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ABSTRACT 
Stochastic subspace identification (SSI) is a process that linearizes the identification problem by utilizing singular 

value decomposition (SVD) and QR factorization. This technique enables the extraction of system matrices through 

linear least squares. However, the estimated systems in these methods are affected by the user-defined dimensions of 

the data space (Hankel matrix). Also, SSI does not explicitly minimize a cost function for estimating system matrices, 

making statistical analysis difficult. To enhance the accuracy of modal specifications obtained from SSI, especially 

the damping ratios, this research suggests using output-error methods (OEM). During OEM, the process involves 

iteratively adjusting the model parameters to match the outputs of the simulated model with those of the observed 

system. The following steps are taken to enhance the OEM for extracting structural properties: Firstly, the initial term 

is derived using the SSI to reduce the number of optimization iterations. Secondly, by using the Gauss-Newton 

approach, the nonlinearity of the objective function is reduced by treating the second-order derivatives as a linear 

system. Finally, Gradient project minimization is utilized in SSI to ensure the injectivity of estimated systems. The 

OEM was validated by analyzing the response of a 3-DOF excited by white noise with an SNR of 1 db.  Then, the 

model was then applied to seismic observations of Pacoima Dam during the 2001 San Fernando and 2008 Chino Hills 

earthquakes. The two main modes of the structure were extracted, and they had the least error compared to the 

developed finite element models. 
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1.INTRODUCTION 

Quantifying the dynamic characteristics of structures (frequency, damping ratio, and mode shapes) is an essential tool 

for studying their dynamic response against excitation, such as earthquakes, wind, and explosions [1]. This can be 

achieved through ambient and forced vibration testing. In flexible structures such as dams, bridges, and buildings 

forced vibration tests (FVT) are considered more reliable because they involve controlled vibrations that enhance the 

dynamic response of the structure. This results in better noise source overlap and increases the accuracy of the 

extracted modal characteristics. Additionally, these tests provide valuable information about the mass and rigidity of 

the structure, which can be used to update the finite element model quickly[2, 3]. 

One of the most popular methods for analyzing the results of dynamic vibration tests is the stochastic subspace 

identification (SSI) method. These methods modulate the vibrating structure in the state space as a Linear Time-

Invariant (LTI) system [4, 5]. These methods are based on arranging measured inputs and outputs in the Hankel matrix 

[6]. By solving the linear least squares (LS) problem, the modal properties may be determined utilizing essential linear 

algebraic techniques such as rank-querying (RQ) and singular value decomposition (SVD). Bypassing the nonlinear 
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modes is one of the main reasons for the popularity of these methods [7-9]. Various algorithms have been presented 

for these methods based on how to deal with input and output noises, such as PI-MOESP for colored noises and PO-

MOESP for white noises approach [10]. Other algorithms include N4SID, based on the least squares [11]and SI-ORT, 

based on the canonical correlation analysis [12, 13]. 

The output-error method (OEM) is another approach to analyzing FVT, the standard methodology for estimating 

aircraft parameters [14, 15]. These approaches' foundation is the iterative matching of the simulated model response 

with the measured response [16-18].The approach assumes that the uncertainties caused by the noises operating on 

the system are additively perturbed at the output [19-22]. It consists of four phases: The first phase entails 

parameterizing the model or choosing the parameters to estimate in the model. In the second step, the estimate of 

model parameters is formulated as an optimization problem. Step three is selecting a numerical method to solve the 

optimization issue iteratively. The last stage is a covariance matrix-based assessment of the correctness of the derived 

estimations. White noise with zero means is assumed as an additive error throughout these four stages. 

As previously stated, this approach is used chiefly for aeronautical themes [23, 24]; nevertheless, it has lately been 

utilized to determine robot features [25]. This technique has recently been applied to deterministic dynamics in 

industrial processes, including temporal delays and unknown load disturbances [26]. However, this method's potential 

has yet to be explored in structural problems. This study plans to employ OEM, which has never been used in system 

identification procedures through an ambient vibration test, to extract structural modal features. In the OEM approach, 

parameter estimation is carried out using a nonlinear optimization methodology (Gauss-Newton method). 

