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Abstract 

Driver behavior is a critical factor in traffic safety. Detecting abnormal driver behaviors through appropriate 

indicators and enforcing driving regulations will reduce high-risk driving behaviors and increase traffic 

safety. Detecting dangerous driver behavior is beneficial for developing warning systems and preventing 

accidents. Some high-risk driving behaviors, such as sudden lane changes, are dependent on determining the 

movement direction of the vehicle which has not received enough attention. The objective of this study is to 

determine the direction of movement of the vehicle and lane changes, using the sensors in the smartphone 

mounted on a vehicle. To achieve this goal, first, by using the Samsung Galaxy S6 smartphone and an 

accurate Global Positioning System (GPS), longitudinal and angular accelerometer data and GPS data are 

sampled as a dataset and combined by different types of neural networks. Then, combined data is fed into a 

suggested neural network and lane changes are detected. Finally, the GPS data is used as the ground truth 

for the training of the neural network. If the GPS is not accessible, this neural network, just by receiving 

smartphone accelerometer data, can estimate the vehicle's direction of movement with an accuracy of 0.5 to 

4.8 meters compared to the ground truth up to 8 seconds after the GPS is shut down. Using the vehicle travel 

path, an algorithm is proposed that can correctly detect the change of driving lane in the sample data set with 

94% accuracy, 93.62% precision, 88.00% recall, and F1-score 90.72% which are acceptable values.  
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1. Introduction 

Nowadays, transportation management is one of the most important concepts in every country. One of the 

most crucial criteria of transportation management is traffic safety. Traffic safety has received significant 

attention in transportation due to the increasing fatality rates in recent decades. Traffic safety refers to the 

methods used to prevent accidents or incidents in transportation networks. Traffic safety is influenced by 

many factors, such as driver behaviors, vehicles, and environmental conditions. Several studies have shown 

that more than 90% of accidents are due to mistakes made by road users or driver fatigue [1, 2]. Road users 

can include pedestrians, cyclists, drivers, vehicle passengers, and public transport passengers [3]. The 

behavior of road users, particularly drivers, is one of the most influential factors in traffic safety.  

Driver behavior refers to the way a driver drives in real traffic conditions. Many research studies have been 

conducted to identify driver behaviors. Some studies only consider driving style to identify driver behavior, 

while others take into account weather and vehicle conditions [4, 5]. Most of these research studies could 

only identify one aggressive behavior, and only a few studies existed that could identify more than one 

abnormal behavior. To date, no investigation has been able to identify all driver behaviors [6].  

To identify driver behavior, it is essential to understand the vehicle's position relative to other cars and 

obstacles. Depending on the direction of movement of the vehicle under study, driver behavior can be 

investigated under two categories: 1) transverse movement (lane change) and 2) longitudinal movement 

(sudden change of speed). These categories can be determined by analyzing the speed of the car, its 

acceleration, and steering angle [7]. One of the best methods that can be used to identify driver behaviors is 

lane change and vehicle trajectory. In addition to driver behavior, vehicle trajectory can be used to evaluate 

travel time, fuel consumption, etc. [8]. Also, it can be used to provide digital maps of roads [9]. Developing 

a system that assists researchers in detecting vehicle trajectory and direction can be used to identify 

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T



aggressive behaviors such as lane changes and improve traffic safety. Several methods can be employed to 

identify lane change as a sign of driver behavior, including the Internet of Things (IoT).  

The IoT is a network of machines, devices, and other things that are interconnected and able to communicate 

with each other without the need for human intervention [10]. The IoT acts as an interface between computers 

and other objects [11]. In such methods, input information and data are collected by automated systems and 

sent to a central server. The IoT can be applied in transportation engineering, especially in determining lane 

changes using different devices. The application of IoT in identifying driver behavior can be studied in three 

main fields: (1) understanding traffic conditions, (2) making appropriate decisions under perceived 

conditions, and (3) detecting distracting behaviors of drivers, such as drinking, eating, and speaking. In 

addition, the path of the vehicle can be combined with research that has been done on pavement distress 

detection to determine the location of these distresses [12]. 

2. Literature review 

Automobile companies are constantly improving their vehicles to enhance driver safety. There are generally 

two groups of car safety systems: passive safety systems such as airbags and seatbelts, and active safety 

systems. The active safety system is designed to control the car in a safe manner and prevent accidents [13]. 

