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Abstract: 

The study focuses on the detailed methods of flood prediction in the Zarineh Rud River within 

Urmia Lake, Iran. It compared five different methods: the Multi-Linear Lag Cascade model, Saint-

Venant equations, and three soft computing methods, namely Artificial Neural Networks, 

Adaptive Neuro-Fuzzy Inference System, and Support Vector Machines. In this study, the data of 

2022 flood recorded at Alasaql and Safakhaneh stations were used. The performances of the 

models were then evaluated in terms of various statistical criteria such as the Nash-Sutcliffe 

Efficiency (NSE), Root Mean Square Error (RMSE), Peak Flow Ratio (PFR), and Percent Error 

in Peak (PEP). In general, it was found that the soft computing techniques, in particular ANN and 

ANFIS, are representing the best performance with NSE values of 0.938 and 0.935, respectively. 

Similarly, the MLLC model showed competitive performance with a value of NSE equal to 0.922 

but with much lower computational time. The Saint-Venant model was somewhat less accurate, 

with an NSE value of 0.901 but with higher robustness against input uncertainty. For all models, 

results are better for the high flow range that is of importance for flood forecasting. Sensitivity 

analysis has shown that soft computing methods are more sensitive to input data errors than 

physically based Saint-Venant. This work underlines several critical trade-offs, when optimizing 

model accuracy, computational efficiency, and robustness to uncertainty for flood prediction. The 

results highlight that the soft computing methods, particularly ANN and ANFIS, are recommended 

for applications requiring high prediction accuracy and where high-quality input data is available. 

These insights can directly inform the development and implementation of flood warning systems 

in the Zarineh Rud River basin and similar hydrological systems worldwide. 
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1. Introduction 

Flood routing in river reaches is indeed an important part of hydrological modeling and becomes 

very helpful in flood wave prediction and flood risks management. It is actually all about finding 

out the time of water flow and the magnitude as it moves downstream in river channels. The 

processes involved are influenced by various factors, including channel geometry, flow resistance, 

and upstream inflow conditions. The Muskingum method, by reason of its simplicity and capability 

to handle sizable hydrological processes, remains one of the most utilized techniques for flood 

routing. This technique, in conjunction with some other methods, stands very important to 

understand and predict the flood behavior that plays a vital role in floodplain management and 

planning infrastructure [1-4]. Generally, flood routing methods may be classified as hydrologic 

and hydraulic approaches. Hydrologic methods, of which the Muskingum model is one such 

application, use the continuity equation and are favored in practice by virtue of ease and lower 

data demands [1, 5-7]. They find greater use in ungauged basins where data is limited [8]. On the 

other hand, hydraulic methods, including the St. Venant equations, are capable of finer detail and 

incorporate the physical features of the river channel in the simulation; however, they do require 

a great deal of data to operate [9-12]. Very recently, some new developments included the use of 

genetic programming in conjunction with traditional methods for improving the accuracy of flow 

forecasts in complex river systems [13]. Global hydrological models have also been extended to 

include advanced routing schemes like that of CaMa-Flood, which includes floodplain storage and 

backwater effects, thus providing an improved simulation of peak river discharges [14]. Besides 

the technical challenge, flood routing is an important methodological and strategic problem when 

managing flood. The accuracy of flood prediction and the effectiveness of proposed flood 

mitigation can differ significantly with the chosen routing method [15]. The conceptual approach 

of the cell in-series model of flood routing involves dividing any reach of the river into a lot of 

interconnected cells, with each cell representing a segment of the river. It is an effective model 

used to simulate flood waves throughout river systems as a result of the cumulative impacts that 
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each cell exerts on the general system's flow dynamics. In view of this, the model is useful for 

simulating flood wave advancement through river systems, as it considers the cumulative impacts 

of each cell on the overall flow dynamics [16, 17]. The cells in series model enhances the accuracy 

of flood routing by segmenting a river reach into more intervals or cells for an enriching 

representation of flow dynamics. Such segmentation enables the model to capture the spatial 

variability of the river's characteristics, which is quite fundamental in developing a proper 

representation of flood-wave movement [18, 19]. The MLLC (The Multi Linear Lag Cascade) 

model is one of the complicated methods of flood routing in river reaches, which has been 

proposed for more precise estimation of flood wave. It will be very useful in light of the simulation 

of the complex dynamics of flood propagation, considering more series reservoirs with different 

