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Effect of Load Eccentricity on the Bearing Capacity of Strip Footings on Rock Masses
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ABSTRACT: In general, the effect of load eccentricity should be considered in determining the 
ultimate bearing capacity of foundations. In the present study, the upper bound method of limit analysis 
was used to propose an equation for determining the bearing capacity of rock masses subjected to the 
load of a strip footing. The Hoek-Brown failure criterion was used for the rock mass and the footing load 
was assumed to be exerted eccentrically to the rock mass. The maximum eccentricity value was limited 
to 1/6 of the footing width to keep the whole footing base in contact with the underneath ground and not 
result in lifting the footing. Extensive parametric analyses were performed to investigate the effect of 
the footing width and the rock mass properties on the bearing capacity of rock masses subjected to the 
eccentric loads. The results show that increasing the load eccentricity from zero to 1/12 and 1/6 of the 
footing width results in 20% to 40% reduction in the bearing capacity of rock masses, respectively. Also, 
for all considered eccentricities, the effect of the rock mass unit weight and the footing width and also the 
Hoek-Brown parameters σci and mi on the bearing capacity were reduced by increasing GSI. Increasing 
the unit weight of the rock mass from 20 kN/m3 to 25 kN/m3 results in increasing the bearing capacity 
between zero and 15%. Also, by increasing the footing width from 1 to 5 meters, the bearing capacity 
increases between 13% and 46%.
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1- Introduction
A crucial step in foundation design is the determination 

of the bearing capacity. Foundations might be subjected to 
eccentric loads from the columns or a combination of centric 
axial load and bending moments which the bearing capac-
ity of the latter case can be investigated in the same manner 
as footing subjected to eccentric load without bending mo-
ment. Meyerhof [1] conducted preliminary investigations on 
the bearing capacity of footings subjected to eccentric loads. 
He considered the effect of eccentricity by introducing the 
method of dimension reduction. In another study, Meyerhof 
[2] proposed that the bearing capacity under an eccentric load 
can be obtained as the bearing capacity of the foundation sub-
jected to the centric load multiplied by a reduction factor.

The finite difference method was applied to investigate 
the bearing capacity of ring footings on non-cohesive soils 
under eccentric loads [3]. They proposed a reduction factor 
that depends on the value of eccentricity and the external and 
internal diameters of the ring footings. Multiplying the reduc-
tion factor by the bearing capacity in the absence of eccentric-
ity results in the eccentric ultimate bearing capacity.

In another research, the finite element method was used 
to consider the effect of load eccentricity on the bearing ca-
pacity of a strip footing located in the vicinity of a slope [4]. 

Also, several experiments were conducted to determine the 
bearing capacity of footings rested on sand subjected to ec-
centric loads [5]. He considered three values for the eccen-
tricity of the footing load concerning the footing center which 
includes B/24, B/16, and B/12 (B is the footing width). The 
effect of load eccentricity on the bearing capacity of circular, 
rectangular, and strip footings on loose sandy soils was also 
investigated [6]. Moreover, the limit equilibrium method was 
applied to investigate the bearing capacity of strip footings 
under eccentric and oblique loads [7]. The results of this re-
search were presented as bearing capacity coefficients which 
depend on the internal friction angle of the soil, the ratio of 
load eccentricity to the foundation width, and the applied ver-
tical load. In another study, a neural network technique was 
used to examine the effects of load eccentricity and inclina-
tion, soil internal friction angle, and the footing width and 
embedment depth on the bearing capacity of strip footings 
[8].

The bearing capacity of rock masses has been focused 
on in recent years by researchers and different subjects were 
studied including the bearing capacity subjected to axial cen-
tric loads [9-13], groundwater [14, 15], adjacent footings 
[16-18], seepage [19, 20] and the footing embedment depth 
[21, 22]. To the authors’ knowledge, the effect of load ec-
centricity on the bearing capacity of rock masses is an issue 
with minor focus from researchers. However, this is a vital *Corresponding author’s email: imani@aut.ac.ir
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topic for the rock foundation of large structures, like bridges, 
which impose eccentric loads on the ground on which they 
are founded.