Li et al. ( 2017)[14] developed a Driver's Smart Advisory System (DSAS) to warn drivers near unsignalized 

intersections. The impact of the system's alarms on driver behavior, such as braking and speeding, was 

evaluated. The results showed that the system could improve driver awareness in unsignalized intersections. 

One of the most well-known active safety systems is the Advanced Driver Assistance System (ADAS), which 

can warn drivers and automatically intervene in handling cars if necessary [15]. These systems employ a 

specific series of sensors and have the capability to add more sensors for further assistance [16]. For instance, 

Julia Carrillo (2015), and Shaout et al. (2011) [17, 18] used laser and radar to capture data and applied image 

processing techniques to develop speed controller systems. One of the first systems designed to control driver 

behavior is the Adaptive Cruise Control (ACC) system, which allows drivers to adjust their speed and 

distance from the car in front of them without using the accelerator or brake pedal. Early versions of ACC 
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systems were laser-based, but long-range radars are now used due to the shortcomings of lasers. More 

complex ACC systems use ultrasonic sensors for more precise data at low speeds. These systems are 

particularly applicable in heavy traffic [12, 19, 20]. 

Crossing protection systems and lane change assistant systems are designed based on road signs to reduce 

the risk of high-speed collisions, particularly on highways and roads. These systems use optical detection of 

road signs and markings, but their efficiency depends on weather conditions, and they perform weaker in 

rainy weather. Most cars now use multi-function mono cameras and multi-function stereo cameras. An 

advantage of the stereo camera is that it can recognize 3-D objects, lines, and obstacles [21, 22]. The more 

intelligent the driver assistance systems are and the less driver intervention is required, the closer they come 

to the concept of a fully automatic vehicle. Self-driving cars are classified into five levels of intelligence, 

where level five is fully automatic. Level one, also called driver assistance systems, controls only one part 

of the vehicle, such as cruise control, automatic braking, and lane-keeping systems. In such systems, the 

driver's reaction is still needed. However, instead of assisting the driver in making decisions, other systems 

analyze the driver's decisions, such as the intensity of the brakes or changing lanes, and detect any abnormal 

behavior. Galarza et al. (2018) designed a monitoring system to detect driver drowsiness and alert the driver 

to consciously control the vehicle. In this system, a smartphone was used to detect driver behaviors and 

properly interact with them [7]. Lee and Chung (2012) [23] proposed a method for monitoring driver safety 

levels using data fusion based on multiple discrete data sources. These data sources consisted of eye 

properties, the temperature inside the car, car speed, etc. Carmona et al. (2015) [24] developed a tool for 

analyzing driver behavior based on low-cost hardware and advanced fusion-based software capabilities. This 

device employed the information provided by in-vehicle sensors along with the unit of inertia measurement 

and Global Positioning System (GPS). 

Yu et al. (2017) [25] divided the driver's abnormal behaviors into six categories: helical movements, rotation, 

slip, fast detour, long-range detour, and sudden braking. By capturing the required information over six 

months of real-world driving conditions, they concluded that each of the six abnormal behaviors listed had 

a unique pattern of acceleration and orientation. They proposed a system that deployed smart cell sensors to 
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enable high-precision monitoring of driver abnormal behaviors. They used two machine learning algorithms, 

including support vector machines and neural networks, to train and detect drivers' abnormal behaviors. 

Other systems evaluate drivers' distraction. Eating, drinking, speaking with others, and speaking on 

smartphone are common factors that distract drivers. Siuhi and Mwakalonge (2016) [26] reviewed the 

application of smartphones in improving traffic safety, including examples such as eliminating drivers' 

temptation to use smartphones, providing information to drivers, and blocking calls to prevent distractions. 

Fitch et al. (2014) [27] gathered data from 204 drivers by installing cameras and sensors in their cars and 

identified risky driving behaviors. Researchers concluded that using a smartphone while driving is a 

dangerous behavior that can lead to distraction due to multitasking [28]. They claimed that utilizing 

smartphones leads to significant changes in vehicle speed and challenges in maintaining the lateral position 

of the car [28, 29]. Moreover, using a smartphone while driving can cause drivers to reduce their speed and 

maintain a larger headway, which can be unsafe. In an attempt to compensate for the larger headway, drivers 

may increase their speed, resulting in reduced reaction times and potential danger [30]. Generally speaking, 

using a smartphone while driving can increase braking distance to three times [31].  

The most common methods used to evaluate drivers' safety while using smartphones include driving 

simulators, real driving tests, and analyzing factors that affect accidents [27, 30]. Dingus et al.(2016) [32] 

utilized a dataset including 906 accidents and estimated that using a smartphone can double the risk of 

accidents.  