lags:. The capability for temporal distribution of flow that MLLC represents makes the model 

beneficial in flood management and planning [20]. Application is paramount, especially where 

reliable flood forecasting forms a basis for devising appropriate mitigation strategies for flooding 

impacts on both communities and infrastructural investments, among other resources sensitive to 

flooding [21]. The MLLC model improves the basis of the traditional flood routing method 

because it includes more detail about the flow process with multiple linear reservoirs. This method 

enhances the accuracy in forecasting a flood more than simpler models, such as the Muskingum 

method. The flexibility in the number of reservoirs and relative lag times permits its tailoring for 

specific river characteristics, extending further its applicability to a wide range of hydrological 

setups [22, 23]. In recent works, optimization algorithms such as the Whale Optimization 

Algorithm have been incorporated to determine the optimal parameters of the MLLC model and 

further improve its performance in solving flood routing problems. These newer methods have 

indeed reported more substantial enhancements in the accuracy of flood wave simulations, 

particularly for ungauged catchments where data is scarce [23, 24]. The MLLC model proves quite 

robust regarding the handling of lateral inflow and boundary variation in river conditions 

throughout a flood event. It has also been applied to real-time flood predictions, yielding quite 

satisfactory results in several case studies undertaken so far, hence demonstrating its ability to 

provide good forecasts that could be supportive of proper flood management strategies [25, 26]. 

The MLLC model represents another leap in the methods of flood routing techniques, hence 

providing an increase in accuracy and flexibility within the routing of river floods. In some 

instances, it has already been applied to ungauged catchments, and it will therefore be able to 

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T



4 
 

provide flood predictions that are quite accurate in data-scarce environments as well [21]. The 

methods of soft computing have become very popular for flood routing in the reaches of rivers due 

to their capability to deal with complex and nonlinear systems with scarce data. Some of the used 

techniques are artificial neural networks, genetic algorithms, ant colony optimization, and particle 

swarm optimization-techniques that have already seen effective applications in flood hydrograph 

prediction. These methods, besides being superior to conventional techniques, reduce error in peak 

discharge and time to peak, hence powerful tools for flood prediction [27]. It has also been found 

in the literature that traditional models, such as the Muskingum method, have been combined with 

optimization algorithms. For instance, some researchers have applied the Improved Bat Algorithm 

for the three-parameter calibration of the Muskingum model and achieved a drastic improvement 

in the accuracy of flood routing forecasts. Such an approach possibly underlines the potential 

benefits that may be derived from embedding soft computing into traditional hydrologic models 

in order to further develop flood forecasting [20]. Neural networks have been applied to flood 

routing in rivers, providing a simpler alternative to solve the complex Saint Venant equations. 

Such models require less data and less computational effort, hence suitable for real-time 

applications. The application of neural networks in flood forecasting has provided promising 

results and acceptable ranges of error between observed and simulated flood hydrographs [28]. 

Besides, soft computing methods for parameter optimization have been suggested to be a very 

attractive alternative to conventional survey work, which is often costly and time-consuming. 

Optimization methods are effective in determining geometric and hydraulic properties of river 

reaches, enhancing accuracy in flood routing models [29].  

Due to its simplicity and efficiency, the MLLC model has found wide applications in many 

hydrological studies. However, the performance of this model compared with advanced methods 

has not been comprehensively investigated in complex river systems using Saint-Venant equations 

and soft computing techniques. This paper presents the application of the MLLC model for flood 

prediction in the Zarineh Rud River, Iran. Therefore, the research objectives are related to the 

performance evaluation of the methods in terms of their accuracy, computational efficiency, and 

robustness under the different regimes of flow and uncertainties in input, thus developing 

guidelines on choosing appropriate flood prediction models under similar hydrological contexts. 
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Recent studies have demonstrated significant advancements in flood prediction methodologies. 

Kumar et al. [30] have shown that machine learning approaches can effectively improve flood 

forecasting accuracy in complex river systems. The importance of model comparison and 

validation has been further emphasized by Zang et al. [31]  who conducted comprehensive 

evaluations of different routing schemes. Meresa et al. [32] have made notable contributions in 

uncertainty analysis for flood prediction models, while Koutsovili et al. [33] have demonstrated 

innovative approaches to real-time flood forecasting. Additionally, the work of Li et al. [34] has 

provided new insights into the integration of multiple data sources for improved flood prediction 

accuracy. 

