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ABSTRACT: Driver behavior is a critical factor in traffic safety. Detecting abnormal driver behaviors 
through appropriate indicators and enforcing driving regulations will reduce high-risk driving behaviors 
and increase traffic safety. Detecting dangerous driver behavior is beneficial for developing warning 
systems and preventing accidents. Some high-risk driving behaviors, such as sudden lane changes, 
are dependent on determining the movement direction of the vehicle which has not received enough 
attention. The objective of this study is to determine the direction of movement of the vehicle and lane 
changes, using the sensors in the smartphone mounted on a vehicle. To achieve this goal, first, by using 
the Samsung Galaxy S6 smartphone and an accurate Global Positioning System (GPS), longitudinal 
and angular accelerometer data and GPS data are sampled as a dataset and combined by different types 
of neural networks. Then, combined data is fed into a suggested neural network, and lane changes are 
detected. Finally, the GPS data is used as the ground truth for the training of the neural network. If 
the GPS is not accessible, this neural network, just by receiving smartphone accelerometer data, can 
estimate the vehicle’s direction of movement with an accuracy of 0.5 to 4.8 meters compared to the 
ground truth up to 8 seconds after the GPS is shut down. Using the vehicle travel path, an algorithm is 
proposed that can correctly detect the change of driving lane in the sample data set with 94% accuracy, 
93.62% precision, 88.00% recall, and F1-score of 90.72% which are acceptable values. 
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1- Introduction
Nowadays, transportation management is one of the most 

important concepts in every country. One of the most crucial 
criteria of transportation management is traffic safety. Traffic 
safety has received significant attention in transportation due 
to the increasing fatality rates in recent decades. Traffic safety 
refers to the methods used to prevent accidents or incidents in 
transportation networks. Traffic safety is influenced by many 
factors, such as driver behaviors, vehicles, and environmental 
conditions. Several studies have shown that more than 90% 
of accidents are due to mistakes made by road users or driver 
fatigue [1, 2]. Road users can include pedestrians, cyclists, 
drivers, vehicle passengers, and public transport passengers 
[3]. The behavior of road users, particularly drivers, is one of 
the most influential factors in traffic safety. 

Driver behavior refers to the way a driver drives in 
real traffic conditions. Many research studies have been 
conducted to identify driver behaviors. Some studies only 
consider driving style to identify driver behavior, while others 
take into account weather and vehicle conditions [4, 5]. Most 
of these research studies could only identify one aggressive 
behavior and only a few studies existed that could identify 

more than one abnormal behavior. To date, no investigation 
has been able to identify all driver behaviors [6]. 

To identify driver behavior, it is essential to understand 
the vehicle’s position relative to other cars and obstacles. 
Depending on the direction of movement of the vehicle 
under study, driver behavior can be investigated under two 
categories: 1) transverse movement (lane change) and 2) 
longitudinal movement (sudden change of speed). These 
categories can be determined by analyzing the speed of the 
car, its acceleration, and steering angle [7]rties>. One of the 
best methods that can be used to identify driver behaviors 
is lane change and vehicle trajectory. In addition to driver 
behavior, vehicle trajectory can be used to evaluate travel 
time, fuel consumption, etc. [8]. Also, it can be used to provide 
digital maps of roads [9]. Developing a system that assists 
researchers in detecting vehicle trajectory and direction can 
be used to identify aggressive behaviors such as lane changes 
and improve traffic safety. Several methods can be employed 
to identify lane change as a sign of driver behavior, including 
the Internet of Things (IoT). 

The IoT is a network of machines, devices, and other 
things that are interconnected and able to communicate with 
each other without the need for human intervention [10]. 
The IoT acts as an interface between computers and other 
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objects [11]. In such methods, input information and data 
are collected by automated systems and sent to a central 
server. The IoT can be applied in transportation engineering, 
especially in determining lane changes using different 
devices. The application of IoT in identifying driver behavior 
can be studied in three main fields: (1) understanding traffic 
conditions, (2) making appropriate decisions under perceived 
conditions, and (3) detecting distracting behaviors of drivers, 
such as drinking, eating, and speaking. In addition, the path of 
the vehicle can be combined with research that has been done 
on pavement distress detection to determine the location of 
these distresses [12].

2- Literature review
Automobile companies are constantly improving their 

vehicles to enhance driver safety. There are generally two 
groups of car safety systems: passive safety systems such as 
airbags and seatbelts, and active safety systems. The active 
safety system is designed to control the car safely and prevent 
accidents [13]. Li et al. ( 2017)forming a safety threat. To 
enhance the safety at an un-signalized intersection like a STOP 
sign intersection, a radio frequency identification (RFID[14] 
developed a Driver’s Smart Advisory System (DSAS) to 
warn drivers near unsignalized intersections. The impact of 
the system’s alarms on driver behavior, such as braking and 
speeding, was evaluated. The results showed that the system 
could improve driver awareness in unsignalized intersections. 
One of the most well-known active safety systems is the 
Advanced Driver Assistance System (ADAS), which can 
warn drivers and automatically intervene in handling cars 
if necessary [15]. These systems employ a specific series 
of sensors and can add more sensors for further assistance 
[16]. For instance, Julia Carrillo (2015), and Shaout et al. 
(2011)the PFCEV provides unusually efficient driving. The 
BER also affords convenient recharging. The fuel cell and 
hydrogen fuel facilitate long range and quick refueling, 
removing range anxiety. With a small battery and fuel cell, 
the PFCEV maintains weight low and efficiency high. This 
thesis uses California as a case study of PFCEV deployment, 
due to regulations that make it the first deployment area of 
alternative vehicle technology, using vehicle and electric 
grid simulation tools, travel survey and census data, and 
geographic information system (GIS [17, 18] used laser and 
radar to capture data and applied image processing techniques 
to develop speed controller systems. One of the first systems 
designed to control driver behavior is the Adaptive Cruise 
Control (ACC) system, which allows drivers to adjust their 
speed and distance from the car in front of them without using 
the accelerator or brake pedal. Early versions of ACC systems 
were laser-based, but long-range radars are now used due to 
the shortcomings of lasers. More complex ACC systems use 
ultrasonic sensors for more precise data at low speeds. These 
systems are particularly applicable in heavy traffic [12, 19, 
20].

