[1] Y. Han, Z. Yang, T. Ding, J. Xiao, Environmental and economic assessment on 3D printed buildings with recycled concrete, Journal of Cleaner Production, 278 (2021) 123884.
[2] A. Ramezani, S. Modaresi, P. Dashti, M.R. GivKashi, F. Moodi, A.A. Ramezanianpour, Effects of Different Types of Fibers on Fresh and Hardened Properties of Cement and Geopolymer-Based 3D Printed Mixtures: A Review, Buildings, 13(4) (2023) 945.
[3] G. De Schutter, K. Lesage, V. Mechtcherine, V.N. Nerella, G. Habert, I. Agusti-Juan, Vision of 3D printing with concrete—Technical, economic and environmental potentials, Cement and Concrete Research, 112 (2018) 25-36.
[4] Y. Weng, M. Li, S. Ruan, T.N. Wong, M.J. Tan, K.L.O. Yeong, S. Qian, Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach, Journal of Cleaner Production, 261 (2020) 121245.
[5] P. Wu, J. Wang, X. Wang, A critical review of the use of 3-D printing in the construction industry, Automation in Construction, 68 (2016) 21-31.
[6] A. Al Rashid, S.A. Khan, S.G. Al-Ghamdi, M. Koç, Additive manufacturing: Technology, applications, markets, and opportunities for the built environment, Automation in Construction, 118 (2020) 103268.
[7] V. Mechtcherine, F.P. Bos, A. Perrot, W.L. Da Silva, V. Nerella, S. Fataei, R.J. Wolfs, M. Sonebi, N. Roussel, Extrusion-based additive manufacturing with cement-based materials–production steps, processes, and their underlying physics: a review, Cement and Concrete Research, 132 (2020) 106037.
[8] K.N. Jha, Formwork for concrete structures, Tata McGraw Hill Education Private Limited, 2012.
[9] J. Zhang, J. Wang, S. Dong, X. Yu, B. Han, A review of the current progress and application of 3D printed concrete, Composites Part A: Applied Science and Manufacturing, 125 (2019) 105533.
[10] S. Mindess, Sustainability of concrete, in: Developments in the Formulation and Reinforcement of Concrete, Elsevier, 2019, pp. 3-17.
[11] S.C. Paul, G.P. Van Zijl, M.J. Tan, I. Gibson, A review of 3D concrete printing systems and materials properties: Current status and future research prospects, Rapid Prototyping Journal, 24(4) (2018) 784-798.
[12] S. Yang, S. Wi, J.H. Park, H.M. Cho, S. Kim, Novel proposal to overcome insulation limitations due to nonlinear structures using 3D printing: Hybrid heat-storage system, Energy and Buildings, 197 (2019) 177-187.
[13] N. Manhanpally, S. Saha, Benefit Cost Analysis of 3D Printed Concrete Building, in: Recent Advances in Materials, Mechanics and Structures: Select Proceedings of ICMMS 2022, Springer, 2022, pp. 381-392.
[14] E.G. Segovia, R. Irles, A. Gonzalez, A. Macia, J.C. Pomares, The vertical safety nets in building-construction. II, Informes de la Construcción, 59(1) (2007) 37-51.
[15] J.C. Pomares, E.Á. Carrión, A. González, P.I. Saez, Optimization on personal fall arrest systems. Experimental dynamic studies on lanyard prototypes, International journal of environmental research and public health, 17(3) (2020) 1107.
[16] T. Wangler, E. Lloret, L. Reiter, N. Hack, F. Gramazio, M. Kohler, M. Bernhard, B. Dillenburger, J. Buchli, N. Roussel, Digital concrete: opportunities and challenges, Rilem technical letters, 1(1) (2017) 67-75.
[17] N. Labonnote, A. Rønnquist, B. Manum, P. Rüther, Additive construction: State-of-the-art, challenges and opportunities, Automation in construction, 72 (2016) 347-366.
[18] R.A. Buswell, W.L. De Silva, S.Z. Jones, J. Dirrenberger, 3D printing using concrete extrusion: A roadmap for research, Cement and Concrete Research, 112 (2018) 37-49.
[19] B. Khoshnevis, R. Dutton, Innovative rapid prototyping process makes large sized, smooth surfaced complex shapes in a wide variety of materials, Materials Technology, 13(2) (1998) 53-56.
[20] H. Yang, J.K. Chung, Y. Chen, Y. Li, The cost calculation method of construction 3D printing aligned with internet of things, EURASIP Journal on Wireless Communications and Networking, 2018(1) (2018) 1-9.
[21] V. Mechtcherine, V.N. Nerella, F. Will, M. Näther, J. Otto, M. Krause, Large-scale digital concrete construction–CONPrint3D concept for on-site, monolithic 3D-printing, Automation in construction, 107 (2019) 102933.
[22] R. Schmitt, Die Schalungstechnik: Systeme, Einsatz und Logistik, John Wiley & Sons, 2001.
[23] P.-C. Aïtcin, Accelerators, in: Science and technology of concrete admixtures, Elsevier, 2016, pp. 405-413.