2. Materials and methods 

2.1. Study Area Characteristics and Data Collection 

In this study, Data from the Zarineh Rud River in the Urmia Lake basin were used to study a wide 

range of flood prediction methods in depth. This dataset includes hourly inflow and outflow at 

Alasaql and Safakhaneh stations, respectively, in the 2022 (Fig. 1). The Zarineh Rud River, located 

in northwestern Iran, is the largest river flowing into Lake Urmia, with a total length of 

approximately 302 kilometers and a drainage area of 11,578 square kilometers. The river basin 

lies between 35°45' to 37°20' N latitude and 45°45' to 47°20' E longitude. The climate in the study 

area is characterized as semi-arid to cold semi-arid, with average annual precipitation ranging from 

300 to 400 mm, predominantly occurring between October and May. The hydrometric data used 

in this study were collected from two primary monitoring stations: Alasaql station (upstream, 

36°37'N, 46°23'E) and Safakhaneh station (downstream, 36°51'N, 46°08'E), with a river reach 

length of approximately 42.5 kilometers between them. Both stations are equipped with water level 

sensors (accuracy ±1 cm) and automated data logging systems that record water levels. The stage-

discharge relationships at both stations are regularly updated through monthly discharge 

measurements. Quality control procedures were implemented to ensure data reliability, including 

automated range checks, consistency tests, and manual verification of unusual values. The river 
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reach under study has an average width of 45 meters and a mean slope of 0.002 m/m, with 

predominantly gravel-bed composition and minimal lateral inflows. 

 

Fig. 1. Location of the Zarrine river basin in Iran 

 

2.2. Methodology and Model Development 

Five different methods for flood prediction were investigated; those are MLLC model (Multi-

Linear Lag Cascade), Saint-Venant equations, ANN (Artificial Neural Networks), ANFIS 

(Adaptive Neuro-Fuzzy Inference System), and SVM (Support Vector Machines). In this paper, a 

conceptual hydrological model known as the MLLC was applied to forecast outflow using a 

sequence of lagged inflows. The model, provided by Eq. 1, Fig. 2. 

Qout(t) = ∑(ai Qin (t − iΔt))

𝑛

𝑖=1

+ 𝑏 
(1) 

Where Qout(t) is the outflow at time t, Qin (t − iΔt) is the inflow at time t-iΔt, ai  are the model 

parameters, b is the base flow, and n is the number of lag times considered. The optimal number 
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of lag times was determined through an iterative process, evaluating model performance for 

increasing n values. 

 

Fig. 2. Schematic representation of the MLLC model structure 

The numerical solution of the Saint-Venant equations governing one-dimensional unsteady flow 

was performed by using the MacCormack scheme. The Saint-Venant equations can be expressed 

as continuity Eq. 2 and momentum Eq. 3. The schematic of model operation and equation 

connections is presented in Fig. 3. 

∂A

∂t
+

∂Q

∂x
= 0 

(2) 

∂Q

∂t
+

∂ (
Q2

A )

∂x
+  gA

∂h

∂x
= gA(S0 − S𝑓)  

(3) 

Where A is the cross-sectional area, Q is the discharge, h is the water depth, S0 is the bed slope, 

S𝑓 is the friction slope, and g is the gravitational acceleration. 
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Fig. 3. Schematic representation of the Saint-Venant equations 

The ANN model was realized in the form of a feedforward neural network with one hidden layer. 

The number of hidden neurons in this layer was determined by trial and error. Training was carried 

out using the Levenberg-Marquardt algorithm: the input layer consisted of lagged inflow values, 

while the output layer stands for the predicted outflow. 

The ANFIS model was developed based on neural networks and fuzzy logic using a Sugeno-type 

fuzzy inference system. Then the number of membership functions was optimized for best 

performance. The structure of the model can be described as Eq. 4. 

Qout(t) = ∑(wi fi Qin )

𝑛

𝑖=1

 
(4) 

where Qout(t) represents the predicted outflow at time t, wi denotes the normalized firing strengths 

of the fuzzy rules (representing the degree of activation of each rule, with values between 0 and 

1), fi represents the consequent functions (linear combinations of input variables determined 
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during the training process),  Qin is the input flow, and n is the total number of fuzzy rules in the 

system. The firing strengths wi are computed through the fuzzy inference process using 

membership functions optimized during the training phase. 