Consequently, the method is more computationally demanding due to its iterative nature. This approach was applied 

to the modal test of structures as follows: 

First, the starting statement is collected from the SSI to limit the number of trials and mistakes and the dependency of 

the detected modal features on the initial response utilized in the optimization. Second, the objective function's 

complexity is reduced by considering the second-order derivatives as a linear system to optimize parameters using the 

Gauss-Newton approach. Finally, due to the non-injectivity of the specified parameterization and similarity 

transformations of the state-space systems, the objective function is updated outside the same transformations to 

prevent numerical difficulties in the gradient project minimization process. 

The proposed algorithm extracts the modal characteristics of Pacoima Dam using its seismic data after validation with 

a numerical model of a 3DOF analytical system with closely spaced modes under different noise intensities. 

2.Output-Error Method 

In ambient vibration testing, data is collected at certain intervals, such as kt. By using the following set of discrete 

time equations in the state space, the dynamic behavior of the desired structure can be described: 

     1 kx k x k u k    A B          (1) 

      ky k x k u k   C D           (2) 
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where 2. 1nx   is a discrete stochastic vector at time instant k , 1my   denotes the sampled outputs vector at the 

k th time step,   1su k   is the input or control vector, 2. 2.  n nA  sows the discrete-time state matrix and 

m nC  represents the output matrix, m  is the number of measurement points or sensors, 2. 1n

k
  and 1m

k
  

are measurement and computation noises, respectively [27]. It is important to note that the signal-generating LTI 

system can describe the vibrating structure's dynamic response (Eq. 2) as: 

      ky k G q u k v             (3) 

Where k=1, 2,..., s is the total quantity of measured data,  G q  is the system's deterministic component, and 1  m

kv   

stands for measurement noise that is statistically independent from the inputs ( 1su  ). 

The objective of modelling in the OEM (Fig.1) is to find a collection of system matrices (A, B, C, D) such that the 

output  ŷ k  approximates the system's output  y k  (Eq.3). One frequent strategy for solving this issue is estimating 

a vector of parameters (Eq.4) based on the assumption that the system's matrix entries depend on these parameters.  
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Where  .vec  represents the vector operator,   AC  is the set of parameters required for the system outputs, and 
BD  is 

the parameter vector of the system inputs[28]. According to the Eqs.1a and 2b, the estimated system may be 

parameterized as follows using the parameter vector θ as follows: 

         ˆ ˆ1 ,   , x k x k u k     A B         (5.a) 

         ˆ , ˆ  , y k x k u k    C D         (5.b)  

To estimate the state-space model, the following quadratic cost function is considered[29-32]: 
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where  y k  is the measured output signal,  ˆ ,  y k  is the output signal of the model and  NE   is the prediction error 

vector. 
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Fig.1 The output-error model-estimation method 

The cost function  N J  is a scalar function that depends on the parameter vector    in the parameter space    . The 

problem of its optimization by considering the constraints can be expressed as follows: 
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Specifically, the following Taylor series expansion in  NE   about i  is utilized to provide a numerical solution to 

the parameter-optimization problem[21]: 
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By defining  1ii i  


  and marking  
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ψ  , the preceding linear least squares problem is solved 

in the way presented: 
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where 
  i

N H  is the Hessian matrix and 
  ' i

N J  is the Jacobian of objective function. 

Eq.9 shows that  NE   and  N ψ  must be determined for each iteration. From the set of Eq.1, we can derive the 

matrix    NE  , but to compute  N ψ  , we need to have: 
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where  
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where  θ i  represents the ith entry in the vector θ. It is straightforward to see that for every parameter  θ i we 

have 
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The two preceding equations demonstrate that the derivative of  ,ŷ k   to  i   may be determined by simulating 

a linear system with state  ,iX k  and inputs  ˆ  , x k   and  u k . 