Crossing protection systems and lane change assistant 
systems are designed based on road signs to reduce the 
risk of high-speed collisions, particularly on highways and 

roads. These systems use optical detection of road signs and 
markings, but their efficiency depends on weather conditions, 
and they perform weaker in rainy weather. Most cars now 
use multi-function mono cameras and multi-function stereo 
cameras. An advantage of the stereo camera is that it can 
recognize 3-D objects, lines, and obstacles [21, 22]. The 
more intelligent the driver assistance systems are and the less 
driver intervention is required, the closer they come to the 
concept of a fully automatic vehicle. Self-driving cars are 
classified into five levels of intelligence, where level five 
is fully automatic. Level one, also called driver assistance 
systems, controls only one part of the vehicle, such as cruise 
control, automatic braking, and lane-keeping systems. In 
such systems, the driver’s reaction is still needed. However, 
instead of assisting the driver in making decisions, other 
systems analyze the driver’s decisions, such as the intensity 
of the brakes or changing lanes, and detect any abnormal 
behavior. Galarza et al. (2018) designed a monitoring system 
to detect driver drowsiness and alert the driver to consciously 
control the vehicle. In this system, a smartphone was used 
to detect driver behaviors and properly interact with them 
[7]. Lee and Chung (2012)bio-signal variation, in-vehicle 
temperature, and vehicle speed. The driver safety monitoring 
system was developed in practice in the form of an application 
for an Android-based smartphone device, where measuring 
safety-related data requires no extra monetary expenditure or 
equipment. Moreover, the system provides high resolution and 
flexibility. The safety monitoring process involves the fusion 
of attributes gathered from different sensors, including video, 
electrocardiography, photoplethysmography, temperature, 
and a three-axis accelerometer, that are assigned as input 
variables to an inference analysis framework. A Fuzzy 
Bayesian framework is designed to indicate the driver’s 
capability level and is updated continuously in real-time. The 
sensory data are transmitted via Bluetooth communication to 
the smartphone device. A fake incoming call warning service 
alerts the driver if his or her safety level is suspiciously 
compromised. Realistic testing of the system demonstrates 
the practical benefits of multiple features and their fusion 
in providing a more authentic and effective driver safety 
monitoring. [23] proposed a method for monitoring driver 
safety levels using data fusion based on multiple discrete 
data sources. These data sources consisted of eye properties, 
the temperature inside the car, car speed, etc. Carmona et al. 
(2015)an Inertial Measurement Unit (IMU [24] developed 
a tool for analyzing driver behavior based on low-cost 
hardware and advanced fusion-based software capabilities. 
This device employed the information provided by in-vehicle 
sensors along with the unit of inertia measurement and Global 
Positioning System (GPS).

Yu et al. (2017) [25] divided the driver’s abnormal 
behaviors into six categories: helical movements, rotation, 
slip, fast detour, long-range detour, and sudden braking. By 
capturing the required information over six months of real-
world driving conditions, they concluded that each of the six 
abnormal behaviors listed had a unique pattern of acceleration 
and orientation. They proposed a system that deployed 
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smart cell sensors to enable high-precision monitoring of 
driver abnormal behaviors. They used two machine learning 
algorithms, including support vector machines and neural 
networks, to train and detect drivers’ abnormal behaviors.

Other systems evaluate drivers’ distraction. Eating, 
drinking, speaking with others, and speaking on the 
smartphone are common factors that distract drivers. Siuhi 
and Mwakalonge (2016) [26] reviewed the application of 
smartphones in improving traffic safety, including examples 
such as eliminating drivers’ temptation to use smartphones, 
providing information to drivers, and blocking calls to prevent 
distractions. Fitch et al. (2014) [27] gathered data from 204 
drivers by installing cameras and sensors in their cars and 
identified risky driving behaviors. Researchers concluded 
that using a smartphone while driving is a dangerous 
behavior that can lead to distraction due to multitasking [28]. 
They claimed that utilizing smartphones leads to significant 
changes in vehicle speed and challenges in maintaining 
the lateral position of the car [28, 29]. Moreover, using a 
smartphone while driving can cause drivers to reduce their 
speed and maintain a larger headway, which can be unsafe. 
In an attempt to compensate for the larger headway, drivers 
may increase their speed, resulting in reduced reaction 
times and potential danger [30]. Generally speaking, using 
a smartphone while driving can increase braking distance to 
three times [31]. 

The most common methods used to evaluate drivers’ 
safety while using smartphones include driving simulators, 
real driving tests, and analyzing factors that affect accidents 
[27, 30]. Dingus et al.(2016) [32] utilized a dataset including 
906 accidents and estimated that using a smartphone can 
double the risk of accidents. 

It is significantly important to determine the exact 
position of a vehicle to identify driver behaviors. GPS 
can be used to approximate the vehicle’s position, but in 
many cases, it encounters errors. Xiao et al. (2020)vehicle 
trajectory data have increasingly been important for a wide 
range of applications, from driver behavior investigation/
classification, travel time/distance estimation, and routing in 
vehicular networks, to vehicle energy/emission evaluation. 
This article presents TrajData, the first systematic solution to 
reliable vehicle trajectory data collection, with only reliance 
on commercial-off-the-shelf (COTS [8] proposed a systematic 
solution for car path detection. They combined the GPS data 
with internal diagnostic information including speed, steering 
angle, and vehicle acceleration to achieve higher positioning 
accuracy. When the GPS data was unavailable or inaccurate, 
the vehicle’s trajectory was estimated using machine learning 
techniques. To calibrate the logic unit of this system, in places 
where the GPS was available, the location of the device was 
indicated using this unit and compared with the position 
shown by the GPS.