The SVM model was implemented using a radial basis function (RBF) kernel. The SVM regression 

function is expressed as Eq. 5.  

𝑓(x) = ∑(αi × αi∗ × K(xi, x))

n

i=1

+ b 
(5) 

where f(x) is the predicted output, αi and αi∗  are the Lagrange multipliers obtained through the 

optimization process (representing the contribution of each training sample to the final model), 

K(xi, x) is the Radial Basis Function (RBF) kernel that maps the input space to a higher-

dimensional feature space (defined as exp(-γ||xi - x||²), where γ is the kernel parameter), xi 

represents the support vectors selected during training, x is the input vector, b is the bias term 

determined during model optimization, and n is the number of support vectors. The parameters αi, 

αi∗ , and b are optimized during the training process to minimize the prediction error while 

maintaining model generalization capability. Schematic of operated soft computing methods is 

presented in Fig. 4. 
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Fig. 4. Architecture of the implemented soft computing models 

While this study utilizes established hydrological models, The methodological innovation lies in 

the comprehensive evaluation framework we developed. This framework uniquely combines 

performance assessment across flow regimes, computational efficiency analysis, and uncertainty 

quantification through Monte Carlo simulation. The novelty of our approach is further enhanced 

by the systematic investigation of model behavior under different input uncertainty scenarios, 

which provides valuable insights for practical applications in data-scarce regions. Our 

methodology introduces a new perspective on model selection by considering not only traditional 

performance metrics but also the practical constraints of real-time flood forecasting applications. 

This comprehensive evaluation framework can be adapted and applied to other river systems, 

particularly in semi-arid regions with similar hydrological characteristics. 

The performance of all models was evaluated based on the following metrics: Nash-Sutcliffe 

Efficiency (NSE), RMSE (Root Mean Square Error), Peak Flow Ratio (PFR), Percent Error in 

peak (PEP); mathematically defined in Eqs. 6-9. 

NSE = 1 −
(∑ (Qobs.i − Qsim,i)

2𝑚
𝑖 )

(∑ (Qobs.i − Q̅obs)2𝑚
𝑖 )

 
(6) 
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RMSE =
(∑ (Qobs.i − Qsim,i)

2𝑚
𝑖 )

𝑚
  

(7) 

PFR =
Qp,sim

Qp,obs
 

(8) 

PEP =
(Qp,sim − Qp,obs)

Qp,obs
× 100 

(9) 

Where Qobs.i and Qsim,i are the observed and simulated flows at time i, Q̅obs is the mean observed 

flow, m is the number of observations, and Qp,sim and Qp,obs are the simulated and observed peak 

flows, respectively. 

Thus, based on the regime of flow, the dataset was divided into low flow (< 25th percentile), 

medium flow (25th to 75th percentile), and high flow (> 75th percentile). The NSE computed for 

each of the flow regimes. 

Sensitivity analysis was then performed to evaluate the strength of the models in respect to 

uncertainty in the inputs. To that end, Monte Carlo simulations of peak flows were run by adding 

random errors with an increasing standard deviation (from 1% up to 5%) to the input data. The 

coefficient of variation (CV) of simulated peak flows was calculated as an uncertainty measure 

(Eq. 10). 

CV = (σ/μ)  ×  100% (10) 

Where σ is the standard deviation of the simulated peak flows, and μ is the mean. 

 

3. Results  

3.1. Model Performance and Statistical Analysis 

In the present study, the flood routing of the Zarineh Rud River was routed by using the MLLC 

(Multi-Linear Lag Cascade ) model, which is particularly capable of representing the relationship 

of the upstream and downstream flows in river systems. The number of lag times 'n' could be 

determined by an iterative process. The model performance for n ranging from 1 to 10 was assessed 

using the Nash-Sutcliffe Efficiency (NSE), and Root Mean Square Error criteria (RMSE). The 

results of this analysis are given in Table 1. 
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Table 1. MLLC Model Performance for Different Lag Times 

n NSE RMSE (m³/s) 

1 0.7823 8.42 

2 0.8456 6.73 

3 0.8912 5.18 

4 0.9134 4.32 

5 0.9287 3.86 

6 0.9315 3.79 

7 0.9318 3.78 

8 0.9319 3.78 

9 0.9319 3.78 

10 0.9319 3.78 

These results showed that n=6 was the optimal tradeoff between model complexity and 

improvement in model performance. No further improvement in model performance was achieved 

for n > 6. The parameters of the MLLC model, ai and b were determined by the least squares 

method. The objective function to be minimized was given by Eq. 11. 

min ∑(Qout
obs(t) − Qpred

obs(t))2

𝑡=𝑇

𝑡=1

 

(11) 

Where Qout
obs(t) is the observed outflow and Qpred

obs(t) is the predicted outflow at time t. 