Note that the matrices
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D
are fixed and solely rely on the specific parameterization 

used to describe the system. Our investigation leads us to the conclusion that determining  N ψ  is equivalent to 

running a linear system model for each component of the θ parameter vector. The simulation of p+1 linear systems is 

required to calculate  N ψ  and  NE   if   has p parameters. 

System matrices in the state space are non-injective so a singular Hessian matrix can be generated. Consequently, 

multiple combinations of parameters provide the same value for the cost function  N J . Hence the   that minimizes 

 N J  is no longer required to be unique. Here, we investigate an arbitrary system with matrices  ,  ,  , A B C D using 

the transformation matrix 
n nT  from the system  ,  , ,A B C D : 
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A manifold is obtained in the parametric space by applying all the non-singular 
n nT  in the above relation. In 

order to minimize the objective function, one should avoid moving along it because the objective function is fixed on 

it. A perturbation equal to ΔT  is applied to the identity matrix ΙN
to determine the tangent plane on this manifold[33, 

34].  

Ι  Δn T T               15  

The following expression is a first-order approximation of similarly comparable systems: 
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Based on the property of the vector operator (Eq.17), we have the following: 
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where   and   are vectors of parameters derived from the original and similar systems, and  is the Boolean 

product operator. Eq.18 demonstrates that the columns of the matrix  Q  traverse the tangent plane at point θ  on 

the manifold of similar systems. SVD decomposition is used to evaluate the perpendicular component along the 

tangent plane: 
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where   0 Σ  and    p p r  

 U ,with  2p n n l m lm     and   .r rank  Q  

The columns of the matrix  U  and  U  form a basis for the column space and the orthogonal complement of 

the column space of    Q , respectively. The parameter vector θ  may be broken down into its components using the 

matrices  u   and    U : 
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Because the second part is connected to the directions that affect the cost function's value, the effective direction 

update of Eq. 18 is adjusted as follows. 
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Fig. 2 shows a flowchart depicting the OEM procedure. 

3. Numerical validation for OEM method 

This section provides a comprehensive evaluation of OEM's performance regarding the accuracy and reliability of its 

estimates for forced vibration. The evaluation is based on a modal analysis of a system with two closely spaced and 

strong modes (Fig.3), where the distribution of mass and stiffness is irregular. The proposed method's efficiency is 

tested in varying noise levels with prescribed signal-to-noise ratios (SNR) of 1%, 5%, and 15%. The structural 

characteristics of the mentioned systems include mass and stiffness matrix as follows: 

10 1 0 4 0 0

1 4 3         0 3 0        

0 3 3 0 0 2

k m

   
   

   
   
      

k M         22  

where m=10 ton and k=1500 /KN m  are assumed. Also, Cauchy damping has been adopted for both models. The 

exact values of modal characteristics for the considered case studies are presented in Table 1.  

 

Fig.2 Flowchart of OEM algorithm. 
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The vibration data is created by applying random white noise horizontally at node 1, and the acceleration data is taken 

as the output. The computed response is affected by sensor noise. The damped response of the system was determined 

using the fourth-order Runge-Kutta method. The system corresponding to 3-DOF was modeled and analyzed using 

the Modal analysis technique in the Simulink MATLAB module, as shown in Fig.4. The excitation time was 

appropriately adjusted for the 30-second recording by the 100 Hz sampling rate, as depicted in Fig.5. For instance, the 

output record for mass1 is displayed in Fig.6. 

 

 

Table 1 The modal features of 3-DOF systems determined by 

the numerical model. 