Havyarimana et al. (2018)predicting accurately the future 
location of a vehicle is still a delicate task especially in 
intelligent transport systems. This paper proposes a hybrid 
approach of solving the position prediction problem of vehicle 
in multi-GPS outage conditions such as free and partial as 

well as short and long complete GPS outages. The proposed 
approach aggregates the advantages of both fuzzy inference 
system (FIS [33] proposed a combined approach to solve the 
problem of predicting the position of the vehicle when the 
GPS was inaccessible, including GPS partial or complete 
inaccessibility in the short or long term. Ahmed et al. (2019) 
[34] developed a method for the fusion of the GPS and the 
unit of inertia data using the Kalman filter. In this method the 
calibration was continuous and when there was no access to 
GPS, the coefficients of the model were estimated using the 
unit of inertia. Driessen et al. (2022) [35] applied only the 
GPS data of mobile devices including two smartphones and 
a GPS-equipped GoPro camera to recognize the changes in 
the car trajectory. They came up with a high accuracy of 90% 
in the lane-change classification. They claimed that the use 
of the method for highway engineering and traffic behavior 
research that employs floating car data appears promising. 
The occasional occurrence of false positives may limit the 
applicability of this method to real-time advisory systems.

To sum up, the diagnosis of abnormal behaviors of drivers 
based on the vehicle movement direction has not received 
enough attention. This study’s novelty is to determine the 
vehicle’s movement direction to be able to add vehicle location 
data to the driver’s unusual behavior features, resulting in 
more accurate and precise driver behavior analysis. In other 
words, the research gap is to detect lane changes to distinguish 
dangerous driver behavior using vehicle trajectory and GPS 
data.

3- Objective and scope
The objective of this research is to detect vehicle 

movement direction using smartphones and machine learning 
techniques, specifically, vehicle lane changing. Smartphones 
are commonly used devices, and employing them as a low-cost 
data collection tool can benefit researchers. In this study, the 
convolutional and recurrent neural networks were employed 
as machine learning techniques to detect lane changing. 
These two models were chosen based on the type of data. 
The dataset provided in this study is a temporal dataset used 
to store time and time-interval information. Convolutional 
neural networks and recurrent neural networks are two of 
the best models that can be employed to analyze temporal 
datasets and extract patterns from them. Recurrent neural 
networks, in particular, are powerful tools for analyzing time 
series data. 

4- Methodology
After a thorough literature review, suitable smartphone 

sensors for collecting data for the study’s purpose were 
identified. Subsequently, a smartphone application was 
developed to record and transmit the data to a server. In the 
third step, the smartphone longitudinal accelerometer data 
was collected using a smartphone mounted on a vehicle. 
In the fourth step, the smartphone data was combined with 
GPS location data to eliminate noises from acquired data. In 
this step, a neural network-based model was designed and 
implemented The model could take in the accelerometer data 
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and the GPS data’s initial point to forecast the vehicle’s next 
position. The model was tested and validated in the fifth step. 
In the sixth step, an algorithm was designed to detect lane 
changes. lastly, the neural network-based model was verified. 
Figure 1 illuminates the research methodology. 

5- Choosing sensors and data collection
In this study, for the sake of simplicity, the starting point 

was considered as the origin of the coordinate system. The 
geographic north direction was assumed as the positive 
direction of the y-axis, while the east direction was considered 
as the positive direction of the x-axis. This coordinate system 
is referred to as the reference coordinate system throughout 
the study. Among the various accelerations, the longitudinal 
acceleration of the smartphone in the y-direction and the 
angular acceleration around the z-axis were used to identify 
the vehicle’s trajectory. The data recorded by the GPS and 
smartphone were labeled by time. The frequency of the 
smartphone accelerometer was 60 Hz, while that of the 
GPS mounted on a Road Surface Profiler (RSP) was 5 Hz. 
An application was developed to record the acceleration, 
gyroscope, and GPS data, as shown in Figure 2(a). This 
application received time from the GPS module with an 
accuracy of 1 ms. [36]. The application was installed on a 
Samsung Galaxy S6 smartphone, which was placed and fixed 
parallel to the ground on the RSP chassis (see Figure 2(b)). 
It was positioned directly below the GPS mounted on the 

RSP roof (see Figure 2(c)) to avoid interference with data 
collection by these two devices. Data collection took place 
for 2 hours in the morning, resulting in 180,000 records. 
After the initial preparation of the recorded data, specifically 
90,000 records were employed.

6- Design, implementation, and training of the neural 
network

Neural networks have become popular recently and widely 
applied by researchers. Their applications in transportation 
engineering cover a wide range of subjects. Examples of areas 
where neural networks have been deployed include pavement 
distress detection, travel time estimation, trip mode choice 
prediction, etc. [37, 38]. Various types of neural networks 
with different architectures were designed and implemented 
to combine the GPS data and smartphone longitudinal and 
angular acceleration. In this study, two types of convolutional 
and recurrent neural networks were employed to filter the 
accelerations received from the smartphone and aggregate 
them. The convolutional neural network was trained in 
two different ways. Therefore, a total of three different 
neural networks were trained on the acquired data. Figure 3 
illustrates the structure of these networks. 

First, the optimal number of iterations (epochs) was 
determined for each type of network based on the changes 
in network error on the training and validation datasets. 
Subsequently, ten similar networks were separately trained 
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Fig. 2- (a) the application developed to collect and send data to the server (b) smartphone and vehicle 
coordinate systems (c) RSP (the Road Surface Profiler) 
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Fig. 2. (a) the application developed to collect and send data to the server (b) smartphone and 
vehicle coordinate systems (c) RSP (the Road Surface Profiler)
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Fig. 3- (a) convolutional neural networks schematic (b) recurrent neural networks schematic 

 
Fig. 3. (a) convolutional neural networks schematic (b) recurrent neural networks schematic
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with this number of iterations, and the average error of these 
ten networks was reported as the error of the associated 
architecture. The optimal architecture for each of the three 
proposed networks was obtained through a trial-and-error 
process. The Adam optimizer was used with a learning 
rate of 0.001. After selecting the depth, width, and type of 
network layers through trial and error, the test data set was 
fed to the network to obtain model performance metrics along 
with the estimated acceleration values.. Using the estimated 
accelerations and the start point of movement, the maximum 
time duration for which the vehicle position could be 
estimated without GPS data was approximated. Additionally, 
the decrease in accuracy was assessed in case of prolonged 
inaccessibility to GPS data.