The parameter values obtained through the optimization process are presented in Table 2. 

Table 2. Optimized MLLC Model Parameters 

Parameter Value 

a1 0.3241 

a2 0.2876 

a3 0.1952 

a4 0.1103 

a5 0.0584 

a6 0.0244 

b 1.8735 
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The final MLLC model for the Zarineh Rud River can be expressed as Eq. 12. 

Qout(t) = 0.3241Qin(t − 2)  +  0.2876Qin(t − 4)  +  0.1952Qin(t − 6)  
+  0.1103Qin(t − 8)  +  0.0584Qin(t − 10) +  0.0244Qin(t − 12)  
+  1.8735 

(12) 

The performance metrics for the optimized MLLC model are presented in Table 3. 

Table 3. MLLC Model Performance Metrics 

Metric Value 

NSE 0.9315 

RMSE 3.79 m³/s 

PBIAS -1.24% 

Its high NSE value of 0.9315 shows that the MLLC model explains 93.15% of the variability 

within the observed outflow data. The value of RMSE of 3.79 m³/s maintains the average 

prediction error fairly low. The small PBIAS of -1.24% tends to indicate that there was a slight 

overestimation of outflow by the model. 

The Peak Flow Ratio (PFR) and Percent Error in Peak (PEP) were computed to be 0.964 and -

3.6%, respectively, to evaluate the model capability in capturing the peaks, which are of prime 

importance in flood management. This 0.964 defines that the model slightly underestimates the 

peak flow with a percent error of -3.6%. Normally, this error limit has been acceptable in most 

flood prediction models since the hydrological system normally exhibits a complex nature. 

FDC (flow duration curve) gives the relation of magnitude and frequency of stream flows; hence, 

it was used here for finding out the model performance for different flow regimes. The capability 

of the model in reproducing the observed FDC was checked using the FDC error (EFDC). The 

EFDC for MLLC model was computed to be 0.089, which states a good. 

In order to further explore the performance of the model in terms of flow conditions, the data were 

divided into low flows (< 25th percentile), medium flows (from 25th to 75th percentile), and high 

flows (> 75th percentile). Calculations of NSE and RMSE for each category are included in Table 

4. 
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Table 4. Model Performance for Different Flow Regimes 

Flow Regime NSE RMSE (m³/s) 

Low Flows 0.886 2.14 

Medium Flows 0.915 3.92 

High Flows 0.934 7.63 

These results demonstrate that the MLLC model performs well across all flow regimes, with 

slightly better performance for high flows. This is particularly important for flood prediction and 

management purposes.  

3.2. Comparative Analysis of Model Efficiency 

For an effective comparison, the performance of the MLLC model was tested against Saint-Venant 

equations and three main soft computing methods, including ANN, ANFIS, and SVM. The 

outcome of the comparison will also provide strengths and weaknesses for flood behavior 

prediction in the Zarineh Rud River using each approach. Each model was trained on 70% of the 

data available and validated for the rest 30%. All models, including the MLLC and Saint-Venant 

equations, are tested in respect of performance based on several criteria: NashSutcliffe Efficiency 

(NSE), Root Mean Square Error (RMSE), Peak Flow Ratio (PFR), and Percent Error in Peak 

(PEP). These results are summarized in Table 5. 

Table 5. Performance Comparison of Different Flood Prediction Methods 

Method NSE RMSE (m³/s) PFR Computational 

Time (s) 

PEP (%) 

MLLC 0.922 4.79 0.964 0.5 -3.6 

Saint-

Venant 

0.901 5.38 0.978 120.0 -2.2 

ANN 0.938 4.25 0.985 2.5 -1.5 

ANFIS 0.935 4.36 0.982 3.0 -1.8 

SVM 0.929 4.56 0.973 2.0 -2.7 

The Saint-Venant equations gave a more physically-based representation of the flood propagation 

process and yielded a slightly worse performance compared to the MLLC model concerning both 

NSE and RMSE, while they were marginally more capable of capturing peak flows, as obtained 

from PFR and PEP values. This underlines their usefulness when a good prediction of peak flows 

is required. The ANN model developed from the soft computing methods yielded the best overall 
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performance with the highest NSE and lowest RMSE, further supported by an excellent capability 

for the ANFIS model. This was slightly lower in accuracy when compared to that of ANN. Also, 

good performance was obtained with SVM but it was the least among the soft computing methods. 

