[1] R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly notices of the royal astronomical society, 181(3) (1977) 375-389.
[2] J.J. Monaghan, Simulating free surface flows with SPH, Journal of computational physics, 110(2) (1994) 399-406.
[3] S. Shao, E.Y. Lo, Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface, Advances in water resources, 26(7) (2003) 787-800.
[4] E. Kazemi, K. Koll, S. Tait, S. Shao, SPH modelling of turbulent open channel flow over and within natural gravel beds with rough interfacial boundaries, Advances in Water Resources, 140 (2020) 103557.
[5] Z. Heydari, G. Shobeyri, S. H. G. Najafabadi, Numerical investigation of solitary wave interaction with a flapper wave energy converter using incompressible SPH method, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43 (2021 )1-18.
[6] Y. Pan, X. Yang, S. C. Kong, F. C. Ting, C. Iyer, J. Yi, Characterization of fuel drop impact on wall films using SPH simulation. International Journal of Engine Research, 23(3) (2022) 416-433.
[7] Y. Shimizu, A. Khayyer, H. Gotoh, An enhanced incompressible SPH method for simulation of fluid flow interactions with saturated/unsaturated porous media of variable porosity, Ocean Systems Engineering, 12(1) (2022) 63-86.
[8] X. Dong, G. Hao, R. Yu, Two-dimensional smoothed particle hydrodynamics (SPH) simulation of multiphase melting flows and associated interface behavior, Engineering Applications of Computational Fluid Mechanics, 16(1) (2022) 588-629.
[9] Z. Tan, P.N. Sun, N.N. Liu, Z. Li, H.G. Lyu, R.H. Zhu, SPH simulation and experimental validation of the dynamic response of floating offshore wind turbines in waves, Renewable Energy, 205 (2023) 393-409.
[10] X. Zheng, M. Rubinato, X. Liu, Y. Ding, R. Chen, E. Kazemi, SPH Simulation of Sediment Movement from Dam Breaks, Water, 15(17) (2023) 3033.
[11] Z. Heydari, G.Shobeyri, S. H. G. Najafabadi, Accuracy analysis of different higher-order Laplacian models of Incompressible SPH method. Engineering Computations, 37(1) (2020) 181-202.
[12] X. Hu, N.A. Adams, An incompressible multi-phase SPH method, Journal of computational physics, 227(1) (2007) 264-278.
[13] H.F. Schwaiger, An implicit corrected SPH formulation for thermal diffusion with linear free surface boundary conditions, International Journal for Numerical Methods in Engineering, 75(6) (2008) 647-671.
[14] S.M. Hosseini, J.J. Feng, Pressure boundary conditions for computing incompressible flows with SPH, Journal of Computational physics, 230(19) (2011) 7473-7487.
[15] G. Shobeyri, Improving accuracy of Laplacian model of incompressible SPH method using higher-order interpolation, Iranian Journal of Science and Technology, Transactions of Civil Engineering, 43(4) (2019) 791-805.
[16] G. Shobeyri, Accuracy analysis of different Laplacian models of incompressible SPH method improved by using Voronoi diagram, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(10) (2020) 1-14.
[17] G. Shobeyri, Using a modified MPS gradient model to improve accuracy of SPH method for Poisson equations, Computational Particle Mechanics, 5 (2023) 1113-1126.
[18] G. R. Liu , Meshfree methods: moving beyond the finite element method. CRC press, 2009.
[19] S. Faraji, M.H. Afshar, J. Amani, Mixed discrete least square meshless method for solution of quadratic partial differential equations, Scientia Iranica, 21 (2014) 492–504.
[20] S. Faraji, M. Kolahdoozan, M.H. Afshar, Mixed Discrete Least Squares Meshless method for solving the linear and non-linear propagation problems, Scientia Iranica, 25(2) (2018) 565-578.
[21] S. Faraji, M. Kolahdoozan, M.H. Afshar, Collocated mixed discrete least squares meshless (CMDLSM) method for solving quadratic partial differential equations, Scientia Iranica 25(4) (2018) 2000-2011.
[22] S. Faraji, M. Kolahdoozan, M. Afshar, Mixed Discrete Least Squares Meshfree method for solving the incompressible Navier–Stokes equations, Engineering analysis with boundary elements, 88 (2018) 64-79.
[23] S. Faraji, M. Kolahdoozan, M.H. Afshar, S. Dabiri, An Eulerian–Lagrangian mixed discrete least squares meshfree method for incompressible multiphase flow problems, Applied Mathematical Modelling, 76 (2019) 193–224.
[24] N. Eini, M. Afshar, S. Faraji, G. Shobeyri, A. Afshar, A fully Lagrangian mixed discrete least squares meshfree method for simulating the free surface flow problems, Engineering with Computers, (2020) 1-21.
[25] H. Arzani, M. Afshar, Solving Poisson's equations by the discrete least square meshless method, WIT Transactions on Modelling and Simulation, 42 (2006) 23-31.
[26] X. Zheng, W. Y. Duan, Q. W. Ma, Comparison of improved meshless interpolation schemes for SPH method and accuracy analysis, Journal of Marine Science and Application, 9(3) (2010) 223-230.
[27] X. Zheng, Q. Ma, S. Shao, A. Khayyer, Modelling of violent water wave propagation and impact by incompressible SPH with first-order consistent kernel interpolation scheme. Water, 9(6) (2017) 400.
[28] G. Shobeyri, Mixed smoothed particle hydrodynamics method for planar elasticity problems. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47(1) (2023) 491-504.
[29] C. G. Koh, M. Gao, C. Luo, A new particle method for simulation of incompressible free surface flow problems. International journal for numerical methods in engineering, 89(12) (2012) 1582-1604.
[30] K. Roushangar, S. Shahnazi, A. A. Sadaghiani, An efficient hybrid grey wolf optimization-based KELM approach for prediction of the discharge coefficient of submerged radial gates, Soft Computing, 27(7) (2023) 3623-3640.
[31] R. Daneshfaraz, S. Sadeghfam, R. Adami, H. Abbaszadeh, Numerical Analysis of Seepage in Steady and Transient Flow State by the Radial Basis Function Method, Numerical Methods in Civil Engineering, 8(1) (2023) 58-68.
[32] S. Koshizuka, A. Nobe, Y. Oka, Numerical analysis of breaking waves using the moving particle semi-implicit method, International journal for numerical methods in fluids 26( 1998) 751–69.