Damping (%) Frequency (Hz) Mode 

2.00 0.83 1 

3.00 3.00 2 

4.00 3.25 3 
 

 
 Fig.3 The simulated 3-DOF system 

 

 

 
Fig.4. Simulink model of motion differential equations 

 
 

  
Fig.5 . Random white noise applied in the horizontal 

direction at mass 1 
 

Fig.6. Acceleration records of 3-DOF system at mass 1  
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4.OEM method in extracting modal characteristics 

At first, Modal properties of the structure were detected using the PO-MOESP algorithm to evaluate the effectiveness 

of the suggested algorithm compared to other identification techniques. To express the estimated error of predicted 

models in SSI, the variance account for (VAF), an alternative formulation of Eq.6, is employed as follows: 
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where y m j

k

  and ŷ m j

k

  are the measured data and estimated values, respectively. The closer this criterion 

to 100, the lower the prediction error and the higher the accuracy of the model. 

 The VAF diagrams of the model is shown in Fig.7.As demonstrated, when SNR decreases, the inaccuracy of the 

obtained feature grows, bringing the VAF rate from 98% at SNR=5% and SNR=15% to less than 60% at SNR=1dB. 

One of the known limitations of SSI is that the derived modal properties rely on the Hankel matrix dimensions. Here, 

we will extract the modal features using the OEM, with the estimated error of the system's response as the objective 

function. The OEM, defined as the SSI in the state space, will provide the matrices  , , ,A B C D . The objective function 

values have been normalized to 100% based on the maximum value that often occurs in the first step, so the 

optimization rate can be checked more quickly and readily in both cases. According to Eq.8, the initial point is the 

most critical limitation a user may decide. In order to make the algorithm's outputs independent of the initial point, 

more than 30 simulations with initial points with VAFs between 30% and 90% were conducted for each case study. 

The findings show that adopting predicted models with VAFs between 85 and 90% of the final VAF of the ideal SSI 

model yields more optimal outcomes, particularly for damping ratios. The explanation is that using phrases with 

significant estimate errors results in unstable local optimum points. However, the use of starting sentences with very 

high accuracy in OEM, owing to the optimal character of SSI, yields the same outcomes as SSI. The minimum number 

of optimization steps is NP=20, and the maximum relative error allowed for optimization stages is 0.1%. The algorithm 

will terminate if any of these requirements are met before the other. The numerical tests were conducted using 

MATLAB 2019b on a computer with an Intel CoreTM i5-2410 2.30 GHz CPU. 

4.1. Extracting modal frequencies and damping ratios of 3-DOF systems with different 

SNRs 

This section analyzes the system identification procedure for the 3-DOF system, which features two closely spaced 

modes while considering various noise levels. The model's objective function is displayed in Fig. 8 as SNR is altered. 

As shown in the figure, as the noise level increases (SNR decreases), the objective function converges more slowly 

for both models. It can be observed that the objective function reaches 90% for SNR=1%, which indicates that model 

complexity has a significant impact. The VAF diagram in Fig. 7 explains why the optimization process takes longer 

when the SNR increases. As depicted in the figure, the estimation error also increases with SNR. At an SNR of 15, 

the estimation error is only 1%, but it surges to over 60% at an SNR of 1%.  Fig.9a shows that the first mode  
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Fig.7. Variance accounting for (VAF) of analytical 3-DoF 

system obtained from PO-MOESP. 

 

Fig.8. Objective function value evolution process of 

OEM algorithm.  
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Fig.9. System identification process of 3-DOF analytical model for different noise level. 
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Table 2. Comparison between estimated frequencies and damping ratios of analytical 3-DoF system the reference  

     case (REF). In italic the relative errors in % compared to the FEM case. 