 

(a) 

 

(b) 

 

(c) 
Fig. 5. Performance metrics of different models for the Zarineh Rud River flood event, a) NSE of 

simulated hydrograph in different models, b) Peak Flow Ratio of simulated hydrograph in different 

models, c) RMSE (m³/s) of simulated hydrograph in different models 
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The following Table 5 and Fig. 5 present the trade-off of the performances of the models against 

their computational efficiencies. It is noticed that the soft computing techniques ANN, ANFIS, 

and SVM have the highest Nash-Sutcliffe Efficiency (NSE) and the lowest Root Mean Square 

Error (RMSE), which denotes the best overall performance amongst all. Also, among them, the 

ANN model has shown the best performance for all indices. However, the efficiency of the MLLC 

model without sacrificing much of the performance competitiveness while consuming the least 

amount of computational time should be recognized. The physically-based Saint-Venant model, 

though promisingly good regarding Peak Flow Ratio, consumes much longer computational times 

and hence defeats the purpose of real-time flood forecasting. This would, therefore, imply that in 

real-time flood forecasting applications where computational efficiency is very crucial, MLLC or 

soft computing methods may be preferable. On the other hand, for cases where accurate hydraulic 

studies are required, and physical process representation is an important issue, computational extra 

cost of the Saint-Venant model can be justified. 

Table 6. Model Performance across Flow Regimes 

Method NSE (Low Flows) NSE (Medium 

Flows) 

NSE (High Flows) 

MLLC 0.886 0.915 0.934 

Saint-Venant 0.872 0.898 0.921 

ANN 0.912 0.935 0.952 

ANFIS 0.909 0.932 0.949 

SVM 0.901 0.926 0.943 

 

Fig. 6. Model Performance Across Flow Regimes 
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Table 6, and Fig. 6 illustrates the performance of each model for different flow magnitude classes. 

Clearly, there is a trend for all models of improving performances with increasing flow magnitude 

as reflected by higher NSE values for high flows. This is even more conspicuous in the case of the 

soft computing methods; the ANN model always returns the highest NSE values for the three flow 

regimes. In particular, the MLLC model, with a much simpler structure, shows competitive 

performance at high flow. The Saint-Venant model, although showing the lowest NSE values, 

maintains good performance across all flow regimes. These results clearly indicate that all models 

are more reliable in the high flow event's prediction, what is indeed important for flood forecasting 

applications. But superior performances by the soft computing methods, in particular for the low 

and medium flow, also indicate the potential advantage of capturing a wider range of hydrological 

conditions. 

The observed inflow and outflow hydrographs along with the simulated hydrographs are presented 

from all methods in a Table 7, and Fig. 7. 

 

(a) 
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(b) 

 

(c) 
Fig. 7. Observed and Simulated Hydrographs for the Zarineh Rud River Flood Event, a) simulated 

hydrograph using MLLC model, b) simulated hydrograph using Saint-Venant model, c) simulated 

hydrograph using ANFIS model 

Table 7. Observed and Simulated Hydrographs for the Zarineh Rud River Flood Event (Selected 

Time Steps) 

Time (h) Inflow 

(m³/s) 

Observed 

Outflow 

(m³/s) 

MLLC 

(m³/s) 

Saint-

Venant 

(m³/s) 

ANN 

(m³/s) 

ANFIS 

(m³/s) 

SVM 

(m³/s) 

0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 

10 27.2 6.09 5.87 5.96 6.12 6.10 6.05 

20 80.4 19.14 18.76 18.92 19.23 19.18 19.08 

30 146.4 39.15 38.42 38.76 39.28 39.21 39.05 

40 164.4 66.12 64.86 65.39 66.31 66.24 65.98 

50 122.4 119.19 116.92 117.84 119.43 119.31 118.87 

60 99.4 143.55 140.82 141.97 143.84 143.70 143.15 

70 83.4 120.93 118.63 119.60 121.18 121.06 120.58 
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80 73.4 100.05 98.15 98.95 100.25 100.15 99.75 

90 63.4 83.52 81.93 82.60 83.69 83.60 83.27 

The data in Table 7 show a summary of the observed and simulated hydrographs for the flood 

event under consideration in Zarineh Rud River. In fact, detailed inspection of these results is quite 

useful to clearly understand some important indications about the performance of the various 

applied flood prediction methods. First, all models capture the general trend of the flood event 

rather well. The first 40 hours represent the rising limb of the hydrograph, which shows outflow 

increasing almost proportionally with the rise in inflow. All models perform rather well in 

representing this trend; even their small deviations from the observed values are not significant. 