Among few studies regarding the bearing capacity of rock 
masses subjected to eccentric loads, one can mention the 
method presented by Keawsawasvong et al. [23]. By using 
the Optum G2 software and applying the Hoek-Brown failure 
criterion, they showed that increasing the load eccentricity 
results in decreasing the bearing capacity. Regarding the limi-
tation of conducted studies about the bearing capacity of rock 
masses under eccentric loads and considering the significant 
application of the Hoek-Brown failure criterion in practical 
problems of rock masses, this research has focused on devel-
oping a formulation for the ultimate bearing capacity of rock 
masses under eccentric loads. The equations proposed in this 
paper are based on the upper bound method of limit analysis 
which is well-known in bearing capacity calculations. Be-
cause of the eccentricity of the load applied to the footing, 
an asymmetrical failure mechanism was considered for the 
analyses since the maximum eccentricity for which, the foot-
ing is fully in contact with the ground is 1/6 of the footing 
width, the maximum eccentricity considered in this study as 
limited to 1/6 of the footing width. Finally, parametric analy-
ses were conducted to determine the effect of different rock 
mass properties on the bearing capacity under eccentric loads

.
2- Using the upper bound method for rock masses 
following the modified Hoek-Brown criterion

Comparing to the Mohr-Coulomb failure criterion which 
was used in some previous researches [24]{Yousefian, 2020 
#1}, the Hoek-Brown criterion is widely used in practical 
problems as the most common rock mass failure criterion 
[25]. The general form of this criterion is shown in Eq. (1):
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 Where σ’
1 and σ’

3 are the major and minor effective prin-
cipal stresses, respectively, and σci is the uniaxial compres-
sive strength of the intact rock. m, s and a can be obtained 
as follows: 3
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where mi is a constant that varies from 5 to 33. GSI refers 
to the geological strength index of the rock mass and D is the 
disturbance factor which ranges from zero to one.

As explained in the following sections, having shear 
strength parameters of the material, i.e., cohesion (c) and fric-
tion angle (ϕ), is necessary for upper bound calculations [26]. 
However, there is no direct access to these parameters in the 
Hoek-Brown criterion. Yang and Yin [13] proposed that the 
non-linear Hoek-Brown criterion be replaced by a tangential 
straight line, where the angle of this line with the horizon was 
introduced as ϕt (the angle of internal friction), and its vertical 
intercept was named as ct (tangential cohesion).
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The location of this tangential line with respect to the non-
linear Hoek-Brown criterion should be determined through 
an optimization technique to achieve the lowest possible 
bearing capacity which means that ϕt should be incorporated 
in the bearing capacity equation as an unknown parameter 
[13]. After determining it through the optimization, the cor-
responding ct can be obtained as follows:
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replacing the non-linear Hoek-Brown criterion with a sin-
gle straight line does not deliver precise results. For overcom-
ing this approximation, Mao et al. [27] proposed the multi-
tangential techniques shown in Fig. 1. In this method, the 
original non-linear Hoek-Brown criterion is replaced by sev-
eral tangential lines, each of them has a unique angle with the 
horizon (ϕti) and the vertical intercept (cti). Therefore, several 
unknown ϕti angles are entered into the analyses which should 
be determined through an optimization technique. After de-
termining them, the corresponding cti values can be obtained 
using Eq. 6. Although this method results in increasing the 
analysis time, it improves the accuracy of the bearing capac-
ity considerably [18, 19, 22]. This method was employed for 
the first time in this paper to obtain the effect of load eccen-
tricity on the bearing capacity of rock masses.
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Fig. 1. The multi-tangential linearization approach [27] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The multi-tangential linearization approach [27]

3- Determining the bearing capacity of rock masses under 
eccentric loads
3- 1-  The failure mechanism

Because of the eccentricity of the footing load, a non-
symmetric failure mechanism was considered in the present 
paper, as shown in Fig. 2. The mechanism consists of a cen-
tral triangular wedge beneath the footing and m and n trian-
gular wedges in the right and left sides of the central wedge, 
respectively. The eccentricity of the load is equal to e with 
respect to the footing centerline. The surcharge q was consid-
ered to be applied to the sides of the footing. It was assumed 
that the apex of the central triangular wedge beneath the foot-
ing lies along the load applied to the footing. Li

L, Li
R, di

L, and 
di

R are the length of the velocity discontinuity lines. The an-
gles θL, θR, αi

L, αi
R, βi

L, and βi
R are unknowns, and their value 

should be determined by optimization of the bearing capacity 
formula developed in this paper in such a way that the lowest 
possible bearing capacity be achieved. Fig. 3 shows the ve-

locity field and the corresponding hodograph. Vi
L, and Vi

R are 
the velocity of each triangular wedge, and VL

i-1,i, and VR
i-1,i are 

the relative velocity between two adjacent wedges. The angle 
between each velocity vector and the corresponding velocity 
discontinuity line is equal to the internal friction angle of the 
rock mass [26]. As explained previously, since the multi-tan-
gential technique was applied in this paper, the angle between 
each velocity vector and the corresponding discontinuity line 
(ϕi

L, ϕi
R, ϕi-1,i

L and ϕi-1,i
R) is unique and unknown, which should 

be determined through optimization.

