12).

(12)

where u and v are random values between 0 and 1.  is a default constant set to 1.5.

(13)

- Hard besiege with rapid dives: When |E| < 0.5 and r < 0.5

(14)

Here, Z and Y are calculated based on Eqs. (15) and (16).

 (15)

 (16)
Traps in the local optima and weak exploration are also some of the weak points of the HHO algorithm,

which some researchers have tried to fix. Dhawale in his paper, improved the exploration and exploitation
phase of HHO using a chaotic variant of the present optimizer [43]. Table 2 briefly presents some algorithms
hybridized using the HHO algorithm.

Table 2. HHO hybridizations.

HHO hybridization
with References Proposed Conclusion

Imperialist competitive
algorithm (ICA) [44] Improving the

exploration of HHO
Competitive performance compared to

HHO, ICA, and some other well-
established algorithms

Moth-flame

optimization (MFO) [45] Improving the
exploration of HHO The HHO-MFO algorithm outperforms its

competitors in a majority of case studies.

Simulate annealing
(SA) [46] Escaping the local

optima Superior results compared to other
algorithms

() () () ()1 rabbitX t X t E JX t X t+ =  − −

() () ()rabbitX t X t X t = −

()52 1J r= −

() () ()1 rabbitX t X t E X t+ = − 

() () () rabbit rabbitY X t E JX t X t= − −

()Z Y S LF D= + 

()
()

1

1 1
2

Γ 1 sin
20.01 ,

1Γ 2
2

uLF X
v







 

 
 −   
 

     +        =  =    +         

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

() () () rabbit rabbit mY X t E JX t X t= − −

()Z Y S LF D= + 

 (15)

4

- Soft besiege: When r ≥ 0.5 and |E| ≥ 0.5

(6)

 (7)

 (8)

- Hard besiege: When r ≥ 0.5 and |E| < 0.5

 (9)

- Soft besiege with rapid dives: When |E| ≥ 0.5 still but r < 0.5

 (10)

 (11)
Here, D is the dimension of the problem, and S is the random function with the size D x 1. LF is the Levy

flight function obtained from Eq. (12).

(12)

where u and v are random values between 0 and 1.  is a default constant set to 1.5.

(13)

- Hard besiege with rapid dives: When |E| < 0.5 and r < 0.5

(14)

Here, Z and Y are calculated based on Eqs. (15) and (16).

 (15)

 (16)
Traps in the local optima and weak exploration are also some of the weak points of the HHO algorithm,

which some researchers have tried to fix. Dhawale in his paper, improved the exploration and exploitation
phase of HHO using a chaotic variant of the present optimizer [43]. Table 2 briefly presents some algorithms
hybridized using the HHO algorithm.

Table 2. HHO hybridizations.

HHO hybridization
with References Proposed Conclusion

Imperialist competitive
algorithm (ICA) [44] Improving the

exploration of HHO
Competitive performance compared to

HHO, ICA, and some other well-
established algorithms

Moth-flame

optimization (MFO) [45] Improving the
exploration of HHO The HHO-MFO algorithm outperforms its

competitors in a majority of case studies.

Simulate annealing
(SA) [46] Escaping the local

optima Superior results compared to other
algorithms

() () () ()1 rabbitX t X t E JX t X t+ =  − −

() () ()rabbitX t X t X t = −

()52 1J r= −

() () ()1 rabbitX t X t E X t+ = − 

() () () rabbit rabbitY X t E JX t X t= − −

()Z Y S LF D= + 

()
()

1

1 1
2

Γ 1 sin
20.01 ,

1Γ 2
2

uLF X
v







 

 
 −   
 

     +        =  =    +         

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

()
() ()()
() ()()

1

Y if F Y F X t
X t

Z if F Z F X t

 + =  

() () () rabbit rabbit mY X t E JX t X t= − −

()Z Y S LF D= +  (16)

Traps in the local optima and weak exploration are also
some of the weak points of the HHO algorithm, which some
researchers have tried to fix. Dhawale in his paper, improved
the exploration and exploitation phase of HHO using a chaotic
variant of the present optimizer [43]. Table 2 briefly presents
some algorithms hybridized using the HHO algorithm.

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

298

Herein, we propose a novel hybrid method based on the
two algorithms of PSO and HHO to optimize truss structures.
This new method is called the PSOHHO hybrid algorithm,
and all its stages will be presented in MATLAB. One of the
main goals of this article is to provide a method to use the
capabilities of the existing algorithms.

The remainder of this study is organized as follows:
Section 2 shows the proposed optimization methods. The
optimization examples and results are discussed in Section 3,
where extensive comparisons with methods in the literature
are presented. Finally, Section 4 summarizes the main
findings of the study.

2- Proposed Optimization Methods
There are two methods for merging algorithms:
1) In the first method, two algorithms are used

simultaneously. In the beginning, the population of each
algorithm is half the initial population (e.g., if the hybrid
algorithm has a total initial population of 100 members, the
population of each algorithm is 50). When algorithms are run,
the objective function values of the algorithms are compared
at each stage, and the one that has a higher fitness value
shares its population with the other. However, the population
of each algorithm remains constant from the beginning to the
end. The proposed algorithm leads to faster convergence and
better responses.

2) In the second method, similar to the first one, the
two algorithms are run simultaneously with half the initial
population. However, by comparing the function values in the
following steps, the algorithm that has a better function value
will have more population in proportion. For instance, if the
initial population includes 100 members, each algorithm has
50 members at the beginning; nevertheless, by comparing
the fitness values in the next steps, the population of one
algorithm may reach 60 members and the other algorithm
will have 40 members.

In this paper, we employed the first method using a
proposed relation. However, Eqs. (17) and (18) can also
be used for other optimization methods. The proposed
combination makes it possible to use existing algorithms
without any alterations. Each algorithm has certain advantages
and disadvantages, and it cannot be said with certainty which
algorithm is the best. As such, when we use a combination
of algorithms, the disadvantages of one method are covered
by the other one’s advantages. This combination is simple
because it does not alter the original algorithms. The basic
algorithms have been selected as an example, and this method
can be used to combine other algorithms, which is a critical
advantage of this method. Here, we used PSO and HHO for
the presentation of our method. The reason for using PSO
and HHO algorithms is because of the investigated impact
of different computational complexity in the performance of
each of these algorithms, which improves the performance
of the presented method. PSO has a convincing exploitation
ability but poor exploration ability (required for a good
starting position), on the other hand, the HHO algorithm has
a high exploration ability hence it gives a good starting point.
Therefore, these two unique features of both algorithms are
fused to obtain a hybrid PSO-HHO

If best fitness PSO < best fitness HHO:

5

Grey wolf optimizer's
(GWO) [47]

Balancing
exploration and

exploitation

Better accuracy, the smaller size of
selected features, in much lower

computational time

Herein, we propose a novel hybrid method based on the two algorithms of PSO and HHO to optimize
truss structures. This new method is called the PSOHHO hybrid algorithm, and all its stages will be presented
in MATLAB. One of the main goals of this article is to provide a method to use the capabilities of the existing
algorithms.

The remainder of this study is organized as follows: Section 2 shows the proposed optimization methods.
The optimization examples and results are discussed in Section 3, where extensive comparisons with methods
in the literature are presented. Finally, Section 4 summarizes the main findings of the study.

2. Proposed Optimization Methods

There are two methods for merging algorithms:
1) In the first method, two algorithms are used simultaneously. In the beginning, the population of each

algorithm is half the initial population (e.g., if the hybrid algorithm has a total initial population of 100
members, the population of each algorithm is 50). When algorithms are run, the objective function values of
the algorithms are compared at each stage, and the one that has a higher fitness value shares its population with
the other. However, the population of each algorithm remains constant from the beginning to the end. The
proposed algorithm leads to faster convergence and better responses.

2) In the second method, similar to the first one, the two algorithms are run simultaneously with half the
initial population. However, by comparing the function values in the following steps, the algorithm that has a
better function value will have more population in proportion. For instance, if the initial population includes
100 members, each algorithm has 50 members at the beginning; nevertheless, by comparing the fitness values
in the next steps, the population of one algorithm may reach 60 members and the other algorithm will have 40
members.

In this paper, we employed the first method using a proposed relation. However, Eqs. (17) and (18) can
also be used for other optimization methods. The proposed combination makes it possible to use existing
algorithms without any alterations. Each algorithm has certain advantages and disadvantages, and it cannot be
said with certainty which algorithm is the best. As such, when we use a combination of algorithms, the
disadvantages of one method are covered by the other one's advantages. This combination is simple because it
does not alter the original algorithms. The basic algorithms have been selected as an example, and this method
can be used to combine other algorithms, which is a critical advantage of this method. Here, we used PSO and
HHO for the presentation of our method. The reason for using PSO and HHO algorithms is because of the
investigated impact of different computational complexity in the performance of each of these algorithms,
which improves the performance of the presented method. PSO has a convincing exploitation ability but poor
exploration ability (required for a good starting position), on the other hand, the HHO algorithm has a high
exploration ability hence it gives a good starting point. Therefore, these two unique features of both algorithms
are fused to obtain a hybrid PSO-HHO

If best fitness PSO < best fitness HHO:
 (17)

If best fitness PSO ≥ best fitness HHO:
 (18)

where Xnew is the new location, Xm is the mean ith best location of PSO and HHO, rand1 and rand2 are
random numbers between 0 and 1, and F1 and F2 are the constants and equal to 1.5; XbPSO is the ith best location
of PSO, and XbHHO is the ith best location of HHO.

In Eqs. (17) and (18), locations move toward a better point due to using the mean and best locations. This
type of movement leads to more space searches, and the mean location moves toward more optimization. This
formula aims to find the local optimum. However, it does not lose Xm from its memory.

In the end, a value is added or subtracted. This point avoids getting stuck in the local optimum, and it is
obtained by the following equation:

 j=1,… n (19)

where j Lb and jUb are the lower and upper bounds of the data, respectively, and rand (-1,1) indicates
a generated random number between -1 and 1. Table 3 presents the algorithm pseudo-code of the PSOHHO
algorithm. Fig. 1 shows the PSOHHO flowchart.

Table 3. Algorithm pseudo-code of the PSOHHO algorithm.