OEM PO-MOESP 
Mode 

No. 
SNR (dB) 

Damping (%) Frequency (Hz) Damping (%) 
Frequency 

(Hz) 

2. 02 (1.00) 0.803 (0.00) 2.21 (10.5) 0.812 (1.20) I 

1 3.07 (2.33) 3.00 (0.00) 3.178 (5.93) 3.17 (5.70) II 

5.05 (1.00) 3.20 (0.00) 4.9 (2.00) 3.48 (3.00) II 

2.01 (0.50) 0.803 (0.00) 2.02 (1.00) 0.803 (0.00) I 

5 3.01 (0.33) 3.00 (0.00) 2.99 (0.00) 3.1(3.33) II 

5.05 (1.00) 3.26 (0.00) 5.04 (0.80) 3.24 (0.03) II 

2.00 (0.00) 0.803 (0.00) 1.98 (1.00) 0.803 (0.00) I 

15 3.00 (0.00) 3.00 (0.00) 3.00 (0.00) 3.00 (0.00) II 

5.00 (0.00) 3.26 (0.00) 5.00 (0.00) 3.25 (0.00) II 

experienced the most significant frequency changes, and its optimal value was achieved after 11 iterations. The 

complexity of the model affected the estimation errors of all three-modal damping ratios at 1% and 5% SNRs (Fig.9b). 

As an SNR of 15% was reached, and the noise intensity decreased, the estimation error for the starting point of the 

second and third modes was also reduced. However, the modal properties, especially the damping, were successfully 

optimized for a model with extremely high precision using the proposed algorithm. The optimal values for all three 

damping ratios are shown in Table 2. This approach reduced the average estimation error for the first and second 

models in the PO-MOESP from 4.77% and 6.11% to 1%. These findings demonstrate that the proposed algorithm can 

optimize the modal properties with high accuracy. 

4.2. Extracting shape mode of 3-DOF systems with different SNRs 

In contrast to damping ratios and modal frequency, form modes are vectors. They cannot be validated using metrics 

such as variance or relative errors across estimates from different model orders. Thus, other indications, such as the 

Modal Assurance Criterion (MAC), are often utilized to verify their integrity. The degree of collinearity between two 

mode shape vectors is represented by the MAC value, which is a real scalar between zero and one. The computation 

of MAC between two complex-valued mode shapes vectors( 1m   ) and estimated at model order n ( 1m  ) is 

as follows[35]: 

  

2

MAC

H H H

H HH H

    

     
     24  

where the symbol ( .H ) stands for the Hermitian transpose. 

The MAC can only provide evidence of continuity; it cannot prove validity or orthogonality. The MAC does not define 

the existence of identical mistakes in all estimates of modal vectors, whether they are stochastic or biased. Commonly, 

this kind of possible mistake stems from faulty assumptions. Here, additional criteria derived from the assumption 

that structures are proportionately dampen are applied to verify the form modes. As a result, the mode shape 

components lie in a straight line in the complex plane. Modal Complexity Factor (MCF) is one of the modal indicators 

that aid in defining the complexity of mode shapes[36, 37]. The MCF can be calculated by: 
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where  rRe   and  rIm   are the real and imaginary parts of the mode shape vector ( 1m

r

  ), respectively. 

The mode is real if its complexity is close to zero percent, which strongly indicates a natural mode. Complexity levels 

close to 100% reflect that the mode is complex.  

After eigenvalue extraction, the first channel was used as a reference, and all values were scaled accordingly. Mode 

shapes are only validated for SNR=1dB because, in low-noise models (SNR=5 and 15dB), the eigenvectors are real 

values (MCF=0%), and the extracted mode shapes likewise show a 100% correlation with the numerical model. The 

predicted mode shapes, the MAC, and MCF values are shown in Figs.10, and 11, respectively. Fig.11 shows a strong 

agreement between the mode shapes retrieved by the 3-DOF and the numerical model. In PO-MOESP, the first mode 

has a MAC value 96.5% (Fig.11a). Nonetheless, the correlation between these two shape modes has grown to 98.9% 

due to OEM's optimization process. In Fig.11b, the MCF values of the model shows that OEM has improved mode 

shape complexity such that the first mode has achieved 0.43% from1.45%, respectively. The OEM approach has also 

decreased the complexity of the second and third-mode shapes by over 80%. 