It is significantly important to determine the exact position of a vehicle in order to identify driver behaviors. 

GPS can be used to approximate the vehicle's position, but in many cases, it encounters errors. Xiao et al. 

(2020) [8] proposed a systematic solution for car path detection. They combined the GPS data with internal 

diagnostic information including speed, steering angle, and vehicle acceleration to achieve higher positioning 

accuracy. When the GPS data was unavailable or inaccurate, the vehicle's trajectory was estimated using 

machine learning techniques. To calibrate the logic unit of this system, in places where the GPS was 

available, the location of the device was indicated using this unit and compared with the position shown by 

the GPS. 
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Havyarimana et al. (2018) [33] proposed a combined approach to solve the problem of predicting the position 

of the vehicle when the GPS was inaccessible, including GPS partial or complete inaccessibility in the short 

or long term. Ahmed et al. (2019) [34] developed a method for the fusion of the GPS and the unit of inertia 

data using the Kalman filter. In this method the calibration was continuous and when there was no access to 

GPS, the coefficients of the model were estimated using the unit of inertia. Driessen et al. (2022) [35] applied 

only the GPS data of a mobile devices including two smartphones and a GPS-equipped GoPro camera to 

recognize the changes in the car trajectory. They came up with a high accuracy of 90% in the lane-change 

classification. They claimed that the use of the method for highway engineering and traffic behavior research 

that employs floating car data appears promising. The occasional occurrence of false positives may limit the 

applicability of this method to real-time advisory systems. 

To sum up, the diagnosis of abnormal behaviors of drivers based on the vehicle movement direction has not 

received enough attention. This study’s novelty is to determine the vehicle's movement direction to be able 

to add vehicle location data to the driver's unusual behavior features, resulting in more accurate and precise 

driver behavior analysis. In other words, the research gap is to detect lane changes to distinguish dangerous 

driver behavior using vehicle trajectory and GPS data. 

3. Objective and scope 

The objective of this research is to detect vehicle movement direction using smartphones and machine 

learning techniques, specifically, vehicle lane changing. Smartphones are commonly used devices, and 

employing them as a low-cost data collection tool can benefit researchers. In this study, the convolutional 

and recurrent neural networks were employed as machine learning techniques to detect lane changing. These 

two models were chosen based on the type of data. The dataset provided in this study is a temporal dataset 

used to store time and time-interval information. Convolutional neural networks and recurrent neural 

networks are two of the best models that can be employed to analyze temporal datasets and extract patterns 

from them. Recurrent neural networks, in particular, are powerful tools for analyzing time series data.  
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4. Methodology 

After a thorough literature review, suitable smartphone sensors for collecting data for the study's purpose 

were identified. Subsequently, a smartphone application was developed to record and transmit the data to a 

server. In the third step, the smartphone longitudinal accelerometer data was collected using a smartphone 

mounted on a vehicle. In the fourth step, the smartphone data was combined with GPS location data to 

eliminate noises from acquired data. In this step, a neural network-based model was designed and 

implemented The model could take in the accelerometer data and the GPS data's initial point to forecast the 

vehicle's next position. The model was tested and validated in the fifth step. In the sixth step, an algorithm 

was designed to detect lane changes. lastly, the neural network-based model was verified. Figure 1 

illuminates the research methodology.  

 

Figure 1- Research Methodology 

5. Choosing sensors and data collection 

In this study, for the sake of simplicity, the starting point was considered as the origin of the coordinate 

system. The geographic north direction was assumed as the positive direction of the y-axis, while the east 

direction was considered as the positive direction of the x-axis. This coordinate system is referred to as the 
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reference coordinate system throughout the study. Among the various accelerations, the longitudinal 

acceleration of the smartphone in the y-direction and the angular acceleration around the z-axis were used to 

identify the vehicle's trajectory. The data recorded by the GPS and smartphone were labeled by time. The 

frequency of the smartphone accelerometer was 60 Hz, while that of the GPS mounted on a Road Surface 

Profiler (RSP) was 5 Hz. An application was developed to record the acceleration, gyroscope, and GPS data, 

as shown in Figure 2(a). This application received time from the GPS module with an accuracy of 1 ms. [36]. 