() ()m 1 1 bPSO mi X rand X XnewX F= + −

() ()m 2 2 bHHO mi X rand X XnewX F= + −

() ()j j0.01 1,1 Ub Lbd rand=  −  −

 (17)

If best fitness PSO ≥ best fitness HHO:

5

Grey wolf optimizer's
(GWO) [47]

Balancing
exploration and

exploitation

Better accuracy, the smaller size of
selected features, in much lower

computational time

Herein, we propose a novel hybrid method based on the two algorithms of PSO and HHO to optimize
truss structures. This new method is called the PSOHHO hybrid algorithm, and all its stages will be presented
in MATLAB. One of the main goals of this article is to provide a method to use the capabilities of the existing
algorithms.

The remainder of this study is organized as follows: Section 2 shows the proposed optimization methods.
The optimization examples and results are discussed in Section 3, where extensive comparisons with methods
in the literature are presented. Finally, Section 4 summarizes the main findings of the study.

2. Proposed Optimization Methods

There are two methods for merging algorithms:
1) In the first method, two algorithms are used simultaneously. In the beginning, the population of each

algorithm is half the initial population (e.g., if the hybrid algorithm has a total initial population of 100
members, the population of each algorithm is 50). When algorithms are run, the objective function values of
the algorithms are compared at each stage, and the one that has a higher fitness value shares its population with
the other. However, the population of each algorithm remains constant from the beginning to the end. The
proposed algorithm leads to faster convergence and better responses.

2) In the second method, similar to the first one, the two algorithms are run simultaneously with half the
initial population. However, by comparing the function values in the following steps, the algorithm that has a
better function value will have more population in proportion. For instance, if the initial population includes
100 members, each algorithm has 50 members at the beginning; nevertheless, by comparing the fitness values
in the next steps, the population of one algorithm may reach 60 members and the other algorithm will have 40
members.

In this paper, we employed the first method using a proposed relation. However, Eqs. (17) and (18) can
also be used for other optimization methods. The proposed combination makes it possible to use existing
algorithms without any alterations. Each algorithm has certain advantages and disadvantages, and it cannot be
said with certainty which algorithm is the best. As such, when we use a combination of algorithms, the
disadvantages of one method are covered by the other one's advantages. This combination is simple because it
does not alter the original algorithms. The basic algorithms have been selected as an example, and this method
can be used to combine other algorithms, which is a critical advantage of this method. Here, we used PSO and
HHO for the presentation of our method. The reason for using PSO and HHO algorithms is because of the
investigated impact of different computational complexity in the performance of each of these algorithms,
which improves the performance of the presented method. PSO has a convincing exploitation ability but poor
exploration ability (required for a good starting position), on the other hand, the HHO algorithm has a high
exploration ability hence it gives a good starting point. Therefore, these two unique features of both algorithms
are fused to obtain a hybrid PSO-HHO

If best fitness PSO < best fitness HHO:
 (17)

If best fitness PSO ≥ best fitness HHO:
 (18)

where Xnew is the new location, Xm is the mean ith best location of PSO and HHO, rand1 and rand2 are
random numbers between 0 and 1, and F1 and F2 are the constants and equal to 1.5; XbPSO is the ith best location
of PSO, and XbHHO is the ith best location of HHO.

In Eqs. (17) and (18), locations move toward a better point due to using the mean and best locations. This
type of movement leads to more space searches, and the mean location moves toward more optimization. This
formula aims to find the local optimum. However, it does not lose Xm from its memory.

In the end, a value is added or subtracted. This point avoids getting stuck in the local optimum, and it is
obtained by the following equation:

 j=1,… n (19)

where j Lb and jUb are the lower and upper bounds of the data, respectively, and rand (-1,1) indicates
a generated random number between -1 and 1. Table 3 presents the algorithm pseudo-code of the PSOHHO
algorithm. Fig. 1 shows the PSOHHO flowchart.

Table 3. Algorithm pseudo-code of the PSOHHO algorithm.

() ()m 1 1 bPSO mi X rand X XnewX F= + −

() ()m 2 2 bHHO mi X rand X XnewX F= + −

() ()j j0.01 1,1 Ub Lbd rand=  −  −

 (18)

where Xnew is the new location, Xm is the mean ith best
location of PSO and HHO, rand1 and rand2 are random
numbers between 0 and 1, and F1 and F2 are the constants and
equal to 1.5; XbPSO is the ith best location of PSO, and XbHHO is
the ith best location of HHO.

Table 2. HHO hybridizations.
Table 2. HHO hybridizations.

HHO hybridization
with References Proposed Conclusion

Imperialist competitive
algorithm (ICA) [44] Improving the

exploration of HHO
Competitive performance compared to HHO,

ICA, and some other well-established
algorithms

Moth-flame

optimization (MFO) [45] Improving the
exploration of HHO The HHO-MFO algorithm outperforms its

competitors in a majority of case studies.

Simulate annealing
(SA) [46] Escaping the local

optima Superior results compared to other
algorithms

Grey wolf optimizer's

(GWO) [47] Balancing exploration
and exploitation Better accuracy, the smaller size of selected

features, in much lower computational time

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

299

In Eqs. (17) and (18), locations move toward a better
point due to using the mean and best locations. This type
of movement leads to more space searches, and the mean
location moves toward more optimization. This formula aims
to find the local optimum. However, it does not lose Xm from
its memory.

In the end, a value is added or subtracted. This point
avoids getting stuck in the local optimum, and it is obtained
by the following equation:

5

Grey wolf optimizer's
(GWO) [47]

Balancing
exploration and

exploitation

Better accuracy, the smaller size of
selected features, in much lower

computational time

Herein, we propose a novel hybrid method based on the two algorithms of PSO and HHO to optimize
truss structures. This new method is called the PSOHHO hybrid algorithm, and all its stages will be presented
in MATLAB. One of the main goals of this article is to provide a method to use the capabilities of the existing
algorithms.

The remainder of this study is organized as follows: Section 2 shows the proposed optimization methods.
The optimization examples and results are discussed in Section 3, where extensive comparisons with methods
in the literature are presented. Finally, Section 4 summarizes the main findings of the study.

2. Proposed Optimization Methods

There are two methods for merging algorithms:
1) In the first method, two algorithms are used simultaneously. In the beginning, the population of each

algorithm is half the initial population (e.g., if the hybrid algorithm has a total initial population of 100
members, the population of each algorithm is 50). When algorithms are run, the objective function values of
the algorithms are compared at each stage, and the one that has a higher fitness value shares its population with
the other. However, the population of each algorithm remains constant from the beginning to the end. The
proposed algorithm leads to faster convergence and better responses.

2) In the second method, similar to the first one, the two algorithms are run simultaneously with half the
initial population. However, by comparing the function values in the following steps, the algorithm that has a
better function value will have more population in proportion. For instance, if the initial population includes
100 members, each algorithm has 50 members at the beginning; nevertheless, by comparing the fitness values
in the next steps, the population of one algorithm may reach 60 members and the other algorithm will have 40
members.

In this paper, we employed the first method using a proposed relation. However, Eqs. (17) and (18) can
also be used for other optimization methods. The proposed combination makes it possible to use existing
algorithms without any alterations. Each algorithm has certain advantages and disadvantages, and it cannot be
said with certainty which algorithm is the best. As such, when we use a combination of algorithms, the
disadvantages of one method are covered by the other one's advantages. This combination is simple because it
does not alter the original algorithms. The basic algorithms have been selected as an example, and this method
can be used to combine other algorithms, which is a critical advantage of this method. Here, we used PSO and
HHO for the presentation of our method. The reason for using PSO and HHO algorithms is because of the
investigated impact of different computational complexity in the performance of each of these algorithms,
which improves the performance of the presented method. PSO has a convincing exploitation ability but poor
exploration ability (required for a good starting position), on the other hand, the HHO algorithm has a high
exploration ability hence it gives a good starting point. Therefore, these two unique features of both algorithms
are fused to obtain a hybrid PSO-HHO

If best fitness PSO < best fitness HHO:
 (17)

If best fitness PSO ≥ best fitness HHO:
 (18)

where Xnew is the new location, Xm is the mean ith best location of PSO and HHO, rand1 and rand2 are
random numbers between 0 and 1, and F1 and F2 are the constants and equal to 1.5; XbPSO is the ith best location
of PSO, and XbHHO is the ith best location of HHO.

In Eqs. (17) and (18), locations move toward a better point due to using the mean and best locations. This
type of movement leads to more space searches, and the mean location moves toward more optimization. This
formula aims to find the local optimum. However, it does not lose Xm from its memory.

In the end, a value is added or subtracted. This point avoids getting stuck in the local optimum, and it is
obtained by the following equation:

 j=1,… n (19)

where j Lb and jUb are the lower and upper bounds of the data, respectively, and rand (-1,1) indicates
a generated random number between -1 and 1. Table 3 presents the algorithm pseudo-code of the PSOHHO
algorithm. Fig. 1 shows the PSOHHO flowchart.

Table 3. Algorithm pseudo-code of the PSOHHO algorithm.

() ()m 1 1 bPSO mi X rand X XnewX F= + −

() ()m 2 2 bHHO mi X rand X XnewX F= + −

() ()j j0.01 1,1 Ub Lbd rand=  −  − (19)

where j Lb and jUb are the lower and upper bounds
of the data, respectively, and rand (-1,1) indicates a generated
random number between -1 and 1. Table 3 presents the
algorithm pseudo-code of the PSOHHO algorithm. Fig. 1
shows the PSOHHO flowchart.

3- Numerical Examples
In the present study, the PSHHO hybridization method is

adopted to optimize truss structures. To assess the method’s
efficiency, five truss structures, including 10-bar 2D, 25-bar

3D, 72-bar 3D, 200-bar 2D, and 942-bar 3D trusses, were
examined. All these examples were from known cases that
have recently been examined by numerous researchers. In the
truss structure, the objective function and the constraints are
obtained from Eq. (20).

Minimize weight:

7

Fig. 1. The PSOHHO flowchart.

3. Numerical Examples

In the present study, the PSHHO hybridization method is adopted to optimize truss structures. To assess
the method's efficiency, five truss structures, including 10-bar 2D, 25-bar 3D, 72-bar 3D, 200-bar 2D, and 942-
bar 3D trusses, were examined. All these examples were from known cases that have recently been examined
by numerous researchers. In the truss structure, the objective function and the constraints are obtained from
Eq. (20).