3- 2- The length of velocity discontinuity lines and the area 
of the wedges

For conducting upper bound calculations, the length of 
velocity discontinuity lines and the area of the wedges should 
be determined. The procedure for the determination of these 
parameters were presented in the appendix. 
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3- 3- Internal energy dissipation and external work
The total amount of the internal energy dissipated in the 

mechanism is equal to the sum of the energy dissipated along 
the velocity discontinuity lines which in turn, is equal to the 
length of each discontinuity line multiplied by the velocity 
and the cohesion along it. Also, the total amount of the exter-
nal work exerted on the mechanism is equal to the sum of the 
external work due to the weight of wedges (Wγ), the footing 
load (Wque), and the surcharge (Wq). The calculation proce-
dure was presented in the appendix.

3- 4- Ultimate bearing capacity of rock masses subjected to 
eccentric loads 

By equating the internal energy dissipated in the mecha-
nism (Eq. A9) to the external work exerted by the mechanism 
(Eq. A19), the general formula for the ultimate bearing capac-
ity of rock masses under the eccentric loads of strip footings 

was obtained as follows:
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Where Nσe, Nqe, and Nγe  are the bearing capacity factors 
which are:
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Fig. 3. The velocity field and the corresponding hodograph 
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3- 5- Optimization of the bearing capacity formula
As mentioned in previous sections, the proposed formu-

la for the bearing capacity of rock masses under eccentric 
loads contains 4n+4m+2 unknowns including θL, θR, αi

L, αi
R, 

βi
L, βi

R, ϕi
L, ϕi

R, ϕi-1,i
L, and ϕi-1,i

R. These unknowns should be 
determined using an optimization technique in such a way 
that the best (lowest) possible magnitude for the bearing ca-
pacity be achieved. n and m are the numbers of triangular 
wedges on the right and left sides of the central wedge, re-
spectively. The optimization was conducted using the ge-
netic algorithm tool provided in MATLAB software. For the 
assumed failure mechanism to be kinematically admissible, 
the unknown parameters were constrained appropriately to 
avoid unrealistic values. Based on the geometry of the fail-
ure mechanism and the velocity hodograph, the following 
constraints were considered:
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Fig. 4 Shows a flowchart for the procedure of the solu-
tion proposed in this study.

4- Comparison of the results with other available methods
The formula proposed for the bearing capacity (Eq. 7) 

comprises three parts which depend on σci, q and γ. Since the 
magnitude of σci is commonly high in rock masses, the effect 
of the first part of Eq. 7, i.e., s0.5σciNσe, is larger than the share 
of the two next parts, i.e., qNqe and 0.5γBNγe. Therefore, in 
most previous studies, by ignoring the effect of q and γ, the 
general form of the bearing capacity of rock masses reduced 
into the following form [10, 13, 18, 19, 28]:
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0.5
ue ci eq s N=           (12) 

 

 (12)

Therefore, the bearing capacity factor Nσe is:

0.5
ue

e
ci

qN
s 

=            (13) 

0.5 0.5ue ci e eq s N BN  = +          (14) 

0.5
ue ci e qeq s N qN= +          (15) 

 

 (13)

By using this dimensionless factor, some comparisons 
with other available solutions were performed in the follow-
ing sections to show the reliability of the proposed formula-
tion in the current study.

4- 1- Determining the optimal number of wedges
As mentioned before, n and m wedges were considered on 

the right and left sides of the central wedge, respectively. For 
determining the optimal values of n and m, different values 
of these parameters were considered. For simplicity, n and m 
were assumed to be equal to each other. Table 1 presents the 
magnitude of Nσe for different values of n = m. it is clear that 
by increasing n = m, the difference between two successive 

 

 

Fig. 4. The flowchart of the solution proposed in this study 
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n=m reduces. For n = m = 9, the difference becomes smaller 
than 0.5%. Therefore, the analyses considered in this study 
were performed assuming n = m = 9. 