The application was installed on a Samsung Galaxy S6 smartphone, which was placed and fixed parallel to 

the ground on the RSP chassis (see Figure 2(b)). It was positioned directly below the GPS mounted on the 

RSP roof (see Figure 2(c)) to avoid interference with data collection by these two devices. Data collection 

took place for 2 hours in the morning, resulting in 180,000 records. After the initial preparation of the 

recorded data, specifically 90,000 records were employed. 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 2- (a) the application developed to collect and send data to the server (b) smartphone and vehicle 

coordinate systems (c) RSP (the Road Surface Profiler) 

(c) 

Start 

Travelled Distance: 0 

Valid Travelled Distance: 0 
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6. Design, implementation, and training of the neural network 

Neural networks have become popular recently and widely applied by researchers. Their applications in 

transportation engineering cover a wide range of subjects. Examples of areas where neural networks have 

been deployed include pavement distress detection, travel time estimation, trip mode choice prediction, etc. 

[37, 38]. Various types of neural networks with different architectures were designed and implemented to 

combine the GPS data and smartphone longitudinal and angular acceleration. In this study, two types of 

convolutional and recurrent neural networks were employed to filter the accelerations received from the 

smartphone and aggregate them. The convolutional neural network was trained in two different ways. 

Therefore, a total of three different neural networks were trained on the acquired data. Figure 3 illustrates 

the structure of these networks.  

 

 

 

First, the optimal number of iterations (epochs) was determined for each type of network based on the 

changes in network error on the training and validation datasets. Subsequently, ten similar networks were 

separately trained with this number of iterations, and the average error of these ten networks was reported as 

the error of the associated architecture. The optimal architecture for each of the three proposed networks was 

obtained through a trial-and-error process. The Adam optimizer was used with a learning rate of0.001. After 

selecting the depth, width, and type of network layers through trial and error, the test data set was fed to the 

network to obtain model performance metrics along with the estimated acceleration values.. Using the 

estimated accelerations and the start point of movement, the maximum time duration for which the vehicle 

(a) (b) 

Figure 3- (a) convolutional neural networks schematic (b) recurrent neural networks schematic 
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position could be estimated without GPS data was approximated. Additionally, the decrease in accuracy was 

assessed in case of prolonged inaccessibility to GPS data. 

In the convolution neural networks, the velocity recorded by the GPS was used to calculate the average 

acceleration between two consecutive data points. Also, by calculating the changes in car direction in the 

reference coordinate system, the average angular acceleration between two consecutive GPS data points was 

determined. Using these two types of acceleration, two separate neural networks were trained to estimate 

longitudinal and angular accelerations. These networks utilized a combination of convolutional layers and 

average pooling layers.. The convolutional layer in convolutional neural networks serves as the core of the 

network. It takes an input such as a vector of numbers and applies a convolution filter to produce outputs. In 

a one-dimensional convolutional layer (Conv1D), the input is a single temporal or spatial dimension. The 

pooling layers reduce the size of the convolutional layers' output, which is called the feature map, by taking 

the average over its values. In these networks, an activation function is required to activate neurons. Various 

activation functions are available, but in this study, ReLu and tanh were used as two common activation 

functions in the convolutional and recurrent neural networks. Figure 4 and 5 depict the structure of one of 

the convolution networks. 
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Figure 4- A sample of a convolutional neural network used to estimate longitudinal and angular accelerations 

 

 

Fig. 5- A convolutional neural network (network number five in Table 1) 
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 Mean squared error was utilized as the error function. The network inputs were fed into the model as an 

array of length 60. Samples of the smartphone acceleration, which contained noise and were sampled within 

one second, were then input to the desired network. The network produced an aggregated and denoised 

acceleration for that second.     

The second architecture applied in this study is the recurrent neural network. In this architecture, Similar to 

the previous architecture,, two separate networks were used to determine longitudinal and angular 

accelerations. However, the type of layers employed in this network differed from the previous network. 

Long Short-Term Memory (LSTM) units were used in this architecture. In LSTM units, the outputs of some 

neurons can affect the input of others neurons. Recurrent neural networks (RNN) are suitable for sequential 

and time series data. The same as the convolutional neural network, mean squared error was applied as the 

error function. The input of the network was set as an array of length 60 whose elements were noisy and 

unfiltered accelerations and the output was a filtered acceleration value. Figures 6 and 7 illuminate the 

structure of the recurrent neural network. 
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Figure 6- A sample of a recurrent neural network used to estimate longitudinal and angular accelerations 