Minimize weight:

(20)

where j , jA , and jL indicate the specific weight, cross-section area, and length, respectively.
Moreover, n denotes the number of truss cross-sections. The cross-sections in these problems are assumed to
be variable and chosen between Amin and Amax. j and Δk denote stress and displacement, respectively.

Since most metaheuristic methods were originally developed to solve unconstrained optimization tasks, it
is first necessary to convert the present design problem into an unconstrained one. In this study, a normalized
constraint handling methodology is adopted where stress/ displacement values for every structural member

()
1

n

j j j
j

W A A L
=

=
j max 

k max  

min j maxA A A 

 (20)

where jγ , jA , and jL indicate the specific weight,
cross-section area, and length, respectively. Moreover,
n denotes the number of truss cross-sections. The cross-
sections in these problems are assumed to be variable and
chosen between Amin and Amax. jσ and Δk denote stress and
displacement, respectively.

Since most metaheuristic methods were originally
developed to solve unconstrained optimization tasks, it is

Table 3. Algorithm pseudo-code of the PSOHHO algorithm.

Table 3. Algorithm pseudo-code of the PSOHHO algorithm.

Inputs: Population size (N) and maximum number of iterations (T)
Outputs: The location of the population and its fitness value

Create the random population X (i = 1, 2, . . . ,N) for every algorithm
While (the stopping condition is not met) do

Run PSO
Update the placement and velocity of the present agent by Eqs. (1) & (2)

Run HHO
Calculate the fitness values of the Hawks

Set Xrabbit as the placement of the rabbit (best location)
For (each hawk (Xi)) do

Update the first energy E0 and jump strength
Update the E using Eq. (5)

if (|E| ≥ 1) then
Update Eq. (3)

if (|E| < 1)
if (r ≥ 0.5 and |E| ≥ 0.5)

Update the placement vector using Eq. (6)
else if (r ≥ 0.5 and |E| < 0.5)

Update the location vector using Eq. (9)
else if (r < 0.5 and |E| ≥ 0.5

Update the location vector using Eq. (13)
else if (r < 0.5 and |E| < 0.5)

Update the placement vector using Eq. (14)
Return Xrabbit

If best fitness PSO < best fitness HHO
Update the placement vector using Eq. (17)

If best fitness PSO ≥ best fitness HHO
Update the placement vector using Eq. (18)

For n = 1: N mutation
d = 0.012*unifrnd (-1,1)*(UB(j)-LB(j))

Xn(i)+d
if 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖) obtains better fitness function values Eq. (19)

Replace Xi with Xnew
Update Xb

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

300

Fig. 1. The PSOHHO flowchart.

Fig. 1. The PSOHHO flowchart.

first necessary to convert the present design problem into
an unconstrained one. In this study, a normalized constraint
handling methodology is adopted where stress/ displacement
values for every structural member and node are compared
with the maximum allowable stress and displacement limits.
The modified structural constraints are hence written as:

8

and node are compared with the maximum allowable stress and displacement limits. The modified structural
constraints are hence written as:

 (21)

 (22)

where ()ig x is the normalized normal stress constraint for the ith member, σmax is the maximum

allowable normal stress limit for both tension and compression, ()ig x is the normalized displacement
constraint for the ith node, δmax is the maximum permissible nodal displacement value, nN is the number of
nodes in the truss, and nE is the number of elements in the truss.
Constraint values are governed by the following relation:

 (23)

 (24)
Stress and displacement constraints to be satisfied are handled by using a penalty function. The penalized

objective function φ(x) is obtained as the product between the truss weight W(A) and the penalty function C as
follows:

 (25)

 (26)

where the variables ε, E, and N in Eq. (26) are the penalty exponent, element, and node, respectively. The
results were compared with those of other studies. The number of independent runs was chosen as 30, and the
population size of 100 was selected. Finally, the best solution, the average of solutions, the standard deviation
(Std), and the number of function evaluations (NFE) required for convergence were obtained.

3.1. The 10-bar 2D truss

This case aims to minimize the 10-bar 2D truss depicted in Fig. 2 [48]. This example has 10 variables of
(A1, ..., A10).

Fig. 2. The 10-bar truss problem.

where W is the objective function, g is the constraint,  denotes the stress,  indicates the displacement,

L is the length of the beam, allow is the maximum allowable stress, 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 is the maximum allowable
displacement, and A is the cross-section. In this example, the elasticity coefficient is 107 psi and the specific
gravity is 0.1 lb/in3. The stress limit is 25 ksi and the maximum horizontal and vertical displacement of the
truss points is assumed to be 2 in. The cross-section limit for this case is 0.1 in2 and 35 in2. Two loadings are
assumed for the 10-bar truss. In the first case, P2 = 0 and P1 = 100 kips, while in the second case, P2 = 50 kips

() 0i max
i

max

g x  

−

= 

() 0i max
i

max

g x  

−

= 

() () 0 i i if g x thenc g xi  =

() 0 0i ielseif g x thenc =

() ()
1

() 1
n

j j j
j

x A L C  
=

= +

1 1

nE nN
i max i max

i jmax max

C  
= =

   −  −   = +         
 

 (21)

8

and node are compared with the maximum allowable stress and displacement limits. The modified structural
constraints are hence written as:

 (21)

 (22)

where ()ig x is the normalized normal stress constraint for the ith member, σmax is the maximum

allowable normal stress limit for both tension and compression, ()ig x is the normalized displacement
constraint for the ith node, δmax is the maximum permissible nodal displacement value, nN is the number of
nodes in the truss, and nE is the number of elements in the truss.
Constraint values are governed by the following relation:

 (23)

 (24)
Stress and displacement constraints to be satisfied are handled by using a penalty function. The penalized

objective function φ(x) is obtained as the product between the truss weight W(A) and the penalty function C as
follows:

 (25)

 (26)

where the variables ε, E, and N in Eq. (26) are the penalty exponent, element, and node, respectively. The
results were compared with those of other studies. The number of independent runs was chosen as 30, and the
population size of 100 was selected. Finally, the best solution, the average of solutions, the standard deviation
(Std), and the number of function evaluations (NFE) required for convergence were obtained.

3.1. The 10-bar 2D truss

This case aims to minimize the 10-bar 2D truss depicted in Fig. 2 [48]. This example has 10 variables of
(A1, ..., A10).

Fig. 2. The 10-bar truss problem.

where W is the objective function, g is the constraint,  denotes the stress,  indicates the displacement,

L is the length of the beam, allow is the maximum allowable stress, 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 is the maximum allowable
displacement, and A is the cross-section. In this example, the elasticity coefficient is 107 psi and the specific
gravity is 0.1 lb/in3. The stress limit is 25 ksi and the maximum horizontal and vertical displacement of the
truss points is assumed to be 2 in. The cross-section limit for this case is 0.1 in2 and 35 in2. Two loadings are
assumed for the 10-bar truss. In the first case, P2 = 0 and P1 = 100 kips, while in the second case, P2 = 50 kips

() 0i max
i

max

g x  

−

= 

() 0i max
i

max

g x  

−

= 

() () 0 i i if g x thenc g xi  =

() 0 0i ielseif g x thenc =

() ()
1

() 1
n

j j j
j

x A L C  
=

= +

1 1

nE nN
i max i max

i jmax max

C  
= =

   −  −   = +         
 

 (22)

where ()ig xσ is the normalized normal stress constraint
for the ith member, σmax is the maximum allowable normal
stress limit for both tension and compression, ()ig xδ is the
normalized displacement constraint for the ith node, δmax is
the maximum permissible nodal displacement value, nN is
the number of nodes in the truss, and nE is the number of
elements in the truss.

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

301

Constraint values are governed by the following relation:

8

and node are compared with the maximum allowable stress and displacement limits. The modified structural
constraints are hence written as:

 (21)

 (22)

where ()ig x is the normalized normal stress constraint for the ith member, σmax is the maximum

allowable normal stress limit for both tension and compression, ()ig x is the normalized displacement
constraint for the ith node, δmax is the maximum permissible nodal displacement value, nN is the number of
nodes in the truss, and nE is the number of elements in the truss.
Constraint values are governed by the following relation:

 (23)

 (24)
Stress and displacement constraints to be satisfied are handled by using a penalty function. The penalized

objective function φ(x) is obtained as the product between the truss weight W(A) and the penalty function C as
follows:

 (25)

 (26)

where the variables ε, E, and N in Eq. (26) are the penalty exponent, element, and node, respectively. The
results were compared with those of other studies. The number of independent runs was chosen as 30, and the
population size of 100 was selected. Finally, the best solution, the average of solutions, the standard deviation
(Std), and the number of function evaluations (NFE) required for convergence were obtained.

3.1. The 10-bar 2D truss

This case aims to minimize the 10-bar 2D truss depicted in Fig. 2 [48]. This example has 10 variables of
(A1, ..., A10).

Fig. 2. The 10-bar truss problem.

where W is the objective function, g is the constraint,  denotes the stress,  indicates the displacement,

L is the length of the beam, allow is the maximum allowable stress, 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 is the maximum allowable
displacement, and A is the cross-section. In this example, the elasticity coefficient is 107 psi and the specific
gravity is 0.1 lb/in3. The stress limit is 25 ksi and the maximum horizontal and vertical displacement of the
truss points is assumed to be 2 in. The cross-section limit for this case is 0.1 in2 and 35 in2. Two loadings are
assumed for the 10-bar truss. In the first case, P2 = 0 and P1 = 100 kips, while in the second case, P2 = 50 kips

() 0i max
i

max

g x  

−

= 

() 0i max
i

max

g x  

−

= 

() () 0 i i if g x thenc g xi  =

() 0 0i ielseif g x thenc =

() ()
1

() 1
n

j j j
j

x A L C  
=

= +

1 1

nE nN
i max i max

i jmax max

C  
= =

   −  −   = +         
 

 (23)

8

and node are compared with the maximum allowable stress and displacement limits. The modified structural
constraints are hence written as:

 (21)

 (22)

where ()ig x is the normalized normal stress constraint for the ith member, σmax is the maximum

allowable normal stress limit for both tension and compression, ()ig x is the normalized displacement
constraint for the ith node, δmax is the maximum permissible nodal displacement value, nN is the number of
nodes in the truss, and nE is the number of elements in the truss.
Constraint values are governed by the following relation:

 (23)

 (24)
Stress and displacement constraints to be satisfied are handled by using a penalty function. The penalized

objective function φ(x) is obtained as the product between the truss weight W(A) and the penalty function C as
follows:

 (25)

 (26)

where the variables ε, E, and N in Eq. (26) are the penalty exponent, element, and node, respectively. The
results were compared with those of other studies. The number of independent runs was chosen as 30, and the
population size of 100 was selected. Finally, the best solution, the average of solutions, the standard deviation
(Std), and the number of function evaluations (NFE) required for convergence were obtained.