 

Fig.10: Comparison between mode shapes calculated by FE method and predicted by OEM and PO-MOESP models 

for SNR=1dB for 3-DOF system with irregular distribution of mass and stiffness.  
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Fig.11: MAC and MCF values between mode shapes calculated by FE method and predicted by OEM and PO-MOESP 
models for SNR=1Db. 

 

5. System identification of Pacoima dam using earthquake records 

The Pacoima Dam (Fig.12) is a concrete arch dam in the San Gabriel Mountains, 5 miles north of San Fernando, near 

Los Angeles, in Southern California. It was completed in 1982 and stands at a height of 113 meters with a crest length 

of 180 meters. The dam body varies in thickness from 3 meters at the crest to 30 meters at the bottom and is considered 

relatively thick for an arch dam. However, it is only designed to withstand static loads and does not consider 

earthquake forces[38, 39].  Despite experiencing two earthquakes with 
gA g  (San Fernando 1971 and Northridge 

1994), the structure has also faced several low-intensity earthquakes. As there have been no reports of cracks in the 

dam body after these low-intensity earthquakes, it is assumed that the dam's behavior during these events is linear. 

After the 1994 earthquake, the dam was equipped with more than 17 accelerometers in different directions, such as 

tangential, radial, and vertical, as shown in Fig.12.  

The 2001 San Fernando earthquake, which had a magnitude of 4.2 on the Richter scale and was located 7.1 km away 

from the dam, is one of the best-documented cases of low-intensity earthquakes. Numerous researchers, including 

Alves, have analyzed these records to determine the dam's modal characteristics. In addition to identifying the 

  

 

 

a) View of right abutment b) Layout of the 17 acceleration sensors 

Fig.12. Pacoima arch dam and the layout of the 17 acceleration sensors[40]. 
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Table3. Modal Characteristics of Pacoima Arch Dam Obtained from San Fernando 2002 and Chino Hills 2008 

Earthquake Records. 

Forced Vibration (2002)  FEM  Chino Hills (2008)  San Fernando (2001) 

mode  
Dam. (%) Freq. (Hz) Freq. (Hz) Dam. (%) 

Freq. 

(Hz) 
Dam. (%) Freq. (Hz) 

4-7 5.3.5-5.45 4.82 - - 6.6~7.3 4.73-4.83 1 

A
lv

es
 

[3
8

-4
0

] 

4.5-5.5 5.75 5.02 - - 6.02 5.06 2 

- - 5.43 - 5.43 4.21 4.71 1 

T
ar

i 

[4
1

, 
4
2

] 

- - 5.60 - 5.60 5.71 5.12 2 

- - - - 5.40 - - 1 

S
o
m

e 

[4
3
] 

- - - - 5.75 - - 2 

characteristics of the dam using data from San Fernando, Alves conducted a forced vibration test in 2002 and 

developed a finite element model based on it. The results of this test are summarized in Table 3. Another earthquake 

hit the dam in Chino Hill in 2008. Despite having a magnitude of 5.5, the epicenter was 71 km away from the dam, 

causing a much lower acceleration of 0.0043g compared to the San Fernando earthquake of 2001, which had an 

acceleration of 0.164g. The downward acceleration made it possible to assume the dam's linear behavior more 

confidently. Therefore, this study examines the seismic data of Chino Hills, which is less studied (table 3), after 

identifying the dynamic characteristics of the dam using the data from San Fernando in 2001[43]. 

5.1. Identification of the dam system using the seismic data 

The main objective of OEM is to minimize the calculation error of predicted results compared to the actual measured 

data. Previous research has revealed two types of bending modes, symmetric and antisymmetric, in this dam. 

Therefore, the output data is collected from channels located at the crown level and 80% of the dam height in the 

radial direction, which includes channels 1, 2, 5, 6, 7, and 8. Additionally, observation channels located in the 

foundation, including channels 9, 12, and 15, are also considered output. It is important to note that channel 5 data 

was not recorded properly during the Chino Hills earthquake and, therefore, was not included in system identification. 

