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Extended power series solution for Perkins-Kern-Nordgren model of hydraulic fracture
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ABSTRACT: The extended Power Series (XPS) method can be extremely useful for solving nonlinear
equations with regular and irregular singular points. The extended power series is considered times a
logarithm or times a fractional power of é’ , etc.). This research shows it is simple to solve approximately
the Perkins-Kern-Nordgren (PKN) model of hydraulic fracture. To illustrate the effectiveness and
convenience of the XPS method, we consider the two cases of dimensionless PKN equation containing
the M-scaling and M -scaling. The results compared with available analytical results verified excellent

agreements.
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1- Introduction

The classical Perkins-Kern-Nordgren (PKN) model is
useful in hydraulic fracture [1, 2].This model is widely used
in the oil and gas industry to assist in the design of hydraulic
fracturing treatments that are engineered to enhance the
recovery of hydrocarbons from underground reservoirs[3-5].
The PKN model is applicable for conditions when the vertical
hydraulic fracture remains confined within the horizontal
permeable or impermeable layer, on account of sufficiently
high contrast in horizontal stress between the reservoir layer
and the adjacent impermeable layers.

The original formulation of the PKN model is credited
to Perkins and Kern (1961)[1]. Nordgren (1972)[2] modified
the model and provided numerical solutions of the non-linear
differential governing equation, PKN equation, as well as
closed-form solutions.

Some ambiguity in the boundary condition at the moving
front in Nordgren’s article is discussed by Kemp (1990), who
provided the correct asymptotic form of the fracture width
in the tip region in the case of an impermeable layer. Also,
approximated solutions are proposed by Economides et al.
(2007)[6]. In the last decades, although, many efforts have
been made by researchers to resolve and modify the PKN
model, there also remains some ambiguity. The formulation
of the PKN fracture model gives rise to a challenging
mathematical problem, in contrast to the simplicity of the
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physical problem that it aims to capture[7]. Indeed, this
problem is governed by a strongly non-linear differential
equation and is characterized by the presence of a moving
boundary and by a degeneracy of the governing equation
near the moving tip due to the vanishing of the fracture
aperture[7]. Because of the complexity of the underlying
mathematical model and the presence of a singular point
in the PKN equation, it is relatively difficult to be solved
analytically, nevertheless, there are many analytical methods
for singular boundary value problems [7-14].

In this paper, we present the Extended Power Series
method which has a simple producer to obtain an analytical
solution of the PKN equation. The PKN equation has a
singular point that is not analytic, but this equation can still
be solved by the proposed method. Indeed, the following
simple theorem permits an extension of the power series
method. The new method is called the XPS method.

2- Formulation

We consider the propagation of a PKN fracture of length
2/ (t), emanating in a linear elastic rock characterized by
Young’s modulus £ , and Poisson’s ratiov, (see Fig. 1).
A Newtonian fluid with a viscosity of 4, is injected via a
constant volumetric flow, Q,, from a straight-line source
located at the center of the fracture, which is induced to
internal fluid pressure P, (x , t) on the surfaces cracks. A far-
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Fig. 1. Sketch of a PKN fracture.

field confining stress o acts perpendicular to the crack. The
Linear Elastic Fracture Mechanics (LEFM) theory is adopted
to obtain the net pressure in the fracture P(x,t)=P (x,t)-0,
, the average aperture w (x,t), as well as the fracture half-
length 7 (t) , where ¢ is the time and x is the position along
the crack.

The analysis assumptions and boundary conditions were
considered according to Ref. [7].

2- 1- Governing equations

The governing equations of the model consist of a
propagation criterion, an elasticity equation, and the
lubrication equation. These equations can be expressed in
terms of the half of the crack, 0<x </, the crack opening,
the average fluid velocity, and the fluid net pressure by
accounting for the problem symmetry as follows:

2- 1- 1- Fluid mass:

The fluid flow in the fracture is governed by continuity
of mass and momentum. Global fluid continuity requires
the injected fluid volume to be equal to the fracture volume;
hence:

%4, o _,, (1)
ox 61‘

Here, q( x,t) is the average flow rate per unit height of
the fracture, H .

2- 1- 2- Fluid momentum:

The unidirectional laminar flow of a Newtonian viscous
fluid inside the elliptical cross-section crack is described by
the momentum balance equation [2].
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2- 1- 3- Elasticity equation
The average crack opening is related to the local net
pressure on the crack[2].

s E,:_
E'p 7l—ov

-, 3)

Where, £ and v are Young’s modulus and Poisson’s
ratio of the rock, respectively.