3.1. The 10-bar 2D truss

This case aims to minimize the 10-bar 2D truss depicted in Fig. 2 [48]. This example has 10 variables of
(A1, ..., A10).

Fig. 2. The 10-bar truss problem.

where W is the objective function, g is the constraint,  denotes the stress,  indicates the displacement,

L is the length of the beam, allow is the maximum allowable stress, 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 is the maximum allowable
displacement, and A is the cross-section. In this example, the elasticity coefficient is 107 psi and the specific
gravity is 0.1 lb/in3. The stress limit is 25 ksi and the maximum horizontal and vertical displacement of the
truss points is assumed to be 2 in. The cross-section limit for this case is 0.1 in2 and 35 in2. Two loadings are
assumed for the 10-bar truss. In the first case, P2 = 0 and P1 = 100 kips, while in the second case, P2 = 50 kips

() 0i max
i

max

g x  

−

= 

() 0i max
i

max

g x  

−

= 

() () 0 i i if g x thenc g xi  =

() 0 0i ielseif g x thenc =

() ()
1

() 1
n

j j j
j

x A L C  
=

= +

1 1

nE nN
i max i max

i jmax max

C  
= =

   −  −   = +         
 

 (24)

Stress and displacement constraints to be satisfied are
handled by using a penalty function. The penalized objective
function φ(x) is obtained as the product between the truss
weight W(A) and the penalty function C as follows:

8

and node are compared with the maximum allowable stress and displacement limits. The modified structural
constraints are hence written as:

 (21)

 (22)

where ()ig x is the normalized normal stress constraint for the ith member, σmax is the maximum

allowable normal stress limit for both tension and compression, ()ig x is the normalized displacement
constraint for the ith node, δmax is the maximum permissible nodal displacement value, nN is the number of
nodes in the truss, and nE is the number of elements in the truss.
Constraint values are governed by the following relation:

 (23)

 (24)
Stress and displacement constraints to be satisfied are handled by using a penalty function. The penalized

objective function φ(x) is obtained as the product between the truss weight W(A) and the penalty function C as
follows:

 (25)

 (26)

where the variables ε, E, and N in Eq. (26) are the penalty exponent, element, and node, respectively. The
results were compared with those of other studies. The number of independent runs was chosen as 30, and the
population size of 100 was selected. Finally, the best solution, the average of solutions, the standard deviation
(Std), and the number of function evaluations (NFE) required for convergence were obtained.

3.1. The 10-bar 2D truss

This case aims to minimize the 10-bar 2D truss depicted in Fig. 2 [48]. This example has 10 variables of
(A1, ..., A10).

Fig. 2. The 10-bar truss problem.

where W is the objective function, g is the constraint,  denotes the stress,  indicates the displacement,

L is the length of the beam, allow is the maximum allowable stress, 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 is the maximum allowable
displacement, and A is the cross-section. In this example, the elasticity coefficient is 107 psi and the specific
gravity is 0.1 lb/in3. The stress limit is 25 ksi and the maximum horizontal and vertical displacement of the
truss points is assumed to be 2 in. The cross-section limit for this case is 0.1 in2 and 35 in2. Two loadings are
assumed for the 10-bar truss. In the first case, P2 = 0 and P1 = 100 kips, while in the second case, P2 = 50 kips

() 0i max
i

max

g x  

−

= 

() 0i max
i

max

g x  

−

= 

() () 0 i i if g x thenc g xi  =

() 0 0i ielseif g x thenc =

() ()
1

() 1
n

j j j
j

x A L C  
=

= +

1 1

nE nN
i max i max

i jmax max

C  
= =

   −  −   = +         
 

 (25)

8

and node are compared with the maximum allowable stress and displacement limits. The modified structural
constraints are hence written as:

 (21)

 (22)

where ()ig x is the normalized normal stress constraint for the ith member, σmax is the maximum

allowable normal stress limit for both tension and compression, ()ig x is the normalized displacement
constraint for the ith node, δmax is the maximum permissible nodal displacement value, nN is the number of
nodes in the truss, and nE is the number of elements in the truss.
Constraint values are governed by the following relation:

 (23)

 (24)
Stress and displacement constraints to be satisfied are handled by using a penalty function. The penalized

objective function φ(x) is obtained as the product between the truss weight W(A) and the penalty function C as
follows:

 (25)

 (26)

where the variables ε, E, and N in Eq. (26) are the penalty exponent, element, and node, respectively. The
results were compared with those of other studies. The number of independent runs was chosen as 30, and the
population size of 100 was selected. Finally, the best solution, the average of solutions, the standard deviation
(Std), and the number of function evaluations (NFE) required for convergence were obtained.

3.1. The 10-bar 2D truss

This case aims to minimize the 10-bar 2D truss depicted in Fig. 2 [48]. This example has 10 variables of
(A1, ..., A10).

Fig. 2. The 10-bar truss problem.

where W is the objective function, g is the constraint,  denotes the stress,  indicates the displacement,

L is the length of the beam, allow is the maximum allowable stress, 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 is the maximum allowable
displacement, and A is the cross-section. In this example, the elasticity coefficient is 107 psi and the specific
gravity is 0.1 lb/in3. The stress limit is 25 ksi and the maximum horizontal and vertical displacement of the
truss points is assumed to be 2 in. The cross-section limit for this case is 0.1 in2 and 35 in2. Two loadings are
assumed for the 10-bar truss. In the first case, P2 = 0 and P1 = 100 kips, while in the second case, P2 = 50 kips

() 0i max
i

max

g x  

−

= 

() 0i max
i

max

g x  

−

= 

() () 0 i i if g x thenc g xi  =

() 0 0i ielseif g x thenc =

() ()
1

() 1
n

j j j
j

x A L C  
=

= +

1 1

nE nN
i max i max

i jmax max

C  
= =

   −  −   = +         
  (26)

where the variables ε, E, and N in Eq. (26) are the penalty
exponent, element, and node, respectively. The results
were compared with those of other studies. The number of
independent runs was chosen as 30, and the population size
of 100 was selected. Finally, the best solution, the average
of solutions, the standard deviation (Std), and the number of
function evaluations (NFE) required for convergence were
obtained.

3- 1- The 10-bar 2D truss
This case aims to minimize the 10-bar 2D truss depicted

in Fig. 2 [48]. This example has 10 variables of (A1, ..., A10).
where W is the objective function, g is the constraint,

σ denotes the stress, δ indicates the displacement, L is
the length of the beam, allowσ is the maximum allowable
stress, δ max is the maximum allowable displacement,
and A is the cross-section. In this example, the elasticity
coefficient is 107 psi and the specific gravity is 0.1 lb/in3.
The stress limit is 25 ksi and the maximum horizontal and
vertical displacement of the truss points is assumed to be
2 in. The cross-section limit for this case is 0.1 in2 and 35
in2. Two loadings are assumed for the 10-bar truss. In the
first case, P2 = 0 and P1 = 100 kips, while in the second
case, P2 = 50 kips and P1 = 150 kips. To determine the best
final solution, in both loading states, 3000 analyses were
performed. Figs. 3 and 4 depict the convergence trend for
loading states 1 and 2.

Tables 4 and 5 list the results for loading states 1 and 2.
For case 1 (Table 4), the best solution was achieved for the
proposed PSOHHO algorithm (5060.80 lb), and the best rank
was first. Evidently, the outcome of this method can compete
with that of other methods, and this method has a faster
convergence speed. In the second case (Table 5), 4677.26
lb was achieved as the best outcome. The best rank for the
second state was second. The best outcome was obtained
after 2417 analyses in the first state, while it was attained
after 2386 analyses in the second state.

Fig. 2. The 10-bar truss problem.

Fig. 2. The 10-bar truss problem.

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

302

Fig. 3. The convergence curve of the 10-bar truss (Case 1).

Fig. 3. The convergence curve of the 10-bar truss (Case 1).

Fig. 4. The convergence curve of the 10-bar truss (Case 2).

Fig. 4. The convergence curve of the 10-bar truss (Case 2).

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

303

Table 4. The results of the 10-bar truss problem (Case 1).

Table 4. The results of the 10-bar truss problem (Case 1).

Optimal cross-sectional areas (in2) Variables

PSOHHO HHO PSO [49] [50] [51] [52] [53]

30.3810 33.7109 30.6279 30.501 30.5069 30.5755 30.5383 30.5349 A1
0.1 0.8885 0.1 0.1 0.1 0.1 0.1 0.1 A2

23.2979 28.9113 22.9722 23.198 23.302 23.3368 23.1759 23.1893 A3
15.2853 11.5141 15.1772 15.247 15.165 15.1497 15.2483 15.2035 A4

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 A5
0.5616 0.8456 0.5386 0.5551 0.5436 0.5276 0.55377 0.5490 A6
7.4291 13.2335 7.5060 7.4562 7.4612 7.4458 7.45847 7.4613 A7
20.9283 17.6452 21.2239 21.035 21.113 20.9892 21.0269 21.0572 A8
21.6454 21.88 21.4247 21.526 21.413 21.5236 21.5223 21.5170 A9

0.1 0.8601 0.1 0.1 0.1 0.1 0.1 0.1 A10
5060.80 5464.75 5061.13 5060.85 5060.99 5060.99 5060.85 5060.85 Best weight(lb)
5061.61 5464.76 5061.72 5061.23 N/A 5062.09 5060.87 5065.41 Average weight(lb)

0.011 0.1 1.41 0.53 N/A 2.05 0.0215 5.2797 Std
4834 15320 5800 7920 13800 19540 20000 14200 NFE

1 5 4 2 3 3 2 2 Rank

Table 5. The results of the 10-bar truss problem (Case 2).