4- 2- The case of footing load without eccentricity
By putting e=0 in the bearing capacity formula proposed 

in the current paper, the bearing capacity for the case of cen-
tric loads can be obtained. Therefore, the results of the pres-
ent paper can be compared with the available methods for 
the case of the rock masses subjected to vertical load without 
eccentricity. Assuming σci=10 MPa, mi=17, D=0, B=1m, and 
e=0, Table 2 presents a comparison among different methods. 
A substantial agreement between the results of the present 
method and the method of AlKhafaji et al. [19] can be seen 
which is due to the similarity between the linearization of the 
Hoek-Brown criterion in these two methods, i.e., the multi-
tangential technique. There is also a reasonable agreement 
between the results of the present method and the method of 
Saada et al. [10], especially for small values of GSI. But the 
differences between the results of the present study and the 

Yang and Yin [13] method are significant. As stated previous-
ly, Yang and Yin [13] linearized the non-linear Hoek-Brown 
criterion with a single straight line which results in decreas-
ing the accuracy of their method concerning the multi-tan-
gential technique used in the current paper. Previous studies 
were also shown an improvement in the results obtained from 
the multi-tangential technique compared to the Yang and Yin 
[13] single-line approximation method [10, 18, 19, 22].

4- 3- The case of footing load with eccentricity
The results of the present paper were compared with the 

method of Keawsawasvong et al. [23] for the case of e >0.  It 
was assumed that σci=10 MPa, mi=10, D=0, and B=1 m. As 
presented in Table 3, the present method results in smaller 
Nσe (and the corresponding que) than the Keawsawasvong et 
al. [23] method which shows the efficiency of the proposed 
formulation and the considered optimization technique. As 
stated before, obtaining a smaller bearing capacity is more 
valuable in the framework of the upper bound method.

Table 1. Variation of Nσe versus n=m assuming σci=10 MPa, mi=7, GSI=50, D=0 and B=1 mTable 1. Variation of Nσe versus n=m assuming σci=10 MPa, mi=7, GSI=50, D=0 and B=1 m 

e = B/6 e = B/12 e = 0 n = m 
Reduction (%) Nσe Reduction (%) Nσe Reduction (%) Nσe 

- 6.880 - 9.403 - 11.468 2 
10.3 6.169 14.2 8.069 13.7 10.087 3 

8.4 5.689 10.2 7.248 8.7 9.284 4 

3.5 5.490 6.8 6.753 5.2 8.823 5 

3 5.326 1.4 6.658 4.7 8.428 6 

2.6 5.186 0.8 6.603 1.59 8.296 7 

0.62 5.154 0.97 6.539 0.23 8.277 8 

0.37 5.135 0.37 6.515 0.1 8.269 9 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Comparison among the Nσe obtained from different methods Table 2. Comparison among the Nσe obtained from different methods  

Difference (%) 
Yang & 

Yin [13] 
Difference (%) 

Saada et 

al.[10] 
Difference (%) 

AlKhafaji 

et al.[19] 

Present 

study 
GSI 

165.5 49.160 5.6 19.546 4.4 18.518 19.376 10 
156.1 67.081 16 30.369 1.5 26.191 26.595 30 
155.9 49.835 28.7 25.067 1.5 19.472 19.762 50 
146.1 34.159 36.1 18.891 1.0 13.878 14.012 70 

- - - - 1.3 9.95 10.079 90 
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4- 4- Comparison with numerical models
The results of the present paper were compared with the 

finite difference-based code, FLAC 2D. Considering σci=10 
MPa, mi=10, GSI=30, D=0 and B=1 m, Table 4 presents the 
comparison between the Nσe obtained from the two methods. 
The present method results in smaller Nσe (and the corre-
sponding que) than the finite difference method which shows 
the efficiency of the proposed formulation and the considered 
optimization technique. 

5- Parametric analyses
5- 1- Effect of the load eccentricity (e)

As stated previously, the maximum load eccentricity 
considered in the present paper is equal to 1/6 of the footing 
width (e=0.16B). Assuming σci=10 MPa, D=0, and B=1 m, 
and ignoring the effect of the rock mass unit weight and sur-
charges, the variation of Nσe versus e/B is shown in Fig. 5. By 
increasing the load eccentricity, Nσe , and the corresponding 
bearing capacity decreases. By increasing e from zero to B/6 
(e=0.16B), the Nσe  reduces in the range of 37.4% to 42.1% 
depending on the mi and GSI magnitudes.