 
Figure 7- A recurrent neural networks 
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The accuracy of the GPS is about 1 meter. Therefore, if the model can estimate the vehicle positions within 

a one-meter radius of the position reported by the GPS, its performance will be acceptable. This idea was 

used in the third architecture. In the third architecture instead of training two separate networks to estimate 

each acceleration, a single convolutional neural network was used. The input in this architecture was a 2×60 

matrix of accelerations and the output was a vector in which each of its arrays was a denoised angular and 

longitudinal acceleration. By receiving filtered and aggregated accelerations through the network and the 

start point of movement, the next point of the route was calculated. The error function of this network was 

defined in such a way that if the distance between the calculated position and the position recorded by the 

GPS is less than 1 meter (i.e., the GPS accuracy), then it would report a small error and otherwise it would 

report a significant amount of error. Equation 1 shows the error function. 

 
   

       

2 2

2 2 2 2

                        ,  1

,  1

p a p a

p a p a p a p a

C x x y x
f x

x x y x x x y x


   

 
       


 (1) 

In this equation, xp, xa, yp, ya, and C represent the predicted length in the reference coordinate system, the 

actual length, the predicted width, the actual width, and the constant value, respectively. 

7. Algorithms and model verification 

7-1- Lane change detection algorithm 

The outputs of the three models were longitudinal and angular acceleration per second. Angular acceleration 

per second indicated how much the car deviated from its previous direction of movement. Therefore, using 

Equation 2, the amount of transverse displacement of the vehicle could be calculated. 
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In this equation, dL, V, a, and θ are transverse displacements relative to the initial position of the vehicle, 

initial vehicle velocity, and one-second longitudinal and angular accelerations of the model output, 

respectively. 

In the same way, the amount of transverse displacement at different times relative to the initial time was 

calculated. Relative transverse displacement was calculated in the next 5 seconds. The reason for selecting 

this time interval is that it is assumed to be the proper amount of time to complete a lane change. The 

transverse displacement would be more or less than a lane width (i.e., 3.6 m) which resulted in the following 

two conditions: 

If the transverse displacement was less than 3.6 meters in 5 seconds, the vehicle was considered to not have 

changed lanes. If the transverse displacement was more than 3.6 meters within 5 seconds starting at time tn, 

the vehicle was considered to have changed lanes. 

7-2- Verification and Validation 

The verification of the selected model for filtering and combining smartphone accelerometer and GPS data 

was carried out in two steps. In the first step, the estimated accelerations of the model were checked to ensure 

they were within the expected acceleration range for a vehicle, i.e., they should not represent large positive 

or negative accelerations. In the second step, the estimated vehicle path was compared with the real path 

from which the data was collected to ensure consistency. To validate the model, the model outputs were 

compared with the results of the GPS. This means that outputs with equal initial conditions should be similar 

to each other. Additionally, the model was tested by a test set (unseen) that was not a part of the training set.  

8. Results and discussion  

Neural networks employed in this study with different architectures performed differently. Each network 

described in the previous section was tested. In this section, the model test results were presented. Using 
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these results, the networks were verified and validated. Also, the results of the lane change detection 

algorithm were analyzed. 

8-1- Convolutional neural networks 

To select an optimum architecture, networks with different architectures were developed to estimate two 

types of acceleration. 

8-1-1- Determination and verification of longitudinal acceleration filter convolution network 

architecture 

To select the best convolutional neural network for estimating accelerations and predicting vehicle positions, 

six different architectures were developed and compared. These architectures are described in Table 1. 

Table 1- proposed architectures for convolutional neural networks 

Architecture # Layer type 
Layer 

width 

Layer 

depth 
strider 

Activation 

function 

Optimum 

architecture 

1 

Conv1D 128 6 1 ReLu 

No 

Conv1D 64 6 1 ReLu 

Conv1D 32 6 1 ReLu 

Conv1D 16 6 1 ReLu 

Conv1D 8 6 1 ReLu 

2 

Conv1D 64 6 1 ReLu 

No 
Conv1D 32 6 1 ReLu 

Conv1D 16 6 1 ReLu 

Conv1D 8 6 1 ReLu 

3 

Conv1D 64 10 1 ReLu 

No 
Conv1D 32 10 1 ReLu 

Conv1D 16 10 1 ReLu 

Conv1D 8 10 1 ReLu 

4 

Conv1D 64 3 1 ReLu 

No 
Conv1D 32 3 1 ReLu 

Conv1D 16 3 1 ReLu 

Conv1D 8 3 1 ReLu 

5 

Conv1D 64 3 1 ReLu 

Yes Average 

Pooling1D 
- 2 2 ReLu 
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By comparing different architectures expressed in Table 1, it was concluded that the less the number of one-