In convolution neural networks, the velocity recorded 
by the GPS was used to calculate the average acceleration 
between two consecutive data points. Also, by calculating 
the changes in car direction in the reference coordinate 
system, the average angular acceleration between two 

consecutive GPS data points was determined. Using these 
two types of acceleration, two separate neural networks were 
trained to estimate longitudinal and angular accelerations. 
These networks utilized a combination of convolutional 
layers and average pooling layers. The convolutional layer 
in convolutional neural networks serves as the core of the 
network. It takes an input such as a vector of numbers and 
applies a convolution filter to produce outputs. In a one-
dimensional convolutional layer (Conv1D), the input is 
a single temporal or spatial dimension. The pooling layers 
reduce the size of the convolutional layers’ output, which is 
called the feature map, by taking the average over its values. 
In these networks, an activation function is required to 
activate neurons. Various activation functions are available, 
but in this study, ReLu and tanh were used as two common 
activation functions in the convolutional and recurrent neural 
networks. Figure 4 and 5 depict the structure of one of the 
convolution networks.

 Mean squared error was utilized as the error function. 

 

Fig. 4- A sample of a convolutional neural network used to estimate longitudinal and angular accelerations 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A sample of a convolutional neural network used to estimate longitudinal and angular accelerations
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The network inputs were fed into the model as an array of 
length 60. Samples of the smartphone acceleration, which 
contained noise and were sampled within one second, were 
then input into the desired network. The network produced an 
aggregated and denoised acceleration for that second.    

The second architecture applied in this study is the 
recurrent neural network. In this architecture, Similar to the 
previous architecture, two separate networks were used to 
determine longitudinal and angular accelerations. However, 
the type of layers employed in this network differed from the 
previous network. Long Short-Term Memory (LSTM) units 
were used in this architecture. In LSTM units, the outputs of 
some neurons can affect the input of others neurons. Recurrent 
neural networks (RNNs) are suitable for sequential and time 
series data. The same as the convolutional neural network, 
mean squared error was applied as the error function. The 
input of the network was set as an array of length 60 whose 
elements were noisy and unfiltered accelerations and the 
output was a filtered acceleration value. Figures 6 and 7 
illuminate the structure of the recurrent neural network.

The accuracy of the GPS is about 1 meter. Therefore, 
if the model can estimate the vehicle positions within a 
one-meter radius of the position reported by the GPS, its 
performance will be acceptable. This idea was used in the 
third architecture. In the third architecture instead of training 
two separate networks to estimate each acceleration, a 
single convolutional neural network was used. The input 
in this architecture was a 2×60 matrix of accelerations 
and the output was a vector in which each of its arrays 

was a denoised angular and longitudinal acceleration. By 
receiving filtered and aggregated accelerations through 
the network and the start point of movement, the next 
point of the route was calculated. The error function of 
this network was defined in such a way that if the distance 
between the calculated position and the position recorded 
by the GPS is less than 1 meter (i.e., the GPS accuracy), 
then it would report a small error and otherwise it would 
report a significant amount of error. Equation 1 shows the 
error function.
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In this equation, xp, xa, yp, ya, and C represent the predicted 
length in the reference coordinate system, the actual length, 
the predicted width, the actual width, and the constant value, 
respectively.

7- Algorithms and model verification
7- 1- Lane change detection algorithm

The outputs of the three models were longitudinal and 
angular acceleration per second. Angular acceleration per 
second indicated how much the car deviated from its previous 
direction of movement. Therefore, using Equation 2, the 
amount of transverse displacement of the vehicle could be 
calculated.

 

Fig. 5- A convolutional neural network (network number five in Table 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. A convolutional neural network (network number five in Table 1)
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Fig. 7- A recurrent neural networks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. A recurrent neural networks

 
 

Fig.6- A sample of a recurrent neural network used to estimate longitudinal and angular accelerations 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. A sample of a recurrent neural network used to estimate longitudinal and angular accelerations
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In this equation, dL, V, a, and θ are transverse 
displacements relative to the initial position of the vehicle, 
initial vehicle velocity, and one-second longitudinal and 
angular accelerations of the model output, respectively.

In the same way, the amount of transverse displacement 
at different times relative to the initial time was calculated. 
Relative transverse displacement was calculated in the next 5 
seconds. The reason for selecting this time interval is that it is 
assumed to be the proper amount of time to complete a lane 
change. The transverse displacement would be more or less 
than a lane width (i.e., 3.6 m) which resulted in the following 
two conditions:

If the transverse displacement was less than 3.6 meters in 
5 seconds, the vehicle was considered to not have changed 
lanes. If the transverse displacement was more than 3.6 
meters within 5 seconds starting at time tn, the vehicle was 
considered to have changed lanes.

7- 2- Verification and Validation
The verification of the selected model for filtering and 

combining smartphone accelerometer and GPS data was 
carried out in two steps. In the first step, the estimated 
accelerations of the model were checked to ensure they were 
within the expected acceleration range for a vehicle, i.e., they 
should not represent large positive or negative accelerations. 
In the second step, the estimated vehicle path was compared 
with the real path from which the data was collected to ensure 
consistency. To validate the model, the model outputs were 
compared with the results of the GPS. This means that outputs 
with equal initial conditions should be similar to each other. 
Additionally, the model was tested by a test set (unseen) that 
was not a part of the training set. 

8- Results and discussion 
Neural networks employed in this study with different 

architectures performed differently. Each network described 
in the previous section was tested. In this section, the model 
test results were presented. Using these results, the networks 
were verified and validated. Also, the results of the lane 
change detection algorithm were analyzed.

8- 1- Convolutional neural networks
To select an optimum architecture, networks with 

different architectures were developed to estimate two types 
of acceleration.

8- 1- 1- Determination and verification of longitudinal 
acceleration filter convolution network architecture

To select the best convolutional neural network for 
estimating accelerations and predicting vehicle positions, six 
different architectures were developed and compared. These 
architectures are described in Table 1.

By comparing different architectures expressed in Table 1, 

it was concluded that the less the number of one-dimensional 
convolution layers, the more generalized the architecture is. 
Different window sizes were tested for the filter dimensions, 
including 10 for a large filter layer, 6 for a medium filter layer, 
and 3 for a small filter layer. After selecting the number of 
one-dimensional convolution layers and the filter dimension, 
the number of average pooling layers was examined. 
Architecture five consisted of two layers of average pooling, 
while architecture six has three layers of average pooling.  
To ensure that the model achieves good generalization, it is 
crucial to strike a balance between its performance on the 
training set and its performance on the test and validation 
sets. If the model performs well on the training set but poorly 
on the test and validation sets, this indicates overfitting and a 
loss of generalization.