5- 2- Effect of σci
Fig. 6 shows the variation of Nσe  versus σci for different 

values of eccentricity. It was assumed that GSI=10, B=1 m, 
and D=0, and the effects of the rock mass unit weight and 
the surcharge were ignored. For mi=7 and 17, by increasing 

σci from 2 to 10 MPa, Nσe  reduces about 38.5% and 10.5%, 
respectively. However, by raising σci from 10 to 50 MPa, the 
maximum reduction of Nσe  is 8% and 5.3%, respectively. 
Therefore, by increasing mi, the effect of σci on Nσe reduces. 
Also, by increasing σci, the reduction rate of Nσe decreases. 
Note that this reduction of Nσe  does not result in decreasing 
the ultimate bearing capacity, since according to Eq. (12), the 
ultimate bearing capacity is obtained from the product of Nσe 
and σci. Thus, despite the reduction of Nσe, a rise in σci results 
in increasing the ultimate bearing capacity. Comparing the 
curves related to different values of e show that there is no 
significant difference among them. Therefore, the load eccen-
tricity does not affect the dependency Nσe of to σci. It should be 
mentioned that more analyses were performed using different 
values of GSI and similar variation trends for Nσe versus σci 
were observed.

5- 3- Effect of mi
Considering GSI=10, D=0, B=1 m and ignoring the rock 

mass unit weight and the surcharges, Fig. 7 shows the varia-
tion of Nσe versus mi for different values of load eccentricity. 
By increasing mi from 7 to 25, the Nσe experiences an increase 
between 388% to 397% for the case of σci=10 MPa and 188% 
to 197% for σci=70 MPa, depending on the magnitude of e. 
For smaller values of load eccentricity, Nσe was more affected 
by mi. 

Table 3. Comparison between the Nσe obtained from different solutionsTable 3. Comparison between the Nσe obtained from different solutions 

GSI e Present study Keawsawasvong et al. [23] Difference (%) 

30 
0 14.141 19.151 35.4 

B/12 11.536 15.63 35.5 
B/6  8.593 12.2 42 

50 
0 11.925 16.56 38.9 

B/12 9.659 13.189 36.5 
B/6  7.512 9.95 32.5 

70 
0 8.643 13.23 53.1 

B/12 6.827 10.58 55 
B/6  5.179 7.94 53.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Comparison between the Nσe obtained from the present study and the finite difference method

 

Table 4. Comparison between the Nσe obtained from the present study and the finite difference method 

e Present study Finite Difference Method Difference (%) 

0 14.14 19.06 34.8 
B/12 11.54 15.06 30.5 
B/6  8.59 11.81 37.5 
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Fig. 5. Variation of Nσe versus e/B  
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Fig. 6. Variation of Nσe versus σci  
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Fig. 7. Variation of Nσe versus mi 
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Fig. 8. Variation of Nσe versus D 
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5- 4- Effect of D
No considerable disturbance imposes on rock masses dur-

ing preparation as being the foundation for structures. There-
fore, assuming D=0 in rock foundation problems is reasonable 
[11]. However, the effect of other values of D on the effect of 
load eccentricity on the bearing capacity of rock masses was 
investigated herein. Considering σci=10 MPa, mi=7, B=1 m 
and ignoring the effect of the rock mass unit weight and sur-

charges, Fig. 8 shows the variation of Nσe versus D for differ-
ent values of e and GSI. It is clear that by increasing D from 
zero to 0.5, the maximum reduction of Nσe for GSI=10 and 70 
are 22.7% and 16.8%, respectively. However, the value of e 
does not affect the dependency of Nσe to D considerably. For 
e=0, the maximum reduction of Nσe due to increasing D from 
zero to 0.5 is equal to 18.2%, while for e=B/6, this reduction 
is about 17.5%. 

 

Fig. 9. Variation of Nσe versus GSI  
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5- 5- Effect of GSI
Fig. 9 shows the variation of Nσe  versus GSI assuming 

σci=10 MPa and B=1 m. The effect of the rock mass unit 
weight and the surcharge were ignored. A similar trend of 
variation of Nσe can be seen for different values of e. 