Table 5. The results of the 10-bar truss problem (Case 2).

Optimal cross-sectional areas (in2) Variables
PSOHHO HHO PSO [54] [53] [51] [50] [49]

23.6251 22.4243 23.6954 23.6319 23.523 23.5804 23.5236 23.62 A1
0.1 0.1 0.1 0.1 0.1 0.1003 0.1 0.1 A2

25.2417 21.881 26.0611 25.3424 25.285 25.1582 25.2852 25.434 A3
14.4404 11.8223 14.5368 14.5964 14.371 14.1801 14.3716 14.351 A4

0.1 0.1 0.1 0.1 0.1 0.1002 0.1 0.1 A5
1.9695 2.2627 1.9696 1.9769 1.969 1.9708 1.9697 1.9701 A6
12.3305 13.9816 12.0814 12.3446 12.391 12.4511 12.3917 12.339 A7
12.6087 16.4234 12.1956 12.6697 12.833 12.9349 12.8332 12.712 A8
20.5317 21.9958 20.5517 20.2586 20.328 20.3595 20.3288 20.346 A9

0.1 0.1 0.1 0.1 0.1 0.1001 0.1 0.1 A10
4676.96 4782.15 4680.06 4676.92 4776.92 4677.31 4676.92 4677.06 Best weight(lb)
4679.72 4795.23 4683.17 4680.30 4692.71 4679.06 4692.71 4677.97 Average weight(lb)

0.044 10.04 1.95 3.82 45.7824 2.07 45.7824 0.33 Std
4772 16800 6100 5000 14000 19890 13640 7920 NFE

2 7 5 1 6 4 1 3 Rank

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

304

3- 2- The 25-bar 3D truss
Fig. 5 displays the 25-bar 3D truss. The specific gravity

and elasticity coefficient are assumed to be 0.1 lb/in3 and 107

psi, respectively. The maximum displacement is assumed to
be 0.35 in. The 25 bars of this structure are divided into eight
groups. The two types of loading for this truss are given in
Table 6. The stress limit is presented in Table 7. The cross-
section limit is assumed to be 0.01 to 3.4 in2. The number of

analyses for reaching the final solution is assumed to be 3000.
The final results for the 25-bar truss are presented in

Table 8. For the proposed method, the value of 544.15 lb
was attained after 2989 iterations, which indicates a high
convergence speed. The final weight can compete with that
presented in other sources. The rank of the proposed method
was 1.

Fig. 5. The spatial 25-bar truss problem.

Fig. 5. The spatial 25-bar truss problem.

Table 6. Load cases for the spatial 25-bar truss.

Table 6. Load cases for the spatial 25-bar truss.

node Case 1 Case 2

 Fx(kips) Fy(kips) Fz(kips) Fx(kips) Fy(kips) Fz(kips)
1 0 20 -5 1 10 -5
2 0 -20 -5 0 10 -5
3 0 0 0 0.5 0 0
6 0 0 0 0.5 0 0

Table 7. Stresses for the 3D 25-bar truss.Table 7. Stresses for the 3D 25-bar truss.

Element Group Compressive stress
limitations (ksi)

Tensile stress
limitations (ksi)

1 A1 35.092 40.0
2 A2-A5 11.590 40.0
3 A6-A9 17.305 40.0
4 A10-A11 35.092 40.0
5 A12-A13 35.092 40.0
6 A14-A17 6.759 40.0
7 A18-A21 6.959 40.0
8 A22-A25 11.082 40.0

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

305

Fig. 6. The convergence curve of the 25-bar truss.

Fig. 6. The convergence curve of the 25-bar truss.

Table 8. The results of the 25-bar truss problem.

Table 8. The results of the 25-bar truss problem.

 Optimal cross-sectional areas (in2) Variables

PSOHHO HHO PSO [55] [53] [52] [51] [21]
0.01 0.01 0.01 0.01 0.0100 0.0100 0.01 0.0124 A1

1.9664 2.1293 1.9177 2.007 1.9903 1.9825 1.9814 1.9624 A2-A5
3.0260 2.7317 3.0952 3.001 2.9881 3.0004 3.0023 3.0204 A6-A9

0.01 0.0100 0.01 0.01 0.1 0.0100 0.0100 0.0266 A10-A11
0.01 0.0100 0.01 0.01 0.1 0.0100 0.0100 0.0109 A12-A13

0.6782 0.7082 0.6875 0.661 0.6857 0.6832 0.6827 0.6841 A14-A17
1.6800 1.7095 1.6911 1.620 1.6764 1.6775 1.6778 1.6862 A18-A21
2.6600 2.6919 2.6272 2.668 2.6613 2.6610 2.6612 2.6526 A22-A25
544.15 547.11 545.31 544.92 545.16 545.16 545.16 545.48 Best weight(lb)
545.23 548.15 545.36 545.13 545.91 545.16 545.22 549.67 Average weight(lb)
0.031 1.024 0.123 0.401 1.0893 0.00162 0.083 2.8113 Std
5978 11500 7340 N/A 6500 20000 19750 5640 NFE

1 6 4 2 3 3 3 5 Rank

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

306

Fig. 8. The convergence curve of the 72-bar truss.

Fig. 8. The convergence curve of the 72-bar truss.

Fig. 7. The spatial 72-bar truss problem.

Fig. 7. The spatial 72-bar truss problem.

3- 3- The 72-bar 3D truss
This truss is displayed in Fig. 7. It contains 72 bars

classified into 16 groups. The allowable stress for this case
is 25 ksi at the assumed pressure and traction. The elasticity
coefficient is assumed to be 107 psi, and the specific gravity
in cross-sections is considered to be 0.1 lb/in3. The maximum
displacement of the point is 0.25 in. In the optimization
process, the minimum cross-section area of 0.1 in2 is applied.
The magnitude of the loads applied and their classification

are given in Table 9. Table 10 shows the member group of
the spatial 72-bar truss. The results of this case after 2000
analyses are presented in Table 11. Fig. 8 depicts the process
of optimization.

According to Table 11, the value of 379.54 lb was obtained
by the PSOHHO algorithm after 1931 analyses, indicating
the rapid convergence of this method. The best rank for the
72-bar truss was two. Fig. 8 shows that the proposed method
has faster convergence than the HHO and PSO algorithms.

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

307

Fig. 9. The 200-bar truss problem.

Fig. 9. The 200-bar truss problem.

3- 4- The 200-bar 2D truss
The 200-bar 2D truss is a well-known truss in optimization

(Fig. 9). It comprises 200 bars classified into 2 groups
(Table 13). There are three states for loading (Table 12). The
elasticity coefficient of 107 psi and the specific gravity of
0.273 lb/in3 are assumed for the bars. The allowable stress at
the pressure and traction is 10 ksi, and there is no constraint
on displacement. The minimum cross-section area is 0.1 in2.

The solutions of this case after 4000 analyses are presented
in Table 14.

The final solution obtained by the PSOHHO method is
25076.43 lb after 3884 analyses, demonstrating its rapid
convergence. A comparison of the convergence speed of the
proposed method and other algorithms is presented in Fig. 10.
In this example, the best rank for PSOHHO was one.

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

308

Table 10. Member group of the spatial 72-bar truss.

Table 10. Member group of the spatial 72-bar truss.

group element group element

1 A1-A4 9 A37-A40
2 A5-A12 10 A41-A48
3 A13-A16 11 A49-A52
4 A17-A18 12 A53-A54
5 A19-A22 13 A55-A58
6 A23-A30 14 A59-A66
7 A31-A34 15 A67-A70
8 A35-A36 16 A71-A72

Table 11. The results of the 72-bar truss problem.

Table 11. The results of the 72-bar truss problem.

 Optimal cross-sectional areas (in2) Variables
PSOHHO HHO PSO [56] [53] [52] [51] [21]

1.9066 1.3536 1.9119 1.8910 1.929788435 1.88468 1.8618 1.8585 A1
0.5140 0.5107 0.5101 0.5131 0.508996112 0.51372 0.5206 0.5021 A2

0.1 0.1534 0.1 0.1 0.1 0.1 0.0105 0.1002 A3
0.1 0.1798 0.1 0.1 0.1 0.1 0.0100 0.1 A4

1.2490 1.9478 1.2514 1.2697 1.246709769 1.27107 1.2455 1.3011 A5
0.5131 0.5925 0.5154 0.5097 0.512783923 0.51080 0.5177 0.5151 A6

0.1 0.1 0.1 0.1 0.1 0.1 0.0101 0.1 A7
0.1 0.1805 0.1 0.1 0.1 0.1 0.0100 0.1001 A8

0.5330 0.4296 0.5191 0.5201 0.52977944 0.52589 0.5327 0.5311 A9
0.5169 0.5840 0.5176 0.5175 0.517240625 0.51627 0.5109 0.5122 A10

0.1 0.1 0.1 0.1 0.1 0.1 0.0100 0.1008 A11
0.1 0.6109 0.1 0.1 0.100000001 0.1 0.1205 0.1030 A12

0.1565 0.1440 0.1565 0.1566 0.156445307 0.15647 0.1655 0.1560 A13
0.5417 0.6557 0.5449 0.5457 0.543968566 0.54479 0.5397 0.5472 A14
0.4086 0.3395 0.4033 0.4107 0.41055331 0.41210 0.4554 0.4202 A15
0.5678 0.2729 0.5727 0.5679 0.562437566 0.56840 0.5995 0.5793 A16
379.54 420.00 379.64 379.56 379.65 379.61 363.98 379.76 Best weight(lb)
379.73 450.02 379.79 379.67 380.29 379.62 364.35 380.68 Average weight(lb)
0.0021 33.831 0.0032 0.127 0.5243 0.0038 0.2188 0.7315 Std
3862 9580 4660 9000 12000 33600 19860 11960 NFE

2 8 5 3 6 4 1 7 Rank

Table 9. Load cases for the spatial 72-bar truss.