dimensional convolution layers, the more generalized the architecture is. Different window sizes were tested 

for the filter dimensions, including 10 for a large filter layer, 6 for a medium filter layer, and 3 for a small 

filter layer. After selecting the number of one-dimensional convolution layers and the filter dimension, the 

number of average pooling layers was examined. Architecture five consisted of two layers of average 

pooling, while architecture six has three layers of average pooling.  To ensure that the model achieves good 

generalization, it is crucial to strike a balance between its performance on the training set and its performance 

on the test and validation sets. If the model performs well on the training set but poorly on the test and 

validation sets, this indicates overfitting and a loss of generalization. 

After reviewing all the cases, architecture five, with two layers of average pooling, four layers of one-

dimensional convolution, and a filter window size of three, had the best performance on the test and 

validation data set. Architecture five demonstrated better generalization capabilities than architecture six, 

meaning that it was less prone to overfitting and was better able to apply what it learned from the training 

data to new data. The selected architecture on the training dataset had a mean squared error equal to 0.0022. 

If the square root of the reported error was computed, the value of 0.043 m/s2 was obtained as the mean error 

of the longitudinal acceleration estimate. Figure 8 illustrates the distribution of longitudinal acceleration 

Conv1D 32 3 1 ReLu 

Average 

Pooling1D 
- 3 3 ReLu 

Conv1D 16 3 1 ReLu 

Conv1D 8 3 1 ReLu 

6 

Conv1D 64 3 1 ReLu 

No 

Average 

Pooling1D 
- 2 2 ReLu 

Conv1D 32 3 1 ReLu 

Average 

Pooling1D 
- 3 3 ReLu 

Conv1D 16 3 1 ReLu 

Conv1D 8 3 1 ReLu 

Average 

Pooling1D 
- 2 2 ReLu 
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estimates generated by the selected network on both the training and test datasets. The similar distribution 

on both sets suggests that the network was able to generalize well to new data. 

 

(a) 

 

(b) 

Fig. 8- (a) distribution of longitudinal accelerations estimated by convolutional neural network (b) distribution of longitudinal 

accelerations estimated by recurrent neural network 
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The distribution of longitudinal acceleration estimates shown in Figure 8 indicates that all values fell within 

the range of [-3.88, 2.87] m/s2. According to the literature review, this is an acceptable interval for vehicle 

acceleration [39]. Also, the selected architecture in the previous section on the test data set had a mean 

squared error equal to 0.04. All acceleration estimates in Figure 8 fell within the acceptable range of [-3.88, 

2.87] m/s2. 

To determine the optimal convolutional neural network for the angular acceleration filter, a similar procedure 

was followed as for the longitudinal acceleration filter. Six networks with different architectures were 

developed based on the design principles outlined in Table 1, and mean squared error values were computed 

for each network. Architecture five was identified as the best option, having achieved the lowest mean 

squared error on the test dataset and exhibiting balanced performance between the training and test datasets, 

indicating appropriate generalization. To evaluate a model, it is necessary to assess its performance on the 

training set by determining the difference between the estimated values by neural networks and their real 

values. This difference can be determined by an error function such as the mean squared error function. The 

selected network on the training data set had an average squared error equal to 0.026 , resulting in an average 

error of 0.16 degrees per second for estimating angular acceleration. Also, to validate a neural network, the 

performance of the model on the test set was examined. The selected network on the test dataset had a mean 

squared error equal to 0.47. The value of 0.385 degrees per second was obtained as the average error of 

estimating the angular acceleration.  

8-1-2- Hybrid model using the convolutional networks 

8-1-2-1- evaluate the model in estimating the vehicle trajectory 

After selecting appropriate architectures for the convolutional neural networks, longitudinal and angular 

accelerations were provided as inputs to the networks, and the vehicle trajectory was estimated using the 

model's outputs. To reconstruct the vehicle's path, the first one-second interval was evaluated. In other words, 

at the beginning of each second, the initial position of the movement was determined by GPS, and then the 
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endpoint of movement after one second was estimated by the model. In the following steps, the duration of 

unavailability of GPS data was increased. In this condition, using the initial point of movement, the endpoint 

of movement after one second was estimated, just as before. This point was set as the initial point for the 

next second. The accuracy of the smartphone GPS, in the case of normal access to satellites, is about five 

meters. If the access to GPS for three consecutive seconds was limited, the proposed hybrid model could 

maintain an accuracy of fewer than 5 meters in 75% of cases and had an average accuracy of about three 

meters. If the access was limited for six consecutive seconds, the model would have an accuracy of fewer 

than five meters with a probability of 50%. 