After reviewing all the cases, architecture five, with two 
layers of average pooling, four layers of one-dimensional 
convolution, and a filter window size of three, had the best 
performance on the test and validation data set. Architecture 
Five demonstrated better generalization capabilities than 
Architecture Six, meaning that it was less prone to overfitting 
and was better able to apply what it learned from the training 
data to new data. The selected architecture on the training 
dataset had a mean squared error equal to 0.0022. If the 
square root of the reported error was computed, the value of 
0.043 m/s2 was obtained as the mean error of the longitudinal 
acceleration estimate. Figure 8 illustrates the distribution of 
longitudinal acceleration estimates generated by the selected 
network on both the training and test datasets. The similar 
distribution on both sets suggests that the network was able 
to generalize well to new data.

The distribution of longitudinal acceleration estimates 
shown in Figure 8 indicates that all values fell within the 
range of [-3.88, 2.87] m/s2. According to the literature review, 
this is an acceptable interval for vehicle acceleration [39]. 
Also, the selected architecture in the previous section of 
the test data set had a mean squared error equal to 0.04. All 
acceleration estimates in Figure 8 fell within the acceptable 
range of [-3.88, 2.87] m/s2.

To determine the optimal convolutional neural network 
for the angular acceleration filter, a similar procedure was 
followed for the longitudinal acceleration filter. Six networks 
with different architectures were developed based on the 
design principles outlined in Table 1, and mean squared 
error values were computed for each network. Architecture 
five was identified as the best option, having achieved the 
lowest mean squared error on the test dataset and exhibiting 
balanced performance between the training and test datasets, 
indicating appropriate generalization. To evaluate a model, 
it is necessary to assess its performance on the training set 
by determining the difference between the estimated values 
by neural networks and their real values. This difference can 
be determined by an error function such as the mean squared 
error function. The selected network on the training data set 
had an average squared error equal to 0.026, resulting in 
an average error of 0.16 degrees per second for estimating 
angular acceleration. Also, to validate a neural network, 
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Table 1. proposed architectures for convolutional neural networksTable 1- proposed architectures for convolutional neural networks 

 

 

 

Architecture # Layer type Layer 
width 

Layer 
depth strider Activation 

function 
Optimum 

architecture 

1 

Conv1D 128 6 1 ReLu 

No 
Conv1D 64 6 1 ReLu 
Conv1D 32 6 1 ReLu 
Conv1D 16 6 1 ReLu 
Conv1D 8 6 1 ReLu 

2 

Conv1D 64 6 1 ReLu 

No 
Conv1D 32 6 1 ReLu 
Conv1D 16 6 1 ReLu 
Conv1D 8 6 1 ReLu 

3 

Conv1D 64 10 1 ReLu 

No 
Conv1D 32 10 1 ReLu 
Conv1D 16 10 1 ReLu 
Conv1D 8 10 1 ReLu 

4 

Conv1D 64 3 1 ReLu 

No 
Conv1D 32 3 1 ReLu 
Conv1D 16 3 1 ReLu 
Conv1D 8 3 1 ReLu 

5 

Conv1D 64 3 1 ReLu 

Yes 

Average 
Pooling1D 

- 2 2 ReLu 

Conv1D 32 3 1 ReLu 
Average 

Pooling1D 
- 3 3 ReLu 

Conv1D 16 3 1 ReLu 
Conv1D 8 3 1 ReLu 

6 

Conv1D 64 3 1 ReLu 

No 

Average 
Pooling1D 

- 2 2 ReLu 

Conv1D 32 3 1 ReLu 
Average 

Pooling1D 
- 3 3 ReLu 

Conv1D 16 3 1 ReLu 
Conv1D 8 3 1 ReLu 
Average 

Pooling1D 
- 2 2 ReLu 
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(a) 

 

(b) 

Fig. 8- (a) distribution of longitudinal accelerations estimated by convolutional neural network (b) distribution of longitudinal 
accelerations estimated by recurrent neural network 

 

 

Fig. 8. (a) distribution of longitudinal accelerations estimated by convolutional neural network (b) 
distribution of longitudinal accelerations estimated by recurrent neural network
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the performance of the model on the test set was examined. 
The selected network on the test dataset had a mean squared 
error equal to 0.47. The value of 0.385 degrees per second 
was obtained as the average error of estimating the angular 
acceleration. 

8- 1- 2- Hybrid model using the convolutional networks

8-1-2-1- evaluate the model in estimating the vehicle 
trajectory

After selecting appropriate architectures for the 
convolutional neural networks, longitudinal and angular 
accelerations were provided as inputs to the networks, and the 
vehicle trajectory was estimated using the model’s outputs. 
To reconstruct the vehicle’s path, the first one-second interval 
was evaluated. In other words, at the beginning of each 
second, the initial position of the movement was determined 
by GPS, and then the endpoint of movement after one second 
was estimated by the model. In the following steps, the 
duration of unavailability of GPS data was increased. In this 
condition, using the initial point of movement, the endpoint 
of movement after one second was estimated, just as before. 
This point was set as the initial point for the next second. The 
accuracy of the smartphone GPS, in the case of normal access 
to satellites, is about five meters. If the access to GPS for 
three consecutive seconds was limited, the proposed hybrid 
model could maintain an accuracy of fewer than 5 meters 
in 75% of cases and had an average accuracy of about three 
meters. If the access was limited for six consecutive seconds, 
the model would have an accuracy of fewer than five meters 
with a probability of 50%.

8-1-2-2- evaluate the networks in estimating longitudinal and 
angular accelerations

The neural network accuracy in estimating longitudinal 

acceleration even after 10 seconds at worst was limited to 
1.38 m/s2. This network had an accuracy of 0.34 m/s2 with a 
probability of 75% after 10 seconds. On the other hand, the 
network reports an angular acceleration that was estimated 
after 5 seconds with an accuracy of about 4.8 degrees per 
second and an average accuracy of about 9 degrees with a 
probability of 50%. Comparing the performance of the two 
networks, it can be concluded that the weakness of the model 
was more due to the performance of the convolution neural 
network in estimating angular accelerations.