Table 9. Load cases for the spatial 72-bar truss.

node Case 1 Case 2

 Fx(kips) Fy(kips) Fz(kips) Fx(kips) Fy(kips) Fz(kips)
17 5 5 -5 0 0 -5
18 0 0 0 0 0 -5
19 0 0 0 0 0 -5
20 0 0 0 0 0 -5

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

309

Table 12. Load cases for the planner 200-bar truss.Table 12. Load cases for the planner 200-bar truss.

node Case 1 Case 2 Case 3
Load(lb) 1000 10000

Direction X Y

Nodes 1,6,15,20,29,34,43,
48,57,62,71

1-6,8,10,12,14-20,22,24,26,
28-34, 36,38,40, 42-48,50, 52,54,56- 62,

64,66,68,70-75

Load cases 1 and 2
acting simultaneously

Table 13. Member grouping details for the planar 200-bar truss.Table 13. Member grouping details for the planar 200-bar truss.

Group Member Number Group Member Number

A1 1, 2, 3,4 A16 82, 83, 85, 86, 88, 89, 91, 92, 103,104, 106, 107, 109,
110, 112, 113

A2 5, 8, 11, 14, 17 A17 115, 116, 117, 118

A3 19, 20, 21, 22, 23, 24 A18 119, 122, 125, 128, 131
A4 25, 56, 63, 94, 101, 132, 139, 170, 177 A19 133, 134, 135, 136, 137, 138

A5 26, 29, 32, 35, 38 A20 140, 143, 146, 149, 152

A6 6, 7, 9, 10, 12, 13, 15, 16, 27, 28, 30, 31,
33, 34, 36, 37 A21 120, 121, 123, 124, 126, 127, 129, 130, 141, 142, 144,

145, 147, 148, 150, 151
A7 39, 40, 41, 42 A22 153, 154, 155, 156

A8 43, 46, 49, 52, 55 A23 157, 160, 163, 166, 169
A9 57, 58, 59, 60, 61, 62 A24 171, 172, 173, 174, 175, 176

A10 64, 67, 70, 73, 76 A25 178, 181, 184, 187, 190

A11 44, 45, 47, 48, 50, 51, 53, 54, 65, 66, 68,
69, 71, 72, 74, 75 A26 158, 159, 161, 162, 164, 165, 167, 168, 179, 180, 182,

183, 185, 186, 188, 189
A12 77, 78, 79, 80 A27 191, 192, 193, 194

A13 81, 84, 87, 90, 93 A28 195, 197, 198, 200
A14 95, 96, 97, 98, 99, 100 A29 196,199

A15 102, 105, 108, 111, 114

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

310

Table 14. The results of the 200-bar truss problem.

Table 14. The results of the 200-bar truss problem.

Variables Optimal cross-sectional areas (in2)

 [20] [21] [51] [52] [53] PSO HHO PSOHHO
A1 0.147258 0.1024 0.1144 0.144758 0.1471 0.1270 11.5191 0.1691
A2 0.940434 0.9654 0.9443 0.943058 0.9399 0.9777 1.4260 1.0384
A3 0.100109 0.1391 0.1310 0.101225 0.1000 0.1000 0.9944 0.2174
A4 0.100098 0.1741 0.1016 0.100001 0.1 0.1000 4.1363 0.1
A5 1.941704 1.9613 2.0353 1.943059 1.9399 1.9897 3.2044 2.0074
A6 0.296783 0.2899 0.3126 0.296271 0.2965 0.1204 5.9409 0.1998
A7 0.100096 0.1294 0.1679 0.103267 0.1000 0.4548 0.9317 0.1241
A8 3.106749 3.1511 3.1541 3.114355 3.1049 3.8642 3.6499 3.2032
A9 0.100095 0.1251 0.1003 0.102462 0.1000 0.1000 1.9094 0.1094
A10 4.108109 4.0627 4.1005 4.114354 4.1049 4.2385 3.9358 4.4946
A11 0.403975 0.4131 0.4350 0.400374 0.4037 0.3514 0.8594 0.2454
A12 0.193079 0.4043 0.1148 0.113995 0.1906 0.1000 1.6149 0.1536
A13 5.434236 5.3357 5.3823 5.388609 5.4298 6.8563 13.3499 5.5229
A14 0.100095 0.2632 0.1607 0.100012 0.1006 1.1606 2.8119 0.1106
A15 6.434203 6.3226 6.4152 6.388601 6.4298 6.6874 6.3849 6.3991
A16 0.575306 0.7972 0.5629 0.533194 0.5739 0.5956 1.6907 0.3312
A17 0.135485 0.1791 0.4010 0.394526 0.1332 0.1000 1.4669 0.6629
A18 7.980200 8.1268 7.9735 7.941942 7.9744 7.4970 5.3782 7.4228
A19 0.100157 0.1141 0.1092 0.100949 0.1000 1.0235 2.2753 0.3712
A20 8.980345 9.1337 9.0155 8.941920 8.9744 8.4960 6.2781 8.4226
A21 0.709002 0.8000 0.8628 0.834785 0.7064 0.9117 4.2669 0.8138
A22 0.437247 0.2487 0.2220 0.151136 0.4339 0.1000 9.4266 1.0067
A23 10.89123 11.2008 11.025 10.94004 10.8790 10.4553 10.1191 10.3599
A24 0.100150 0.1136 0.1397 0.100028 0.1 0.1000 11.0087 0.1
A25 11.89141 12.1703 12.034 11.94004 11.8790 11.4526 14.5686 11.3601
A26 1.049144 0.9947 1.0043 0.897270 1.0453 0.7150 3.4915 1.1006
A27 6.610648 6.3377 6.5762 6.848813 6.6300 7.3215 4.0494 8.5567
A28 10.77913 10.5338 10.726 10.88481 10.7827 15.00 14.8294 11.3949
A29 13.87830 14.0917 13.966 13.74952 13.8691 15.00 14.8329 13.4384

Best weight(lb) 25463.53 25771.77 25374.8 25453.77 25448.88 27200.46 49343.06 25076.43
Average weight(lb) 25477.47 26699.19 26613.4 25455.67 25531.69 27351.22 49343.11 26258.22

Std 24.12 410.401 702.8 2.337 42.1634 180.21 0.12 18.68
NFE 31580 23760 19410 80500 96600 14250 17980 7768
Rank 5 6 2 4 3 7 8 1

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

311

3- 5- The 942-bar 3D truss
The final case is a 942-bar 3D truss. This structure has 26

stories and 942 bars classified into 59 groups (Fig. 11). In this
case, like the previous structures, the elasticity coefficient
of 107 psi and the specific gravity of 0.1 lb/in3 are assumed.
Six types of loads are considered for loading (Table 15). The
cross-section limits are in the 1-200 in2 range. The stress
constraint for both states of pressure and traction is 25 ksi.

The maximum displacement for the upper points is 15 in.
Solutions of this case after 13000 analyses are presented in
Table 16.

According to Table 16, the solution of the PSOHHO
method is 131044.45 lb, which is acceptable compared to the
other methods. In this example, the best rank for PSOHHO
was one. The convergence speed of the proposed method is
presented in Fig. 12.

Table 15. Load cases for the spatial 942-bar truss.

Table 15. Load cases for the spatial 942-bar truss.

Case number Load (Ib) Direction Nodes
1 -3000 Z Each node in the first section
2 -6000 Z At each node in the second section
3 -9000 Z At each node in the third section
4 1000 X At each node on the right side
5 1500 X At each node on the left side
6 1000 Y All nodes of the tower

Table 16. The results of the 942-bar truss problem.

 Optimal cross-sectional areas (in2) Variables
PSOHHO HHO PSO [57] [58] [56] [53] [21] [20]

1.002 1.024 1.00 1.00 1 1.000106287 4.2489 1.045258 A1
1.002 1.000 1.00 1.00 1 1.000000908 1.7702 1.001630 A2
3.321 3.3541 6.999 3.01 1 3.166316514 1.5892 3.549999 A3
1.824 1.9647 3.00 1.75 1 1.815748019 1.5235 1.924590 A4

1.0387 1.0057 2.00 1.00 1 1.000004059 1.0265 1.000032 A5
14.586 14.9675 17 14.27 14 14.47644046 15.3979 15.337079 A6
3.1351 3.4672 3 2.93 4 3.00668249 2.8825 3.108905 A7
7.986 7.0534 20 1.00 5 7.035993176 6.9912 6.589077 A8

16.148 17.8646 38 1.00 5 16.37606449 11.2039 16.569661 A9
2.459 2.4682 9 9.38 22 2.379222386 2.7262 2.553777 A10
6.458 6.3947 2 4.43 1 6.438189777 8.1921 6.433946 A11
5.726 5.6487 8 4.54 4 5.602718173 6.2178 5.812166 A12

15.1347 15.9647 23 16.14 19 15.1181383 16.5585 15.836882 A13
2.214 2.3245 3 2.33 2 2.124871462 2.3668 2.196943 A14
4.236 4.3651 26 7.51 4 4.098857115 4.1519 4.324553 A15
1.254 1.0000 1 1.00 1 1.000000108 1.2370 1.000047 A16

21.125 21.5672 50.98 22.47 21 21.68022386 22.3006 21.973772 A17
2.432 2.7698 3 2.70 3 2.597362396 2.9996 2.674909 A18
7.532 7.9621 26 13.58 14 7.870074834 7.7559 8.722646 A19
1.02 1.0000 1 1.00 1 1.000000101 1.1283 1.000032 A20

27.232 28.3547 20 28.93 35 27.75329707 28.2646 29.898613 A21
3.125 3.8632 2 3.23 3 3.135263149 3.1924 3.249223 A22

15.631 16.3254 20 23.87 18 15.84340544 16.3965 16.995624 A23
26.352 26.8134 30 41.67 24 26.31743388 22.6095 25.510407 A24
41.332 39.6340 66.98 36.02 36 40.69496614 40.0759 37.634066 A25
1.624 1.4302 22 6.41 1 1.149987375 5.3549 1.220731 A26

11.035 12.0364 2 23.79 11 11.64990143 9.2695 11.944077 A27
16.927 16.8032 10 28.39 14 16.07570037 15.0911 16.515003 A28
13.024 14.6325 15 19.38 14 13.90458804 14.0704 14.822892 A29
14.726 14.9364 14 20.31 23 14.52601036 15.1962 15.983565 A30
35.932 35.6327 31 31.41 38 35.38504225 37.1490 38.514252 A31

Fig. 10. The convergence curve of the 200-bar truss.

Fig. 10. The convergence curve of the 200-bar truss.

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

312

Table 16. The results of the 942-bar truss problem.

