[1] O.C. Celik, H.P. Gülkan, Processing forced vibration test records of structural systems using the analytic signal, Journal of Vibration and Control, 27(19-20) (2021) 2253-2267.
[2] J.P. Gomes, J.V. Lemos, Characterization of the dynamic behavior of a concrete arch dam by means of forced vibration tests and numerical models, Earthquake Engineering & Structural Dynamics, 49(7) (2020) 679-694.
[3] J. Brownjohn, M. Bocian, D. Hester, Forced vibration testing of footbridges using calibrated human shaker and wireless sensors, Procedia Engineering, 199 (2017) 417-422.
[4] M. Viberg, Subspace-based methods for the identification of linear time-invariant systems, Automatica, 31(12) (1995) 1835-1851.
[5] P. Van Overschee, B.L. De Moor, Subspace identification for linear systems: theory, implementation, applications, Kluwer academic publishers Dordrecht, 1996.
[6] V. Verdult, Non linear system identification: a state-space approach, University of Twente, Enschede, The Netherlands, 2002.
[7] K. Peternell, W. Scherrer, M. Deistler, Statistical analysis of novel subspace identification methods, Signal Processing, 52(2) (1996) 161-177.
[8] D. Bauer, M. Deistler, W. Scherrer, User choices in subspace algorithms, in: Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No. 98CH36171), IEEE, 1998, pp. 731-736.
[9] M. Jansson, B. Wahlberg, On consistency of subspace methods for system identification, Automatica, 34(12) (1998) 1507-1519.
[10] P. Van Overschee, B. De Moor, Subspace identification for linear systems: Theory—Implementation—Applications, Springer Science & Business Media, 2012.
[11] P. Van Overschee, B. De Moor, N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems, Automatica, 30(1) (1994) 75-93.
[12] T. Katayama, Subspace methods for system identification, Springer, 2006.
[13] G. Picci, T. Katayama, Stochastic realization with exogenous inputs and ‘subspace-methods’ identification, Signal Processing, 52(2) (1996) 145-160.
[14] R.A. Fisher, On the mathematical foundations of theoretical statistics, Philosophical transactions of the Royal Society of London. Series A, containing papers of a mathematical or physical character, 222(594-604) (1922) 309-368.
[15] J.R. Raol, G. Girija, J. Singh, Modelling and parameter estimation of dynamic systems, Iet, 2004.
[16] P. Kabaila, On output-error methods for system identification, IEEE Transactions on Automatic Control, 28(1) (1983) 12-23.
[17] Y. Tomita, A.A. Damen, P.M.V.D. HOF, Equation error versus output error methods, Ergonomics, 35(5-6) (1992) 551-564.
[18] M. Kosaka, H. Uda, E. Bamba, H. Shibata, State-space model identification using input and output data with steady state values zeroing multiple integrals of output error, (2006).
[19] J.J. Moré, The Levenberg-Marquardt algorithm: implementation and theory, in: Numerical analysis, Springer, 1978, pp. 105-116.
[20] B. Peeters, System Identification and Damage Detection in Civil Engeneering, Katholieke Universiteit Leuven, Heverlee (Belgium), 2000.
[21] M. Verhaegen, V. Verdult, Filtering and system identification: a least squares approach, Cambridge university press, 2007.
[22] B. David, Parameter estimation in nonlinear dynamical systems with correlated noise, UCL-Université Catholique de Louvain, 2001.
[23] L.C.S. Góes, E.M. Hemerly, B.C.d.O. Maciel, W.R. Neto, C. Mendonca, J. Hoff, Aircraft parameter estimation using output-error methods, Inverse problems in science and engineering, 14(6) (2006) 651-664.
[24] D.A. Dutra, Collocation-based output-error method for aircraft system identification, in: AIAA Aviation 2019 Forum, 2019, pp. 3087.
[25] M. Brunot, A. Janot, F. Carrillo, J. Cheong, J.-P. Noël, Output error methods for robot identification, Journal of Dynamic Systems, Measurement, and Control, 142(3) (2020) 031002.
[26] S. Dong, T. Liu, W. Wang, J. Bao, Y. Cao, Identification of discrete-time output error model for industrial processes with time delay subject to load disturbance, Journal of Process Control, 50 (2017) 40-55.
[27] C.-T. Chen, Linear system theory and design, Oxford University Press, Inc., United States of America, New York, 1995.
[28] M. Verhaegen, Identification of the deterministic part of MIMO state space models given in innovations form from input-output data, Automatica, 30(1) (1994) 61-74.
[29] J.-H. Weng, C.-H. Loh, J.P. Lynch, K.-C. Lu, P.-Y. Lin, Y. Wang, Output-only modal identification of a cable-stayed bridge using wireless monitoring systems, Engineering Structures, 30(7) (2008) 1820-1830.
[30] M. Verhaegen, Subspace model identification part 3. Analysis of the ordinary output-error state-space model identification algorithm, International Journal of control, 58(3) (1993) 555-586.
[31] M. Verhaegen, P. Dewilde, Subspace model identification part 2. Analysis of the elementary output-error state-space model identification algorithm, International journal of control, 56(5) (1992) 1211-1241.
[32] M. Verhaegen, P. Dewilde, Subspace model identification part 1. The output-error state-space model identification class of algorithms, International journal of control, 56(5) (1992) 1187-1210.
[33] T. McKelvey, A. Helmersson, System identification using an over-parametrized model class-improving the optimization algorithm, in: Proceedings of the 36th IEEE Conference on Decision and Control, IEEE, 1997, pp. 2984-2989.
[34] L.H. Lee, K. Poolla, Identification of linear parameter-varying systems using nonlinear programming, (1999).
[35] M. Pastor, M. Binda, T. Harčarik, Modal assurance criterion, Procedia Engineering, 48 (2012) 543-548.
[36] P. Andersen, Identification of civil engineering structures using vector ARMA models, Aalborg University, Aalborg, Denmark, 1997.
[37] M. Vigsø, T. Kabel, M. Tarpø, R. Brincker, C. Georgakis, Operational modal analysis and fluid-structure interaction, in: Procedings of the International Conference on Noise and Vibration Engineering, ISMA, 2018.
[38] S. Alves, J. Hall, Generation of spatially nonuniform ground motion for nonlinear analysis of a concrete arch dam, Earthquake engineering & structural dynamics, 35(11) (2006) 1339-1357.
[39] S.W. Alves, Nonlinear analysis of Pacoima Dam with spatially nonuniform ground motion, California Institute of Technology, 2005.
[40] S. Alves, J. Hall, System identification of a concrete arch dam and calibration of its finite element model, Earthquake engineering & structural dynamics, 35(11) (2006) 1321-1337.
[41] M. Isari, R. Tarinejad, A. TaghaviGhalesari, A. Sohrabi-Bidar, A new approach to generating non-uniform support excitation at topographic sites, Soils and Foundations, 59(6) (2019) 1933-1945.
[42] R. Tarinejad, Effects of blast loading on the response of concrete arch dam (Case study: Karun 4), Modares Civil Engineering journal, 18(1) (2018) 43-54.
[43] L. Cheng, C. Ma, X. Yuan, J. Yang, L. Hu, D. Zheng, A Literature Review and Result Interpretation of the System Identification of Arch Dams Using Seismic Monitoring Data, Water, 14(20) (2022) 3207.
[44] R. Tarinejad, R. Fatehi, Modal identification of an arch dam during various earthquakes, in: Proceedings of the 1st International Conference On Dams And Hydropower, 2012.