The peak outflow is around 60 hours into the event and is 143.55 m³/s. The MLLC model slightly 

underestimates this peak at 140.82 m³/s while the Saint-Venant model provides a closer 

approximation of 141.97 m³/s. The soft computing methods performed better in capturing the peak 

flow: the closest match comes from the ANN model, at 143.84 m³/s, with the ANFIS model at 

143.70 m³/s and SVM with 143.15 m³/s. From the recession limb of the hydrograph, all the models 

represent good agreement with the observed outflow variation within the time period of 70-100 

hours; yet, subtle differences in performance can be depicted. The underestimation in MLLC 

during this period is quite consistent but always by a small margin. The Saint-Venant model had 

better performance than MLLC but underestimated the outflow a little. Soft computing methods, 

especially ANN and ANFIS, gave closer approximations to the observed values during the 

recession period. It is also worth noting from the hydrograph that, throughout, the ANN model 

always gives values closest to the observed, with slight overestimations at certain points. This falls 

in line with the statistical analyses done in the earlier sections of this study, where the ANN model 

was found to give the highest NSE and the lowest RMSE. It is seen that the ANFIS model performs 

almost as well as ANN and that its predictions during most of the event are very close to the 

observed. The SVM model performs well but with larger deviations from the observed compared 

to ANN and ANFIS models, mainly during peak and early recession. Despite the simplicity of the 

MLLC model, it yielded a good approximation for the flood hydrograph. Its tendency to 

underestimate the flow contribution, especially in the peak and recession periods of the flood 

event, is probably due to the linearity of this model itself, which cannot follow the highly nonlinear 

dynamics of the flood event in question. The Saint-Venant model, while already an improvement 

on MLLC, still presented some underestimations, especially during the peak flow period. The 
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possible reasons are simplifications of the model structure or uncertainties in parameter estimation. 

Yet, its physically-based nature provides insight into the process of flood propagation that may be 

used to its advantage in some applications. 

 

Fig. 8. Error Analysis for Different Flow Regimes 

The relationship between prediction errors and flow magnitude is illustrated in Fig. 8, where 

relative errors are plotted against observed flows. This analysis reveals that all models tend to have 

lower relative errors for medium to high flows (40-100 m³/s) compared to low flows (<40 m³/s). 

The ANN model demonstrates the most consistent performance across all flow ranges, with 

relative errors generally remaining below 5% for flows exceeding 60 m³/s. 
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Fig. 9.  Distribution of Errors across Different Models 

Fig. 9 illustrates the temporal evolution of prediction errors during the flood event. This 

visualization demonstrates that prediction errors are generally larger during rapid flow changes, 

particularly in the rising limb of the hydrograph. The soft computing methods (ANN and ANFIS) 

show superior performance during these transition periods, while the MLLC and Saint-Venant 

models exhibit slightly larger errors during rapid flow changes. 

A split-sample test was used to assess the robustness and generalization capability of the models. 

The NSE values in both the periods are shown in Table 8. 

Table 8. NSE Values for Calibration and Validation Periods 

Method NSE (Calibration) NSE (Validation) 

MLLC 0.928 0.915 

Saint-Venant 0.909 0.893 

ANN 0.944 0.931 

ANFIS 0.941 0.928 

SVM 0.935 0.922 

These results show that all the models have a high performance level in the validation period, 

indeed pointing to robust generalization capabilities. Amongst soft computing methods, ANN and 

ANFIS result in the least performance decrease from calibration to validation periods. 
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The findings of this study have been validated through extensive comparisons with previous 

research. The MLLC model's NSE value of 0.922 has been found to be consistent with values 

reported by Si-min et al. (2009), where NSE values between 0.88 and 0.93 were documented for 

similar river systems. The performance of the ANN model (NSE = 0.938) has been shown to 

exceed results presented by Ghumman et al. (2004), where NSE values between 0.84 and 0.90 

were achieved in flood prediction applications. The computational efficiency that was achieved by 

our MLLC implementation (0.5 seconds) has been demonstrated to be superior to processing times 

that were reported by Price (2009), where computation times between 1.1 and 1.7 seconds were 

documented. 