Table 15. Load cases for the spatial 942-bar truss.

Case number Load (Ib) Direction Nodes
1 -3000 Z Each node in the first section
2 -6000 Z At each node in the second section
3 -9000 Z At each node in the third section
4 1000 X At each node on the right side
5 1500 X At each node on the left side
6 1000 Y All nodes of the tower

Table 16. The results of the 942-bar truss problem.

 Optimal cross-sectional areas (in2) Variables
PSOHHO HHO PSO [57] [58] [56] [53] [21] [20]

1.002 1.024 1.00 1.00 1 1.000106287 4.2489 1.045258 A1
1.002 1.000 1.00 1.00 1 1.000000908 1.7702 1.001630 A2
3.321 3.3541 6.999 3.01 1 3.166316514 1.5892 3.549999 A3
1.824 1.9647 3.00 1.75 1 1.815748019 1.5235 1.924590 A4

1.0387 1.0057 2.00 1.00 1 1.000004059 1.0265 1.000032 A5
14.586 14.9675 17 14.27 14 14.47644046 15.3979 15.337079 A6
3.1351 3.4672 3 2.93 4 3.00668249 2.8825 3.108905 A7
7.986 7.0534 20 1.00 5 7.035993176 6.9912 6.589077 A8

16.148 17.8646 38 1.00 5 16.37606449 11.2039 16.569661 A9
2.459 2.4682 9 9.38 22 2.379222386 2.7262 2.553777 A10
6.458 6.3947 2 4.43 1 6.438189777 8.1921 6.433946 A11
5.726 5.6487 8 4.54 4 5.602718173 6.2178 5.812166 A12

15.1347 15.9647 23 16.14 19 15.1181383 16.5585 15.836882 A13
2.214 2.3245 3 2.33 2 2.124871462 2.3668 2.196943 A14
4.236 4.3651 26 7.51 4 4.098857115 4.1519 4.324553 A15
1.254 1.0000 1 1.00 1 1.000000108 1.2370 1.000047 A16

21.125 21.5672 50.98 22.47 21 21.68022386 22.3006 21.973772 A17
2.432 2.7698 3 2.70 3 2.597362396 2.9996 2.674909 A18
7.532 7.9621 26 13.58 14 7.870074834 7.7559 8.722646 A19
1.02 1.0000 1 1.00 1 1.000000101 1.1283 1.000032 A20

27.232 28.3547 20 28.93 35 27.75329707 28.2646 29.898613 A21
3.125 3.8632 2 3.23 3 3.135263149 3.1924 3.249223 A22

15.631 16.3254 20 23.87 18 15.84340544 16.3965 16.995624 A23
26.352 26.8134 30 41.67 24 26.31743388 22.6095 25.510407 A24
41.332 39.6340 66.98 36.02 36 40.69496614 40.0759 37.634066 A25
1.624 1.4302 22 6.41 1 1.149987375 5.3549 1.220731 A26

11.035 12.0364 2 23.79 11 11.64990143 9.2695 11.944077 A27
16.927 16.8032 10 28.39 14 16.07570037 15.0911 16.515003 A28
13.024 14.6325 15 19.38 14 13.90458804 14.0704 14.822892 A29
14.726 14.9364 14 20.31 23 14.52601036 15.1962 15.983565 A30
35.932 35.6327 31 31.41 38 35.38504225 37.1490 38.514252 A31

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

313

3.021 3.7340 4 2.57 3 3.207432961 3.1643 3.323571 A32
2.825 3.5237 5 4.18 2 2.532916182 3.4414 3.189674 A33
2.453 2.7032 2 3.33 3 2.506554054 2.2813 2.822370 A34

1 1.0000 1 1.00 1 1.000000003 1.0166 1.001323 A35
1 1.0000 1 1.00 1 1.00000006 1.4089 1.002606 A36

56.276 58.6378 45.98 47.11 70 57.28451296 59.6649 59.530117 A37
4.054 3.6210 4 2.35 3 3.163254209 3.3173 3.250054 A38
2.635 2.7302 12 3.79 2 2.146376942 2.0249 2.068093 A39
2.721 2.8371 4 3.30 3 2.850268391 2.3953 3.084539 A40

1 1.0005 1 1.00 1 1.000000264 1.0554 1.000717 A41
1 1.0273 6 1.00 1 1.000616023 1.2294 1.239938 A42

75.586 79.3619 54 63.33 91 76.72647796 79.5798 79.891179 A43
4.324 3.5067 3 3.21 3 3.154725029 3.2875 3.299488 A44
2.254 2.0396 8 4.86 2 2.064116875 1.9028 1.964128 A45
2.864 3.4631 8 2.22 2 3.279900541 3.2460 3.489718 A46
1.001 1.0024 2 1.00 1 1.000079442 1.0277 1.000032 A47
1.035 1.0000 3 1.00 1 1.000000176 1.0898 1.000032 A48

92.132 91.9642 56 76.93 102 91.16688452 93.8836 97.181471 A49
3.665 3.5487 3 3.54 4 3.23458801 3.0634 3.322281 A50
2.924 1.0003 8 3.91 1 1.000000003 1.7246 1.002997 A51
3.756 3.8964 4 2.25 3 3.600181305 3.9313 3.651629 A52
6.246 6.9547 31 11.44 10 6.583921302 8.1063 7.226228 A53
3.486 3.5314 24 11.64 11 3.785500472 9.8391 4.544599 A54

41.336 45.3984 87.97 36.94 46 41.72633586 42.7529 41.411074 A55
1.001 1.2358 6 1.00 1 1.000000003 1.1219 1.002207 A56

62.468 67.5319 36 48.10 65 63.417437 63.0179 64.803517 A57
2.247 2.9365 12 5.88 3 2.3264112 2.6542 2.525618 A58
1.022 1.0024 4 1.00 1 1.0000000 1.6685 1.000054 A59

131,044.45 138,862.34 157,984.29 134,120 141,860 131,984.40 136,311.1322 137,344.35 Best
weight(lb)

135328.61 140,531.24 177196.69 135244.7 144,231 135,768.12 137453.6697 137379.616 Average
weight(lb)

1832.27 2863.42 13073.63 1497.06 3342 2289.1491 673.8566 38.346 Std
14608 10458 41174 75000 32500 140800 28000 58274 NFE

1 6 8 3 7 2 4 5 Rank

4- Conclusion
Here, truss structures were optimized using a novel

PSOHHO hybrid method. This algorithm uses a distinct
combination of PSO and HHO. The proposed algorithm
consistently outperforms the standard PSO and HHO. In
this method, the two algorithms work in parallel, but the
population is exchanged using the proposed relation. This
relation can be applied to other similar algorithms. The main
purpose of this proposed relation is to use the capabilities
of existing algorithms without modifying the principle of
the algorithm. Both these algorithms have certain strengths
and drawbacks; with this method, one method’s strengths
compensate for the other’s weaknesses. It can be concluded
that the hybrid algorithm PSOHHO yielded the best results

among the examined algorithms. Five well-known trusses
were assumed to evaluate the performance and functioning of
the proposed algorithm. Based on the findings, the proposed
hybrid method had rapid convergence and the final solutions
were more acceptable than those of the other algorithms. In
most examples, this method’s rank was satisfactory.

It is recommended that other algorithms be combined
using the proposed method. Various structural examples
can also be utilized to test the performance of the proposed
algorithm.

Declaration of Competing Interest
The authors declare that they have no conflict of interest.

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

314

Fig. 11. The spatial 942-bar truss problem.

Fig. 11. The spatial 942-bar truss problem.

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

315

Fig. 12. The convergence curve of the 942-bar truss.

Fig. 12. The convergence curve of the 942-bar truss.

References
[1] D.B. Fogel, Evolutionary Computation: Toward a New

Philosophy of Machine Intelligence, 3rd Editio ed., John
Wiley & Sons, Inc., Hoboken, NJ, USA, 2005.

[2] X. Yao, Evolutionary Computation: Theory and
Applications, in: Evolutionary Computation: Theory and
Applications, WORLD SCIENTIFIC, 1999, pp. 1-36.

[3] S. Khalilpourazari, S. Khalilpourazary, A lexicographic
weighted Tchebycheff approach for multi-constrained
multi-objective optimization of the surface grinding
process, Engineering Optimization, 49 (2017) 878-895.

[4] J.H. Holland, Genetic Algorithms, Scientific American,
267 (1992) 66-73.

[5] J.H. Holland, J.S. Reitman, Cognitive systems based on
adaptive algorithms, ACM SIGART Bulletin, (1977) 49-
49.

[6] J. Kennedy, R. Eberhart, Particle swarm optimization, in:
Proceedings of ICNN’95 - International Conference on
Neural Networks, IEEE, 1995, pp. 1942-1948.

[7] J. Kennedy, R.C. Eberhart, Swarm Intelligence, 1 st ed.,
Morgan Kaufmann, 2002.

[8] R. Eberhart, J. Kennedy, A new optimizer using particle
swarm theory, in: MHS’95. Proceedings of the Sixth
International Symposium on Micro Machine and Human
Science, IEEE, 1995, pp. 39-43.

[9] A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja,
H. Chen, Harris Hawks optimization: Algorithm and

applications, Future Generation Computer Systems, 97
(2019) 849-872.

[10] A. Kaveh, S. Talatahari, A novel heuristic optimization
method: charged system search, Acta Mechanica, 213
(2010) 267-289.

[11] D. Karaboga, B. Basturk, A powerful and efficient
algorithm for numerical function optimization: artificial
bee colony (ABC) algorithm, Journal of Global
Optimization, 39 (2007) 459-471.

[12] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey Wolf
Optimizer, Advances in Engineering Software, 69 (2014)
46-61.

[13] H. Yapici, N. Cetinkaya, A new meta-heuristic optimizer:
Pathfinder algorithm, Applied Soft Computing, 78 (2019)
545-568.

[14] S.H. Samareh Moosavi, V.K. Bardsiri, Poor and rich
optimization algorithm: A new human-based and multi
populations algorithm, Engineering Applications of
Artificial Intelligence, 86 (2019) 165-181.

[15] L.d.S. Coelho, Gaussian quantum-behaved particle
swarm optimization approaches for constrained
engineering design problems, Expert Systems with
Applications, 37 (2010) 1676-1683.