8- 2- Recurrent neural networks
The optimum architecture for recurrent neural networks 

was selected for filtering and estimating both angular and 
longitudinal accelerations. The sum of squared error was 
then calculated for each architecture. Subsequently, a model 
was developed using recurrent neural networks, taking into 
account the time of inaccessibility to GPS data, to evaluate its 
accuracy in estimating the vehicle trajectory. The performance 
of each network was evaluated separately.

8- 2- 1- Determining the recurrent filter network architecture 
for longitudinal acceleration

To determine the optimum architecture for recurrent 
neural networks, three different networks with different 
numbers of layers and depths were developed. The different 
architectures are shown in Table 2.

The four-layer deep network showed better generalization 
capability compared to its shallower competitors. Increasing 
the network depth from four to five improved the performance 
of the model on training and validation datasets; However, 
it led to poorer performance on test data. Therefore, an 
architecture with a depth of four was selected in this section.

The recurrent neural network was verified and validated 
following a similar procedure as the convolutional networks. 

Table 2. proposed architectures for recurrent neural networksTable 2- proposed architectures for recurrent neural networks 

Number of 
architecture Layer type Layer depth Optimum 

architecture 

1 
LSTM 16 

No LSTM 8 
LSTM 4 

2 

LSTM 32 

Yes LSTM 16 
LSTM 8 
LSTM 4 

3 

LSTM 64 

No 
LSTM 32 
LSTM 16 
LSTM 8 
LSTM 4 
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The selected network demonstrated an error of 0.12 m/
s2 on the training dataset and 0.18 m/s2 on the test dataset. 
Additionally, it was ensured that all estimated acceleration 
values across all datasets were within the acceptable range of 
[-3.88, 2.87] m/s2  [39].

8- 2- 2- Determining the recurrent filter network architecture 
for angular acceleration:

To determine the optimum architecture for estimating 
angular acceleration, three different networks were developed, 
similar to the recurrent filter network for longitudinal 
acceleration. Architectures with depths of three to five layers 
were evaluated for filtering and estimating angular and 
longitudinal accelerations. The four-layer depth architecture 
had the lowest error on the test and validation datasets. 
Although the five-layer depth architecture had less error on the 
training dataset, it showed larger errors on the validation and 
test datasets compared to the four-layer depth neural network, 
indicating lower generalizability. Therefore, the four-layer 
depth network was selected as the optimal architecture. 
Similar to the hybrid model built using convolutional neural 
networks, by combining recurrent networks, a model was 
developed to estimate vehicle trajectory. This model greatly 
reduced the model’s dependence on GPS data, by up to 25%. 
The summary of the performance of the convolutional and 
recurrent neural networks in filtering and estimating angular 
and longitudinal accelerations is shown in Table 3.

8- 3- Changing the method of training model
To train models described in previous sections, the 

longitudinal and angular accelerations were first calculated. 
Using these accelerations, two separate networks were 
developed, with the sum of squared error serving as the error 
function. In the third model, a new error function was used 
as explained in section 6. Among the three proposed models, 
the first model with five convolutional layers and one average 
pooling filter layer had the best performance after eight 

seconds of inaccessibility to the global positioning system 
compared to the other models. Finally, this model with its 
new error function was chosen to detect the lane changes. All 
three models are presented in Table 4.

8- 4- Evaluate the performance of the lane change detection 
algorithm

During the data collection period, the RSP had 53 lane 
changes. The confusion matrix can present the performance 
of a model in accurate prediction of model input. It clearly 
shows the number of input cases which is predicted either 
right or wrong by the model. The confusion matrix of this 
algorithm in the detection of changing the passing lane is 
shown in Table 5.

It is observed that the proposed algorithm in the path 
detected 47 lane changes, of which 44 lane changes were 
correct and 3 were incorrect. In other words, in 3 cases, the 
vehicle did not change the lane and the algorithm incorrectly 
detected the lane change, while in 6 cases, it actually changed 
the lane but the model predicted that there was no lane 
change. There are different methods to present the results 
of the model evaluation, such as accuracy, precision, recall, 
and F1-score, which can be calculated using equations 1 to 4, 
respectively
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Table 3. The summary of neural networks results evaluationTable 3- the summary of neural networks results evaluation 

network Acceleration  Mean squared error value Acceptable range (m/s2) 

Convolutional neural 

networks 

Longitudinal 0.0022 

[-3.88, 2.87] 
Angular 0.026 

Recurrent neural 

networks 

Longitudinal 0.12 

Angular 0.8 
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Table 4. different architectures for convolutional neural networks with the proposed error functionTable 4- different architectures for convolutional neural networks with the proposed error function 

Architecture # Layer type Layer 
width 

Layer 
depth strider Activation 

function 
Optimum 

architecture 

1 

Conv1D 64 3 1 ReLu 

Yes 
Conv1D 32 3 1 ReLu 
Average 

Pooling1D 
- 8 8 linear 

Conv1D 16 3 1 ReLu 
Conv1D 8 3 1 ReLu 
Conv1D 4 3 1 ReLu 

2 

Conv1D 64 3 1 tanh 

No 

Conv1D 32 3 1 tanh 
Average 

Pooling1D 
- 8 8 linear 

Conv1D 16 3 1 tanh 
Conv1D 8 3 1 tanh 
Conv1D 4 6 1 tanh 

3 

Conv1D 64 3 1 tanh 

No 

Average 
Pooling1D 

32 3 1 tanh 

Conv1D - 8 8 linear 
Average 

Pooling1D 
16 3 1 tanh 

Conv1D 8 3 1 tanh 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. The confusion matrix of the vehicle lane change detection by the proposed algorithmTable 5- the confusion matrix of the vehicle lane change detection by the proposed algorithm 