The three governing Egs. 1, 2, and 3 can be combined into
one non-linear partial differential equation for the aperture

w(x,t),

ow E o*w'
— T a2 =0 )
ot 4Au'H ox

2- 1- 4- Initial/boundary conditions

The boundary conditions at the crack tip x = f(t)and the
fluid injection point x =0, are

w(x,t)=g=0at x=((r) (%)
=j0[wdx=% ,at x=0 (6)
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The initial conditions are formally given by
(=w=¢g=0, at r=0. (7)

2- 2- Dimensionless Formulation

To facilitate the solution of the set of equations (1- 4), let
us introduce the following scaled and normalized quantities:
the coordinate ¢ = / ((t)€[0,1], the crack opening, and the
crack half-length, as follows:

e =wORE). (=Ll ®

2

Q(&1)=Q(&1)y 3,

Itis noted that the “bar sign” corresponds to the normalized
quantities.

Using the above transformations, Eqs (4- 7) can be re-
written in an alternative form as follows:

r . . . r ~ 24
G || Wt 27 g o g 70 £ 1 1o
w3y y L)os| G,4 0
- )
N ‘ s
d o =2y 3G,
o5

"
£=0

Also, two dimensionless parametersG, , and G, in Egs. (9)
and (8) are expressed as:

_LWH _ M LG,

G, = o S TR (10)
0

For more expressions of these dimensionless parameters
in the two scales, identified as the viscosity scaling G, =1,
and the storage scaling G, =1, refer to[7]. In this way, the
parameters for the M-scaling, Eq (10), are obtained by taking
G, =1 and G, =1. So, the quantities ¥, and L take the explicit
forms:

y (10
E'H

Differentiating Eqs. (11) with respect tof, and substitution
into Eq. 9, yields:

w|—

1

1 r 3 \z 4

5 L:[E%]Sts’ (11)
u H

. . . = 24
l_ﬁ_%ﬁ Q+QZ‘_§ Lt_;,_ﬂ 679 218792,
5 3y y 5)o&| 4 o
. - S (12)
S=rfoae, S =y,
27 o& ..,

3- Extended power series solution to PKN equation

The PKN equation/model was solved by different
analytical and numerical methods [7, 15-22] and its solution
was applied in the references[11, 23]. In this work, the XPS
method is improved and suggested to find a simple approach
to the problem of PKN equation/model hydraulic fracture
propagating in brittle rock. To illustrate the effectiveness and
convenience of the XPS method, in this section, we consider
the two cases of dimensionless PKN equation containing the
M-scaling and -scaling [2, 7, 15].

3- 1- PKN equation in the M-scaling:

Formulation of the mathematical model in the M-scaling
has already been presented in Eq 12. we seek

to compute the M-solution on the small-time solution,
then Eq. 12 can be reduced to:

24
ﬁm+A§aQ“‘+Ba%"‘=o, A =-4, Bz—é,
o0& o0&
| oa*
—=ya[0ds BC T = (13)
o 9 |

As before mentioned, Eq. (13) is determined using the
scaling technique and combining three equations follow
as: global continuity equation, momentum equation, and
constitutive law for the hydraulic fracturing model. To show
the simple solution process, we re-write Eq. (13) in the forms:

Q, (§)+482,(¢)
+12BQ, (£)’ 0, (£) (14)
+4BQ, (£)'Q," (£)=0

The idea is to assume that the unknown function Q (f )
can be expanded into a power series:

Qm(é)z(g_égo)rh(g_go)a (15)

Where,
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h(§—§o)=gan (£-&)"

(n)
an Zh (0)’ §0=1
n!

(16)

According to the XPS method, fractional power,”
, in Eq. (15) can be obtained by assuming h(g_go) =1

. So, we have:O) . (&)= (5_1)', ﬁm’(g):r(ér_l)"‘ and
Q," (&) 5, _,)(é: 1) ~2. Substitution of these equations
into Eq. (2) yields:

(&-1) +4rs(e-1)"
+B112((£-1)")(r* (£~ 1)2’2) (17

+(4(£=1)")r (r=1)(£-1) 1=

By simplifying the above equation, we have:

(E-1) +4rg(e-1)"
+4Br (4r —1)(&-1)""7 = (1o

After further simplification, we obtain:

(E-1)"(E-1)+are
sty (19)
+43r(4r 1)(§ 1) =0

((5—1)+Ar§+43r(4r—1)(§ 1) 1)
) (20)
- r==
3

After substitution of =1/3 into Eq. (15) and Eq. (14)
yields:

3(-3+(3+4)&)n+4Bh*
+9A4 (—1+&)ER +108B (—1+ &) h*h™? (21
+12B (—1+ &) > (8h' +3(—1+&)R") =

For brevity, h(&—1) have been replaced with /1 and Eq.
(21) upon the substitution & =&, =1 becomes:

34h(0)+4Bh* (0)=0

-1 2/3 313 4113 22
h(0) = —% 22
2°°B
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Differentiating Eq. (21) with respect to &, we obtain:

3(-3-34+3&+74&)h’

34 (3444728 (-14&) "