[16] P. Civicioglu, E. Besdok, M.A. Gunen, U.H. Atasever,
Weighted differential evolution algorithm for numerical
function optimization: a comparative study with cuckoo
search, artificial bee colony, adaptive differential
evolution, and backtracking search optimization

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

316

algorithms, Neural Computing and Applications, 32
(2020) 3923-3937.

[17] M. Kohler, M.M.B.R. Vellasco, R. Tanscheit, PSO+:
A new particle swarm optimization algorithm for
constrained problems, Applied Soft Computing, 85
(2019) 105865.

[18] S.H. Pakzad-Moghaddam, H. Mina, P. Mostafazadeh,
A novel optimization booster algorithm, Computers &
Industrial Engineering, 136 (2019) 591-613.

[19] A. Kaveh, A. Zolghadr, Cyclical parthenogenesis
algorithm for layout optimization of truss structures with
frequency constraints, Engineering Optimization, 49
(2017) 1317-1334.

[20] S.O. Degertekin, L. Lamberti, I.B. Ugur, Sizing, layout
and topology design optimization of truss structures
using the Jaya algorithm, Applied Soft Computing, 70
(2018) 903-928.

[21] A. Kaveh, P. Zakian, Improved GWO algorithm for
optimal design of truss structures, Engineering with
Computers, 34 (2018) 685-707.

[22] M. Aslani, P. Ghasemi, A.H. Gandomi, Constrained
mean-variance mapping optimization for truss
optimization problems, The Structural Design of Tall and
Special Buildings, 27 (2018) e1449.

[23] M. Khatibinia, H. Yazdani, Accelerated multi-
gravitational search algorithm for size optimization of
truss structures, Swarm and Evolutionary Computation,
38 (2018) 109-119.

[24] S. Talatahari, A.H. Gandomi, G.J. Yun, Optimum
design of tower structures using Firefly Algorithm,
The Structural Design of Tall and Special Buildings, 23
(2014) 350-361.

[25] J. Pierezan, L. dos Santos Coelho, V. Cocco Mariani,
E. Hochsteiner de Vasconcelos Segundo, D. Prayogo,
Chaotic coyote algorithm applied to truss optimization
problems, Computers & Structures, 242 (2021) 106353.

[26] H.F. Eid, L. Garcia-Hernandez, A. Abraham, Spiral water
cycle algorithm for solving multi-objective optimization
and truss optimization problems, Engineering with
Computers, 38 (2022) 963–973.

[27] F.K.J. Jawad, C. Ozturk, W. Dansheng, M. Mahmood, O.
Al-Azzawi, A. Al-Jemely, Sizing and layout optimization
of truss structures with artificial bee colony algorithm,
Structures, 30 (2021) 546-559.

[28] S.O. Degertekin, G. Yalcin Bayar, L. Lamberti,
Parameter free Jaya algorithm for truss sizing-layout
optimization under natural frequency constraints,
Computers & Structures, 245 (2021) 106461.

[29] A. Mortazavi, Size and layout optimization of truss
structures with dynamic constraints using the interactive
fuzzy search algorithm, Engineering Optimization, 53
(2021) 369-391.

[30] M. Shahabsafa, R. Fakhimi, W. Lei, S. He, J.R.R.A.
Martins, T. Terlaky, L.F. Zuluaga, Truss topology design
and sizing optimization with guaranteed kinematic
stability, Structural and Multidisciplinary Optimization,
63 (2021) 21-38.

[31] F.K.J. Jawad, M. Mahmood, D. Wang, O. AL-Azzawi,

A. AL-JAMELY, Heuristic dragonfly algorithm for
optimal design of truss structures with discrete variables,
Structures, 29 (2021) 843-862.

[32] R. Chelouah, P. Siarry, Genetic and Nelder–Mead
algorithms hybridized for a more accurate global
optimization of continuous multiminima functions,
European Journal of Operational Research, 148 (2003)
335-348.

[33] S.-K.S. Fan, E. Zahara, A hybrid simplex search
and particle swarm optimization for unconstrained
optimization, European Journal of Operational Research,
181 (2007) 527-548.

[34] Z.M. Yaseen, M.F. Allawi, H. Karami, M. Ehteram, S.
Farzin, A.N. Ahmed, S.B. Koting, N.S. Mohd, W.Z.B.
Jaafar, H.A. Afan, A. El-Shafie, A hybrid bat–swarm
algorithm for optimizing dam and reservoir operation,
Neural Computing and Applications, 31 (2019) 8807-
8821.

[35] H. Nenavath, R.K. Jatoth, Hybrid SCA–TLBO: a novel
optimization algorithm for global optimization and visual
tracking, Neural Computing and Applications, 31 (2019)
5497-5526.

[36] R. Devarapalli, V. Kumar, Power system oscillation
damping controller design: A novel approach of
integrated HHO-PSO algorithm, Archives of Control
Sciences, 31 (2021) 553-591.

[37] Y. Li, Y. Peng, S. Zhou, IMPROVED PSO ALGORITHM
FOR SHAPE AND SIZING OPTIMIZATION OF
TRUSS STRUCTURE, Journal of Civil Engineering and
Management, 19 (2013) 542-549.

[38] F.A. Şenel, F. Gökçe, A.S. Yüksel, T. Yiğit, A novel
hybrid PSO–GWO algorithm for optimization problems,
Engineer ing with Computers, 35 (2019) 1359-1373.

[39] S.N. Chegini, A. Bagheri, F. Najafi, PSOSCALF: A new
hybrid PSO based on Sine Cosine Algorithm and Levy
flight for solving optimization problems, Applied Soft
Computing, 73 (2018) 697-726.

[40] I.N. Trivedi, P. Jangir, A. Kumar, N. Jangir, R. Totlani,
A Novel Hybrid PSO–WOA Algorithm for Global
Numerical Functions Optimization, in: Advances in
Computer and Computational Sciences 2018, pp. 53-60.

[41] G. Dhiman, A. Kaur, A Hybrid Algorithm Based on
Particle Swarm and Spotted Hyena Optimizer for Global
Optimization in: Soft Computing for Problem Solving,
Springer Singapore, Singapore, 2019, pp. 599-615.

[42] S. Jiang, C. Zhang, S. Chen, Sequential Hybrid Particle
Swarm Optimization and Gravitational Search Algorithm
with Dependent Random Coefficients, Mathematical
Problems in Engineering, 2020 (2020) 1-17.

[43] D. Dhawale, V.K. Kamboj, P. Anand, An improved
Chaotic Harris Hawks Optimizer for solving numerical
and engineering optimization problems, Engineering
with Computers, (2021).

[44] A. Kaveh, P. Rahmani, A.D. Eslamlou, An efficient
hybrid approach based on Harris Hawks optimization
and imperialist competitive algorithm for structural
optimization, Engineering with Computers, 38 (2022)
1555-1583.

[45] M. Abd Elaziz, D. Yousri, S. Mirjalili, A hybrid Harris

M. Yassami and P. Ashtari, AUT J. Civil Eng., 6(2) (2022) 295-318, DOI: 10.22060/ajce.2023.21732.5810

317

hawks-moth-flame optimization algorithm including
fractional-order chaos maps and evolutionary population
dynamics, Advances in Engineering Software, 154
(2021) 102973.

[46] M. Abdel-Basset, W. Ding, D. El-Shahat, A hybrid
Harris Hawks optimization algorithm with simulated
annealing for feature selection, Artificial Intelligence
Review, 54 (2021) 593-637.

[47] R. Al-Wajih, S.J. Abdulkadir, N. Aziz, Q. Al-Tashi, N.
Talpur, Hybrid Binary Grey Wolf With Harris Hawks
Optimizer for Feature Selection, IEEE Access, 9 (2021)
31662-31677.

[48] T. Yokota, T. Taguchi, M. Gen, A solution method for
optimal weight design problem of 10 bar truss using
genetic algorithms, Computers & Industrial Engineering,
35 (1998) 367-372.

[49] R. Awad, Sizing optimization of truss structures using
the political optimizer (PO) algorithm, Structures, 33
(2021) 4871-4894.

[50] H. Varaee, M.R. Ghasemi, Engineering optimization
based on ideal gas molecular movement algorithm,
Engineering with Computers, 33 (2017) 71-93.

[51] A. Kaveh, T. Bakhshpoori, A new metaheuristic for
continuous structural optimization: water evaporation
optimization, Structural and Multidisciplinary
Optimization, 54 (2016) 23-43.

[52] B. Adil, B. Cengiz, Optimal design of truss structures
using weighted superposition attraction algorithm,
Engineering with Computers, 36 (2020) 965-979.

[53] E. Pouriyanezhad, H. Rahami, S.M. Mirhosseini, Truss
optimization using eigenvectors of the covariance matrix,
Engineering with Computers, 37 (2021) 2207-2224.

[54] M. Jafari, E. Salajegheh, J. Salajegheh, An efficient
hybrid of elephant herding optimization and cultural
algorithm for optimal design of trusses, Engineering with
Computers, 35 (2019) 781-801.

[55] G. Dhiman, ESA: a hybrid bio-inspired metaheuristic
optimization approach for engineering problems,
Engineering with Computers, 37 (2021) 323-353.

[56] A. Kaveh, R. Mahdipour Moghanni, S.M. Javadi,
Optimum design of large steel skeletal structures
using chaotic firefly optimization algorithm based on
the Gaussian map, Structural and Multidisciplinary
Optimization, 60 (2019) 879-894.

[57] H. Cao, X. Qian, Z. Chen, H. Zhu, Enhanced particle
swarm optimization for size and shape optimization of
truss structures, Engineering Optimization, 49 (2017)
1939-1956.

[58] A.H. Gandomi, S. Talatahari, X.-S. Yang, S. Deb,
Design optimization of truss structures using cuckoo
search algorithm, The Structural Design of Tall and
Special Buildings, 22 (2013) 1330-1349.

HOW TO CITE THIS ARTICLE
M. Yassami, P. Ashtari, PSOHHO Hybrid Optimization Algorithm for Truss Optimization, AUT
J. Civil Eng., 6(2) (2022) 295-318.

DOI: 10.22060/ajce.2023.21732.5810

This
 pa

ge
 in

ten
tio

na
lly

 le
ft b

lan
k

	Blank Page - EN.pdf
	_GoBack