 
Lane changes in recorded by an expert 

Change No change 

Algorithm output 
Change 44 3 

No change 6 0 
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In these equations, TP, TN, FP, and FN refer to True 
Positive, True Negative, False Positive, and False Negative, 
respectively. They represent the cases where lane changes 
were detected correctly, no lane changes were detected 
correctly, lane changes were detected wrongly, and no lane 
changes were detected wrongly, respectively. Therefore, it can 
be said that the model accuracy is equal to 94% which means 
94% of the lane changes detected by this algorithm were 
also correct. To validate the model performance accuracy, 
two approaches can be applied (1) using test (unseen) data to 
validate the accuracy of the model which has been carried out 
in this research (2) comparing with other research results in 
the same condition with the same objective and scope which 
have been rarely available in the related literature (Driessen 
et al., 2022).  Furthermore, according to Table 1, the selected 
model has precision equal to 93.62% and recall equal to 
88.00%. The F1-score in this study is equal to 90.72%. It 
should be noted that the high value of precision compared 
to other metrics shows that the number of false positives is 
low in the model meaning that the model does not predict 
something correct which is not right. However, the recall 
seems to be less than accuracy (by almost 5%) i.e., the model 
expresses false negative more than false positive. This result 
means that the model misses some correct patterns. In this 
study, having a higher precision level is more important than 
recall to ensure that the data that was applied in the modeling 
process is correctly annotated and employed. It should be 
noted that the confusion matrix is obtained from the test 
dataset. It shows that the model’s performance accuracy on a 
dataset other than the training dataset is valid and acceptable.

9- Conclusion
The objective of this study was to develop a model to 

detect lane changes using a combination of longitudinal 
and angular accelerometer sensor data. This model could 
be used to reduce the reliance on GPS data in places 
where satellite access is limited such as city centers. It 
also saves on mobile power consumption and increases 
the battery life of the device by using fewer global 
positioning system sensors. The proposed model in this 
study consisted of convolutional layers. The error function 
of this model was applied to correct the weights of the 
model according to the distance of the estimated position 
from the actual position of the vehicle path. An algorithm 
was also proposed that could use model outputs to detect 
lane change. This algorithm makes the necessary decisions 
based on vehicle lateral displacements. The developed 
model could successfully predict the lane change with 
precision, recall, and F1-score equal to 93.62%, 88.00%, 
and 90.72%, respectively. 

References
[1] 	A. Bener, E. Yildirim, T. Özkan, T. Lajunen, Driver 

sleepiness, fatigue, careless behavior and risk of motor 
vehicle crash and injury: Population based case and 
control study, Journal of Traffic and Transportation 
engineering (English edition), 4(5) (2017) 496-502.

[2] S. Reinhold, C. Laesser, D. Bazzi, The intellectual 
structure of transportation management research: A 
review of the literature, in, University of St. Gallen St. 
Gallen, 2015.

[3] R.D. Guide, American Association of State Highway and 
Transportation Officials, Washington, DC,  (1996).

[4] S. Al-Sultan, A.H. Al-Bayatti, H. Zedan, Context-
aware driver behavior detection system in intelligent 
transportation systems, IEEE transactions on vehicular 
technology, 62(9) (2013) 4264-4275.

[5] E.E. Galarza, F.D. Egas, F.M. Silva, P.M. Velasco, E.D. 
Galarza, Real time driver drowsiness detection based on 
driver’s face image behavior using a system of human 
computer interaction implemented in a smartphone, 
in:  Proceedings of the International Conference on 
Information Technology & Systems (ICITS 2018), 
Springer, 2018, pp. 563-572.

[6] M. Shahverdy, M. Fathy, R. Berangi, M. Sabokrou, 
Driver behavior detection and classification using deep 
convolutional neural networks, Expert Systems with 
Applications, 149 (2020) 113240.

[7] J. Wang, K. Li, X.-Y. Lu, Effect of human factors on 
driver behavior, in:  Advances in Intelligent Vehicles, 
Elsevier, 2014, pp. 111-157.

[8] Z. Xiao, F. Li, R. Wu, H. Jiang, Y. Hu, J. Ren, C. Cai, A. 
Iyengar, TrajData: On vehicle trajectory collection with 
commodity plug-and-play OBU devices, IEEE Internet 
of Things Journal, 7(9) (2020) 9066-9079.

[9] X. Liu, J. Biagioni, J. Eriksson, Y. Wang, G. Forman, 
Y. Zhu, Mining large-scale, sparse GPS traces for map 
inference: comparison of approaches, in:  Proceedings 
of the 18th ACM SIGKDD international conference on 
Knowledge discovery and data mining, 2012, pp. 669-
677.

[10] S. Tanwar, S. Tyagi, S. Kumar, The role of internet of 
things and smart grid for the development of a smart 
city, in:  Intelligent Communication and Computational 
Technologies: Proceedings of Internet of Things for 
Technological Development, IoT4TD 2017, Springer, 
2018, pp. 23-33.

[11] V. Chauhan, M. Patel, S. Tanwar, S. Tyagi, N. Kumar, 
IoT Enabled real-Time urban transport management 
system, Computers & Electrical Engineering, 86 (2020) 
106746.

[12] J. Masino, J. Thumm, M. Frey, F. Gauterin, Learning 
from the crowd: Road infrastructure monitoring system, 
Journal of Traffic and Transportation Engineering 



M. Ghasemi et al., AUT J. Civil Eng., 7(1) (2023) 13-30, DOI: 10.22060/ajce.2023.22422.5829

28

(English Edition), 4(5) (2017) 451-463.
[13] K.W. Wevers, M.L. Lu, R. van der Heijden Heijden, 

Technical feasibility of advanced driver assistance 
systems (ADAS) for road traffic safety,  (2005).

[14] Q. Li, F. Qiao, X. Wang, L. Yu, Drivers’ smart advisory 
system improves driving performance at STOP sign 
intersections, Journal of traffic and transportation 
engineering (English edition), 4(3) (2017) 262-271.

[15] D. Sunehra, K. Jhansi, Implementation of 
microcontroller based driver assistance and vehicle safety 
monitoring system, in:  2015 International Conference on 
Information Processing (ICIP), IEEE, 2015, pp. 423-428.

[16] A. Ziebinski, R. Cupek, D. Grzechca, L. Chruszczyk, 
Review of advanced driver assistance systems (ADAS), 
in:  AIP Conference Proceedings, AIP Publishing, 2017.