94 (-1+&)En” 23)
+36B (—1+&) k' (14h" +9(-1+ &) A"

+4Bh° (28h’+42(—1+§)h” +9(=1+&) h<3>) _

Setting & =&, =1 in Eq. (23) results in:

124h'(0)+3(3+4)h(0)
+112Bh*(0)h'(0)=0

(o) 1O Get)

24

By a similar operation, we can obtain

(1) (3+4)(27+4)
( ): 672x6Y3 452 B3
E (3+4)(~1341-1024 +434°)
) 40320x 623 4% 13 (25)
K9 (0)=—(~1" (3+4)
(<1)"(3+4)(-2428245-3147934 +1738894 " +211494°
55036800X62/3A11/SB 1/3

s

The extended power series solution is

o n

Z

n=0

_ { (- >“<3+A>

13208832006*°4"'"*B"?

w\'—‘

x(—2428245-3147934 +1738894% +211494° ) (£ 1)’
(=1)"(3+4)(-1341-1024 +434°) :

241920x6° AV B (£-1) (26)
()" (3+4)(27+4) ,
YRyt Gt
(—IJZ/S (3 +A4 )(_1+§) 2/3
31/3A1/3 1
- : ( ) +—... (5—1)3

8A 2/3B 1/3 22/381/3

Substitution of 4 = —4, and B =—-5/4 into Eq. (26)
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yields the final expression:

6.(0)=(2) 2 0-9"
{ 1+ —(5 )

64512(5_ )y 27)

51923
A L R +—...}
1327104 202887659520

7, =0.660422, QO (0)=1.00514

This result agrees with the solution obtained by Kemp
(1990) [15] and Y. Kovalyshen and E. Detournay (2010)[7].
3-2- PKN equation in the -scaling:

To determine PKN equations in the -scaling, Eq 1-7 should
be rewritten considering the leak-off effect. For the sake of
brevity, the details are not presented here. Dimensionless
PKN equations in the -scaling has already been obtained by

Y. Kovalyshen - E. Detournay [7, 15] and can be expressed
as follows:

2594
! Lo, =0, B.C.
Ji-& 48
Q,(&%)=0, &=1 (28)
1 4
Loy [impae Z) oy
2 0 o¢ £=0
we extend Eq. (28) in the below form:
1
30, (§) 9, (&)
J1-¢° (29)

-0, (£)'Q,"(&)=0

The idea is to assume that the unknown function Q. (f )
can be expanded into a power series:

8, (£)= ih(n (0)(5 &),

n=0

£ =1 (30)

The fractional power, 7, in Eq. (30) can be determined
by the same process as in the previous section and is equal
to 3/8. After substitution of 7 =3/8 into Eq. (30) and Eq.
(29) yields:

L—JL+§hﬂ€%
+(—1+&)n (30" +(—1+&)n" ) =0

B2 +3(—1+&) h"”
31)

Substituting & = 1into Eq. (31) gives:

27/8

4
_30) FOEE

82

Differentiating Eq. (31) with respect to &, we obtain:

L R 192(-14 ) (146) 0"

32,1+ &
+48(—1+§)hh’((9+11§)h'+6(—1+§2)h")(33)
+8h*(3(3+7E)h'+2(-1+¢)

x((9+118)h" +2(-1+&%)aV ) =0

Setting & = &) =1 in Eq. (33) results in:

4
317(0) [ 15V2 1 ) 1 (0) = 0

322 4 (34)
h (0) — _M

By a similar operation, we can obtain

" 159
h (0)=———"h

( ) 44800 ( )
8527
AP (0)=——222"_h(0), 35
( ) 3584000 ( ) 33)

57774251
“(0)= h(0),
22077440000

The extended power series solution is

=w

s

Q : §
n=1
:(l_(—l+§)+159(—1+§)
80 89600 (36)
8527(-1+¢) N 57774251(—1+\§)4)(2)”8 (1-&)"
21504000 529858560000 ~ 3¢

Q,(0)=0.797886, 7, =0.31831

This result agrees with the exact solution, Eq.(37),
obtained by Y. Kovalyshen and E. Detournay (2010)[7].
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Fig. 2. Comparison of dimensionless fracture opening, (2, and crack half-length, ¥ , from XPS
method with exact solution.
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The evolution of the crack length, y, and normalized
average opening, €2, in various scaling are shown in Fig.
2. Comparison of the results obtained with the values in the
exact solution indicates the acceptable ability of the XPS
method in the solving the PKN model.

4- Conclusion

This research suggests a simple solution method, the
extended power series method, to solve the PKN equation,
the idea can be extended to all differential equations with
moving boundary conditions. Compared with other analytical
methods, the XPS method is straightforward with a simple
solution process and accurate results. The most advantage
of the XPS method is that the redundant terms will not be
produced, and the series may converge to the exact solution.
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