Fig.13 shows the seismic data of channels 5 and 9 in both earthquakes as input and output, respectively. The San 

Fernando and Chino Hills earthquakes lasted 40 and 60 seconds, respectively, and were sampled at 200 Hz.   

 It is important to note that the proposed optimization method is sensitive to the starting point. Therefore, to achieve 

better results, it is recommended to have a stable starting point and always control the extracted models' stability 

conditions during optimization. According to Verhaegen’s recommendation[21], the first sentence's order was 2-3 

times the actual order. In this research, the first sentence was considered 8 for both events. Based on the conditions 

mentioned, the first sentences suitable for both earthquakes are selected, with initial VAF values in Fig.14. After 

running the algorithm, San Fernando's data converged after 26 attempts and Chino Hills is after 20 attempts, as shown 

in fig.15. Furthermore, the optimum values of VAF (Fig.14) indicates that the estimation error decreased from 7% to 

2% for Chino Hills and 5% to 1% for San Fernando. In the following, the modal specifications that were extracted 

will be verified. 
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Fig.13. Recorded earthquake responses of observation channels 5 and 9 in the radial direction of Pacoima Dam. 
 

In Fig.16a, the initial modal frequencies for the San Fernando seismic data are 4 and 5 Hz with damping’s of 9 and 

12, respectively. The convergence of both mode characteristics began at iteration 11 for modal frequencies, with their 

values remaining constant. The optimization continued until the convergence of the second mode damping at step 15. 

After the convergence of all four mode characteristics from the 15th iteration, the objective function (Fig.15) and VAF 

(Fig.14) also reached convergence. 

The data optimization process for Chino Hills (as seen in Fig. 15) took longer than the process for San Fernando. As 

a result, the optimization can be divided into two parts. Before the 10th iteration, the damping ratios did not have 

appropriate values despite the modal frequencies starting to converge. In the second part, starting from the 11th 

iteration, the modal frequencies converged to their optimal values, followed by the damping ratios converging to their 

optimal values. This convergence was accompanied by decreased changes in the objective function (as shown in 

Fig.15). The final VAF value for Chino Hills data, as shown in Fig. 14, was 98%, 1.5% less than the absolute value 

for San Fernando data. This difference can be attributed to the unused fifth channel data, as it was in the center of the 

dam crest. The summary of system identification results for both events can be found in Table 4. 

 

Fig.14. Variance accounting for (VAF) of Pacoima Dam based on San Fernando and Chino Hills seismic 

monitoring. 
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Fig.15. Objective function value evolution process of OEM algorithm based on San Fernando and Chino Hills 

seismic monitoring. 
 

  
a) Frequency (Hz) b) Daming (%) 

Fig.16. System identification process of Pacoima Dam using OEM algorithm based on San Fernando seismic 

monitoring in 2001. 
 

  

a)San fernando 2001 b) Chino Hills 2008 

Fig.17. System identification process of Pacoima Dam using OEM algorithm based on Chino Hills seismic 

monitoring in 2008. 
 

Table 4. Modal identification results of the identified frequency and damping using OEM algorithm based all seismic 

monitoring channel data of the dam body, dam foundation of 2001 Fernando and 2008 Chino Hills seismic monitoring. 

Chino Hiss 2008 San Fernando 2001 
Mode 

No. Damping (%) Frequency (Hz) Damping (%) 
Frequency 

(Hz) 

6.23 5.05 6.35 4.75  I 

5.93 5.62 6.05 5.12 II 
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The modal characteristics obtained from the San Fernando data, particularly the modal frequencies, align with the 

results from previous research. For example, the first mode frequency falls within the 4.73 to 4.83 Hz range, consistent 

with Alves's findings. The second frequency differs from Alves's results by only 1.17%. The damping ratios obtained 

in this study are consistent with Alves's findings[39] but differ from Tarinejad's results[44]. This discrepancy may be 

because subspace methods cannot be utilized to analyze extracted features statistically. 