[17] M.J. Carrillo, Robotic cars test platform for connected 
and automated vehicles, University of California, Irvine, 
2015.

[18] A. Shaout, D. Colella, S. Awad, Advanced driver 
assistance systems-past, present and future, in:  2011 
Seventh International Computer Engineering Conference 
(ICENCO’2011), IEEE, 2011, pp. 72-82.

[19] U. Hofmann, A. Rieder, E.D. Dickmanns, Radar and 
vision data fusion for hybrid adaptive cruise control on 
highways, Machine Vision and Applications, 14 (2003) 
42-49.

[20] A. Kesting, M. Treiber, M. Schönhof, D. Helbing, 
Adaptive cruise control design for active congestion 
avoidance, Transportation Research Part C: Emerging 
Technologies, 16(6) (2008) 668-683.

[21] S. Cafiso, A. Di Graziano, G. Pappalardo, In-vehicle 
stereo vision system for identification of traffic conflicts 
between bus and pedestrian, Journal of traffic and 
transportation engineering (English edition), 4(1) (2017) 
3-13.

[22] C. Ilas, Electronic sensing technologies for autonomous 
ground vehicles: A review, in:  2013 8th International 
Symposium on Advanced Topics in Electrical 
Engineering (ATEE), IEEE, 2013, pp. 1-6.

[23] B.-G. Lee, W.-Y. Chung, A smartphone-based driver 
safety monitoring system using data fusion, Sensors, 
12(12) (2012) 17536-17552.

[24] J. Carmona, F. García, D. Martín, A. de la Escalera, J.M. 
Armingol, Data fusion for driver behaviour analysis, 
Sensors, 15(10) (2015) 25968-25991.

[25] J. Yu, Z. Chen, Y. Zhu, Y. Chen, L. Kong, M. Li, 
Fine-grained abnormal driving behaviors detection and 
identification with smartphones, IEEE transactions on 
mobile computing, 16(8) (2016) 2198-2212.

[26] S. Siuhi, J. Mwakalonge, Opportunities and challenges 
of smart mobile applications in transportation, Journal of 
traffic and transportation engineering (english edition), 
3(6) (2016) 582-592.

[27] G.M. Fitch, K. Grove, R.J. Hanowski, M.A. Perez, 

Compensatory behavior of drivers when conversing on 
a cell phone: Investigation with naturalistic driving data, 
Transportation research record, 2434(1) (2014) 1-8.

[28] M.M. Haque, S. Washington, The impact of mobile 
phone distraction on the braking behaviour of young 
drivers: a hazard-based duration model, Transportation 
research part C: emerging technologies, 50 (2015) 13-27.

[29] W.J. Horrey, M.F. Lesch, M.J. Dainoff, M.M. Robertson, 
Y.I. Noy, On-board safety monitoring systems for driving: 
review, knowledge gaps, and framework, Journal of 
safety research, 43(1) (2012) 49-58.

[30] W. Consiglio, P. Driscoll, M. Witte, W.P. Berg, Effect 
of cellular telephone conversations and other potential 
interference on reaction time in a braking response, 
Accident Analysis & Prevention, 35(4) (2003) 495-500.

[31] S.G. Klauer, F. Guo, B.G. Simons-Morton, M.C. 
Ouimet, S.E. Lee, T.A. Dingus, Distracted driving and 
risk of road crashes among novice and experienced 
drivers, New England journal of medicine, 370(1) (2014) 
54-59.

[32] T.A. Dingus, F. Guo, S. Lee, J.F. Antin, M. Perez, M. 
Buchanan-King, J. Hankey, Driver crash risk factors 
and prevalence evaluation using naturalistic driving 
data, Proceedings of the National Academy of Sciences, 
113(10) (2016) 2636-2641.

[33] V. Havyarimana, D. Hanyurwimfura, P. Nsengiyumva, 
Z. Xiao, A novel hybrid approach based-SRG model 
for vehicle position prediction in multi-GPS outage 
conditions, Information Fusion, 41 (2018) 1-8.

[34] H. Ahmed, I. Ullah, U. Khan, M.B. Qureshi, S. 
Manzoor, N. Muhammad, M.U. Shahid Khan, R. Nawaz, 
Adaptive filtering on GPS-aided MEMS-IMU for 
optimal estimation of ground vehicle trajectory, Sensors, 
19(24) (2019) 5357.

[35] T. Driessen, L.L.B. Prasad, P. Bazilinskyy, J. de Winter, 
Identifying Lane Changes Automatically using the 
GPS Sensors of Portable Devices, Human Factors in 
Transportation, 60 (2022) 50.

[36] S. Stieger, D. Lewetz, U.-D. Reips, Can smartphones be 
used to bring computer-based tasks from the lab to the 
field? A mobile experience-sampling method study about 
the pace of life, Behavior Research Methods, 50 (2018) 
2267-2275.

[37] A. Fani, H. Naseri, Travel Time Modelling of Urban 
Roads By Application of Coyote Optimization-based 
Machine Learning Method, Amirkabir Journal of Civil 
Engineering, 53(9) (2021) 3649-3664.

[38] S. Ranjbar, F. Moghadas Nejad, H. Zakeri, Asphalt 
Pavement Bleeding Evaluation using Deep Learning 
and Wavelet Transform, Amirkabir Journal of Civil 
Engineering, 53(11) (2022) 4577-4598.

[39] P.S. Bokare, A.K. Maurya, Acceleration-deceleration 
behaviour of various vehicle types, Transportation 
research procedia, 25 (2017) 4733-4749.



M. Ghasemi et al., AUT J. Civil Eng., 7(1) (2023) 13-30, DOI: 10.22060/ajce.2023.22422.5829

29

HOW TO CITE THIS ARTICLE
M. Ghasemi, A. Golroo, M. J. Amani, M. Rasti, Traffic Lane Change Detection using mobile 
phone sensors and geolocation, AUT J. Civil Eng., 7(1) (2023) 13-30.

DOI: 10.22060/ajce.2023.22422.5829



This
 pa

ge
 in

ten
tio

na
lly

 le
ft b

lan
k


	Blank Page - EN.pdf
	_GoBack