8-1-2-2- evaluate the networks in estimating longitudinal and angular accelerations 

The neural network accuracy in estimating longitudinal acceleration even after 10 seconds at worst was 

limited to 1.38 m/s2. This network had an accuracy of 0.34 m/s2 with a probability of 75% after 10 seconds. 

On the other hand, the network reports an angular acceleration that was estimated after 5 seconds with an 

accuracy of about 4.8 degrees per second and an average accuracy of about 9 degrees with a probability of 

50%. Comparing the performance of the two networks, it can be concluded that the weakness of the model 

was more due to the performance of the convolution neural network in estimating angular accelerations. 

8-2- Recurrent neural networks 

The optimum architecture for recurrent neural networks was selected for filtering and estimating both 

angular and longitudinal accelerations. The sum of squared error was then calculated for each architecture. 

Subsequently, a model was developed using recurrent neural networks, taking into account the time of 

inaccessibility to GPS data, to evaluate its accuracy in estimating the vehicle trajectory. The performance 

of each network was evaluated separately. 
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8-2-1- Determining the recurrent filter network architecture for longitudinal acceleration 

To determine the optimum architecture for recurrent neural networks, three different networks with different 

numbers of layers and depths were developed. The different architectures are shown in Table 2. 

 

Table 2- proposed architectures for recurrent neural networks 

Number of 

architecture 
Layer type 

Layer 

depth 
Optimum 

architecture 

1 

LSTM 16 

No LSTM 8 

LSTM 4 

2 

LSTM 32 

Yes LSTM 16 

LSTM 8 

LSTM 4 

3 

LSTM 64 

No 

LSTM 32 

LSTM 16 

LSTM 8 

LSTM 4 

 

The four-layer deep network showed better generalization capability compared to its shallower competitors. 

Increasing the network depth from four to five improved the performance of the model on training and 

validation datasets; However, it led to poorer performance on test data. Therefore, an architecture with a 

depth of four was selected in this section. 

The recurrent neural network was verified and validated following a similar procedure as the convolutional 

networks. The selected network demonstrated an error of 0.12 m/s2 on the training dataset and 0.18 m/s2 on 

the test dataset. Additionally, it was ensured that all estimated acceleration values across all datasets were 

within the acceptable range of [-3.88, 2.87] m/s2  [39]. 
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8-2-2- Determining the recurrent filter network architecture for angular acceleration: 

To determine the optimum architecture for estimating angular acceleration, three different networks were 

developed, similar to the recurrent filter network for longitudinal acceleration. Architectures with depths of 

three to five layers were evaluated for filtering and estimating angular and longitudinal accelerations. The 

four-layer depth architecture had the lowest error on the test and validation datasets. Although the five-layer 

depth architecture had less error on the training dataset, it showed larger errors on the validation and test 

datasets compared to the four-layer depth neural network, indicating lower generalizability. Therefore, the 

four-layer depth network was selected as the optimal architecture. Similar to the hybrid model built using 

convolutional neural networks, by combining recurrent networks, a model was developed to estimate vehicle 

trajectory. This model greatly reduced the model's dependence on GPS data, by up to 25%. The summary of 

the performance of the convolutional and recurrent neural networks in filtering and estimating angular and 

longitudinal accelerations are shown in Table 3. 

Table 3- the summary of neural networks results evaluation 

network Acceleration  Mean squared error value Acceptable range (m/s2) 

Convolutional neural 

networks 

Longitudinal 0.0022 

[-3.88, 2.87] 

Angular 0.026 

Recurrent neural 

networks 

Longitudinal 0.12 

Angular 0.8 

 

8-3- Changing the method of training model 

To train models described in previous sections, the longitudinal and angular accelerations were first 

calculated. Using these accelerations, two separate networks were developed, with the sum of squared error 

serving as the error function. In the third model, a new error function was used as explained in section 6. 

Among the three proposed models, the first model with five convolutional layers and one average pooling 
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filter layer had the best performance after eight seconds of inaccessibility to the global positioning system 

compared to the other models. Finally, this model with its new error function was chosen to detect the lane 

changes. All three models are presented in Table 4. 