5- 6- Effect of the footing width (B)
According to Eq. 7, the bearing capacity depends on the 

footing width. For investigating the effect of the footing width 
on the bearing capacity and by ignoring the surcharges, Eq. 7 
turns into the following form:

0.5
ue

e
ci

qN
s 

=            (13) 

0.5 0.5ue ci e eq s N BN  = +          (14) 

0.5
ue ci e qeq s N qN= +          (15) 

 

 (14)

Assuming σci=10 MPa, mi=7, D=0, and γ=21 kN/m3, 
Fig. 10 illustrates the variation of que versus B. In the case 
of GSI=10 and 70, increasing the footing width from 1 to 5 
meters results in a maximum increase in the ultimate bearing 
capacity of about 54.7% and 13.1%, respectively. Therefore, 
it can be concluded that the effect of B on the bearing capac-
ity is more sensible for small values of GSI. The eccentricity 
magnitude does not have a considerable effect on this varia-
tion.

 

Fig. 10. Variation of que versus B 
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5- 7- Effect of the rock mass unit weight (γ)
The effect of the rock mass unit weight on the bearing 

capacity is not considerable and was neglected in most of 
the previous researches [10, 13, 18, 19, 28]. However, in this 
section, it was considered under eccentric loads. Ignoring the 
surcharges, Eq. 14 was used for the analyses. Fig. 11 shows 
the variation of que versus γ by considering different values 
of e/B and assuming σci=10 MPa, mi=7, and B=1 m. For the 
cases of GSI=10 and GSI=70, by increasing γ from zero to 
25 kN/m3, the maximum increase in the bearing capacity is 
about 12.2% and 0.9%, respectively, which shows that for 
large values of GSI, γ has no significant effect on que. It is 
clear that the eccentricity value does not play a significant 

role in the effect of γ on que. As an example, in the case of 
GSI=10, by increasing γ from zero to 25 kN/m3, the que in-
creases about 15.2% and 13.5% in the cases of e/B=0 and 
0.16, respectively, which shows the slight dependency of 
que-γ variation on the eccentricity.

5- 8- . Effect of surcharge (q)
For studying the effect of q on the bearing capacity, the 

effect of the rock mass unit weight was neglected. Therefore, 
Eq. 7, was changed into the following form:

0.5
ue

e
ci

qN
s 

=            (13) 

0.5 0.5ue ci e eq s N BN  = +          (14) 

0.5
ue ci e qeq s N qN= +          (15) 

 

 (14)

 

Fig. 11. Variation of que versus γ 
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Assuming σci=10 MPa, mi=7, and D=0, the variation of que 
versus q is shown in Fig. 12. In the cases of GSI=10 and 70, 
by increasing q from zero to 50 kN/m2, the maximum increase 
in the bearing capacity is about 79.7% and 2.7%, respectively 
which shows that for large values of GSI, q has no significant 
effect on que. It is also clear that the role of eccentricity in the 
que-q relationship depends on GSI. For example, in GSI=10, 
increasing e from zero to B/6 results in increasing the que in 
the range of 66% to 80%, while for GSI=70, the increasing 
range is between 60% and 61%. 

5- 9- Design table
The results of the parametric analyses performed in the 

present paper is summarized as a design table shown in Table 
5. It was assumed that σci=10 MPa, D=0, and B=1 m. In prac-
tical problems, the ultimate bearing capacity can be obtained 
by putting the bearing capacity factors Nσe, Nqe, and Nγe from 
Table 4 into Eq. 7.

 

Fig. 12. Variation of que versus q 
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6- Conclusion
In summary of the obtained results for different cases con-

sidered in the present paper, it is concluded that by increasing 
the load eccentricity from zero to 1/6 of the footing width, 
the bearing capacity factor Nσe  was reduced in the range of 
20% to 40%. Also, for all considered eccentricities, the effect 
of σci, mi, γ, and B on the bearing capacity was reduced by 
increasing GSI. As a simple conclusion to be used in practi-
cal problems, the following variation of Nσe can be proposed 
for the 10<GSI<70. Notably, larger percentages are related to 
GSI=10, while smaller ones relate to GSI=70. 

•	 By increasing D from zero to 0.5, Nσe  is reduced 
within the range of 13 to 20%. 

•	 By increasing mi from 7 to 25, Nσe  becomes 2 or 3 
times larger. 

•	 Increasing the unit weight of the rock mass from 20 
kN/m3 to 25 kN/m3 results in increasing the bearing capacity 
between zero and 15%. 

•	 By increasing the footing width from 1 to 5 meters, 
the bearing capacity increases between 13% and 46%.

•	 Increasing the surcharge from zero to 50 kN/m3, re-
sults in increasing bearing capacity up to 79%. 

•	
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