The previous seismic data analysis of Chino Hills showed that the modal frequencies fell within the same range as the 

forced vibration test results from 2002. This is likely due to the damage caused by previous earthquakes to the dam's 

structure. Studies suggest that the upper left abutment of the dam is the primary source of the dam's stiffness reduction 

compared to the dam body. During the Chino Hills earthquake, the structure experienced weak acceleration due to its 

epicenter from the dam being 71 km away. This resulted in a weak excitation to the foundation system of the dam, 

which can be compared to the forced vibration test. 

The first structural frequency was 5.05 Hz, a 6% decrease compared to the FVT results. The second frequency was 

also extracted, with a 3% difference from the previous results. This difference and calculation errors are likely due to 

the decrease in the dam system's stiffness over the past six years. The damping ratio of the first mode falls within the 

range of the results obtained from the forced vibration test, ranging from 4% to 7%. However, the damping ratio of 

the second mode is 9% higher than the previous results. To summarize, the proposed method effectively filters the 

effects of foundation excitation from the seismic data of the dam, and the modal characteristics were extracted with 

less uncertainty. In the following, the shape modes will be evaluated to determine the reliability of the modal 

specifications. 

The extracted modal shapes from both events are presented in Fig.18. It can be observed that the first and second 

modes are symmetric and antisymmetric, respectively, which is consistent with the previous findings. Upon analyzing 

the complexity of the modal shapes (Fig.19), it is observed that the first mode has the minimum MCF in both 

earthquakes, indicating that the extracted models are highly reliable. The relatively high MCF of the second mode of 

the Chino- Hills model may be attributed to a calculation error due to the fifth channel's lack of measurement. 

 

 
 

a) San fernando 2001 
b) Chino Hills 2008 

Fig.18.Shape modes determined using OEM algorithm based on the earthquake responses of San fernando 2001and 

Chino Hills 2008. 
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Fig.19. The MCF of identified Mode Shapes using OEM algorithm based all seismic monitoring channel data of the 

dam body, dam foundation of 2001 Fernando and 2008 Chino Hills seismic monitoring. 

6. CONCLUSION 

This study emphasizes the challenges associated with using SSI methods. These methods rely heavily on Hankel 

matrix dimensions and require explicit objective function optimization. The OEM method is suggested for the first 

time to address these concerns. The process iterates model parameters until the outputs of the simulated model match 

those of the observed system. The SSI method generates the initial term to reduce the number of optimization steps. 

However, concurrently, a gradient project minimization must be performed to counteract the state-space consequences 

of the extracted models' non-injectivity. The method was tested by analyzing a system with a 3-DOF with two closely 

spaced modes excited by white noise at different noise levels (SNR) of 1, 5, and 15 dB to account for the impact of 

measurement noise. After analyzing the system, the modal characteristics of the Pacoima Dam were extracted using 

the 2001 San Fernando and 2008 Chino Hills seismic observations. 

The system identification results for the 3-DOF system were almost identical and error-free when predicting low-

noise systems with SNR of 5-15dB. However, the damping ratio of the first mode had a more substantial estimated 

error in the model with SNR=1dB. OEM has worked to reduce the maximum estimation error for the damping ratio 

from 10% to less than 2%, which has resulted in an improvement in the quality of shape modes by decreasing the 

complexity of the them by over 75%. The modal characteristics determined from the seismic observations in San 

Fernando in 2001 were consistent with previous research and the developed finite element model. Additionally, the 

modal frequencies of Chino Hills from 2008 differed by an average of 4.5% from the results of FVT2002. This 

difference can be attributed to the decrease in the stiffness of the dam over the past six years of the test, as well as any 

computational errors. 

Overall, when OEM and SSI are combined, the model convergence is quicker, and the estimated models are of higher 

quality. Moreover, due to the optimization's nature, the suggested approach can be used with minimal settings for 

automatic or semi-automatic identification in the structure. 
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