 

Table 4- different architectures for convolutional neural networks with the proposed error function 

Architecture # Layer type 
Layer 

width 

Layer 

depth 
strider 

Activation 

function 

Optimum 

architecture 

1 

Conv1D 64 3 1 ReLu 

Yes 

Conv1D 32 3 1 ReLu 

Average 

Pooling1D 
- 8 8 

linear 

Conv1D 16 3 1 ReLu 

Conv1D 8 3 1 ReLu 

Conv1D 4 3 1 ReLu 

2 

Conv1D 64 3 1 tanh 

No 

Conv1D 32 3 1 tanh 

Average 

Pooling1D 
- 8 8 

linear 

Conv1D 16 3 1 tanh 

Conv1D 8 3 1 tanh 

Conv1D 4 6 1 tanh 

3 

Conv1D 64 3 1 tanh 

No 

Average 

Pooling1D 
32 3 1 

tanh 

Conv1D - 8 8 linear 

Average 

Pooling1D 
16 3 1 

tanh 

Conv1D 8 3 1 tanh 

 

8-4- Evaluate the performance of the lane change detection algorithm 

During the data collection period, the RSP had 53 lane changes. The confusion matrix can present the 

performance of a model in accurate prediction of model input. It clearly shows the number of input cases 

which is predicted either right or wrong by the model. The confusion matrix of this algorithm in the detection 

of changing the passing lane is shown in Table 5. 
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Table 5- the confusion matrix of the vehicle lane change detection by the proposed algorithm 

 

Lane changes in recorded by an expert 

Change No change 

Algorithm output 

Change 44 3 

No change 6 0 

 

It is observed that the proposed algorithm in the path detected 47 lane changes, of which 44 lane changes 

were correct and 3 were incorrect. In other words, in 3 cases, the vehicle did not change the lane and the 

algorithm incorrectly detected the lane change, while in 6 cases, it actually changed the lane but the model 

predicted that there was no lane change. There are different methods to present the results of the model 

evaluation, such as accuracy, precision, recall, and F1-score, which can be calculated using equations 1 to 4, 

respectively 

TP TN
Accuracy

TP TN FP FN




  
  (3) 

TP
Precision

TP FP



  (4) 

TP
Recall

TP FN



  (5) 

2
1

Precision Recall
F score

Precision Recall

 
 


  (6) 

In these equations, TP, TN, FP, and FN refer to True Positive, True Negative, False Positive, and False 

Negative, respectively. They represent the cases where lane changes were detected correctly, no lane changes 

were detected correctly, lane changes were detected wrongly, and no lane changes were detected wrongly, 

respectively. Therefore, it can be said that the model accuracy is equal to 94% which means 94% of the lane 
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changes detected by this algorithm were also correct. To validate the model performance accuracy, two 

approaches can be applied (1) using test (unseen) data to validate the accuracy of the model which has been 

carried out in this research (2) comparing with other research results in the same condition with the same 

objective and scope which have been rarely available in the related literature (Driessen et al., 2022).  

Furthermore, according to Table 1, the selected model has precision equal to 93.62% and recall equal to 

88.00%. The F1-score in this study is equal to 90.72%. It should be noted that the high value of precision 

compared to other metrics shows that the number of false positives is low in the model meaning that the 

model does not predict something correct which is not actually right. However, the recall seems to be less 

than accuracy (by almost 5%) i.e., the model expresses false negative more than false positive. This result 

means that the model misses some correct patterns. In this study, having a higher precision level is more 

important than recall to ensure that the data which was applied in the modeling process is correctly annotated 

and employed. It should be noted that the confusion matrix is obtained from the test dataset. It shows that 

the model's performance accuracy on a dataset other than the training dataset is valid and acceptable. 

9. Conclusion 

The objective of this study was to develop a model to detect lane changes using a combination of longitudinal 

and angular accelerometer sensor data. This model could be used to reduce the reliance on GPS data in places 

where satellite access is limited such as city centers. It also saves on mobile power consumption and increases 

the battery life of the device by using fewer global positioning system sensors. The proposed model in this 

study consisted of convolutional layers. The error function of this model was applied to correct the weights 

of the model according to the distance of the estimated position from the actual position of the vehicle path. 

An algorithm was also proposed that could use model outputs to detect lane change. This algorithm makes 

the necessary decisions based on vehicle lateral displacements. The developed model could successfully 

predict the lane change with precision, recall, and F1-score equal to 93.62%, 88.00%, and 90.72%, 

respectively.  
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