[24] G. Ji, T. Ding, J. Xiao, S. Du, J. Li, Z. Duan, A 3D printed ready-mixed concrete power distribution substation: Materials and construction technology, Materials, 12(9) (2019) 1540.
[25] M. Näther, V.N. Nerella, M. Krause, G. Künze, V. Mechtcherine, R. Schach, Beton-3D-Druck-Machbarkeitsuntersuchungen zu kontinuierlichen und schalungsfreien Bauverfahren durch 3D-Formung von Frischbeton. Abschlussbericht, (2017).
[26] B.G. de Soto, I. Agustí-Juan, J. Hunhevicz, S. Joss, K. Graser, G. Habert, B.T. Adey, Productivity of digital fabrication in construction: Cost and time analysis of a robotically built wall, Automation in construction, 92 (2018) 297-311.
[27] R. Schach, M. Krause, M. Näther, V. Nerella, CONPrint3D: Beton-3D-Druck als Ersatz für den Mauerwerksbau, Bauingenieur, 92(9) (2017) 355-363.
[28] M. Batikha, R. Jotangia, M.Y. Baaj, I. Mousleh, 3D concrete printing for sustainable and economical construction: A comparative study, Automation in Construction, 134 (2022) 104087.
[29] T. Marchment, J. Sanjayan, M. Xia, Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification, Materials & Design, 169 (2019) 107684.
[30] D. Lee, H. Kim, J. Sim, D. Lee, H. Cho, D. Hong, Trends in 3D printing technology for construction automation using text mining, International Journal of Precision Engineering and Manufacturing, 20 (2019) 871-882.
[31] L. Romdhane, S.M. El-Sayegh, 3D Printing in Construction: Benefits and Challenges, Int. J. Civ. Eng. Res, 9 (2020) 314-317.
[32] P. Bedarf, A. Dutto, M. Zanini, B. Dillenburger, Foam 3D printing for construction: A review of applications, materials, and processes, Automation in Construction, 130 (2021) 103861.
[33] I. Shafiei, E. Eshtehardian, F. Nasirzadeh, S. Arabi, Dynamic modeling to reduce the cost of quality in construction projects, International Journal of Construction Management, 23(1) (2023) 24-37.
[34] M. Parsamehr, U.S. Perera, T.C. Dodanwala, P. Perera, R. Ruparathna, A review of construction management challenges and BIM-based solutions: perspectives from the schedule, cost, quality, and safety management, Asian Journal of Civil Engineering, 24(1) (2023) 353-389.
[35] R.D. Riaz, M. Usman, A. Ali, U. Majid, M. Faizan, U.J. Malik, Inclusive characterization of 3D printed concrete (3DPC) in additive manufacturing: A detailed review, Construction and Building Materials, 394 (2023) 132229.
[36] M.R. Givkashi, E. Shakeri, D. Asadollahzadeh, Application of building information modeling (BIM) technology in safety risk management in the construction industry, The first international conference on design and management of sustainable, (2022).
[37] Z. Ding, X. Wang, J. Sanjayan, P.X. Zou, Z.-K. Ding, A feasibility study on HPMC-improved sulphoaluminate cement for 3D printing, Materials, 11(12) (2018) 2415.
[38] A.K. Feroz, H. Zo, A. Chiravuri, Digital transformation and environmental sustainability: A review and research agenda, Sustainability, 13(3) (2021) 1530.
[39] C. Gosselin, R. Duballet, P. Roux, N. Gaudillière, J. Dirrenberger, P. Morel, Large-scale 3D printing of ultra-high performance concrete–a new processing route for architects and builders, Materials & Design, 100 (2016) 102-109.
[40] M.T. Souza, I.M. Ferreira, E.G. de Moraes, L. Senff, A.P.N. de Oliveira, 3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects, Journal of Building Engineering, 32 (2020) 101833.
[41] S.A. Miller, P.J. Monteiro, C.P. Ostertag, A. Horvath, Comparison indices for design and proportioning of concrete mixtures taking environmental impacts into account, Cement and Concrete Composites, 68 (2016) 131-143.
[42] U. Environment, K.L. Scrivener, V.M. John, E.M. Gartner, Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry, Cement and concrete Research, 114 (2018) 2-26.
[43] A. Rahul, M.K. Mohan, G. De Schutter, K. Van Tittelboom, 3D printable concrete with natural and recycled coarse aggregates: Rheological, mechanical and shrinkage behaviour, Cement and Concrete Composites, 125 (2022) 104311.
[44] M.K. Mohan, A.V. Rahul, K. Van Tittelboom, G. De Schutter, Evaluating the influence of aggregate content on pumpability of 3D printable concrete, In Second RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete, (2020).
[45] M.K. Mohan, A. Rahul, G. De Schutter, K. Van Tittelboom, Early age hydration, rheology and pumping characteristics of CSA cement-based 3D printable concrete, Construction and Building Materials, 275 (2021) 122136.
[46] M.K. Mohan, A.V. Rahul, B. Van Dam, T. Zeidan, G. De Schutter, K. Van Tittelboom, Performance criteria, environmental impact and cost assessment for 3D printable concrete mixtures, Resources, Conservation and Recycling, (2022).