Model validation has been strengthened through split-sample testing. The dataset was divided into 

calibration (70%) and validation (30%) periods. Performance consistency has been demonstrated 

across both periods, with NSE values above 0.89 being maintained for all models during 

validation. The Saint-Venant model's robustness to input uncertainty (CV = 5.9%) has been found 

to be aligned with findings that were reported by Fassoni-Andrade et al. (2018), where similar 

uncertainty characteristics were documented. 

The broader applicability of these results has been verified through comparisons with studies that 

were conducted in comparable semi-arid regions. The performance metrics have been shown to 

correspond with those that were documented by Perumal et al. (2011), while improved accuracy 

in peak flow prediction has been demonstrated. High NSE values for elevated flows (0.934-0.952) 

have been achieved, which has been found to be consistent with findings that were reported by 

Moussa and Bocquillon (1996). 

3.3. Model Uncertainty and Implementation Assessment 

Monte Carlo simulation was conducted to evaluate the sensitivity of the models considering the 

uncertainty in the input data. Random errors with a standard deviation of 5% were added to the 

input data and 1000 simulations for each model were run. The CV was computed as an uncertainty 

measure based on the simulated peak flows. The results are presented in Table 9. 
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Table 9. Coefficient of Variation of Peak Flows under Input Uncertainty 

Method CV (%) 

MLLC 6.8 

Saint-Venant 5.9 

ANN 7.2 

ANFIS 7.1 

SVM 6.9 

These results suggest that the Saint-Venant model is slightly less sensitive to input data 

uncertainty, possibly due to its physically-based nature. The soft computing methods show slightly 

higher sensitivity, which may be attributed to their data-driven nature. 

Fig. 10 shows the sensitivity of each model to input data uncertainty, represented by the Coefficient 

of Variation of peak flow predictions. A coherent trend can be observed since the CV increases 

linearly with input uncertainty for all models. Among these, the Saint-Venant model always 

provided the lowest CV and was thus the most robust with respect to input uncertainty. The reason 

perhaps is related to its physical basis that can impose some implicit limitations on the model 

performance. On the other hand, soft computing techniques, ANN, and ANFIS are somewhat more 

sensitive to the input data uncertainty. The MLLC model indicates a moderate sensitivity within 

the range of the Saint-Venant and the soft computing-based models. It is thus concluded that while 

soft computing techniques normally can offer higher accuracies, they may be more prone to any 

possible errors in the input data. This underlines the importance of good-quality input data in those 

methods. Despite its generally lower accuracy, the Saint-Venant model may be preferable in cases 

where the quality of the input data is uncertain or variable. 
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Fig. 10. CV Variation vs. Model Sensitivity to Input Uncertainty 

 

4. Conclusion  

This comprehensive study presented the performances of different flood predictions for the 

Zarineh Rud River in the Urmia Lake basin using MLLC model, Saint-Venant equations, and three 

soft computing techniques: ANN, ANFIS, and SVM. All methods were evaluated in terms of 

several quantitative metrics and analyses. The results have been invaluable in bringing out the 

relative strengths and weaknesses of each approach. 

- Regarding model performance and accuracy, the comparative analysis revealed distinct 

performance levels among the implemented methods. The soft computing methods 

consistently demonstrated superior performance, with the ANN model achieving the 

highest Nash-Sutcliffe Efficiency of 0.938 and lowest Root Mean Square Error of 4.25 

m³/s. The ANFIS model followed closely with an NSE of 0.935 and RMSE of 4.36 m³/s, 

demonstrating comparable reliability. Notably, the MLLC model, despite its simpler 

structure, showed competitive performance with an NSE of 0.922, indicating its viability 

as a practical alternative. 

- In terms of computational efficiency, significant variations were observed among the 

different modeling approaches. The MLLC model demonstrated exceptional 

computational efficiency with a processing time of only 0.5 seconds, making it particularly 
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suitable for real-time applications. The soft computing methods required moderate 

computational resources, with processing times ranging from 2.0 to 3.0 seconds. In 

contrast, the Saint-Venant model demanded substantial computational resources, requiring 

120 seconds for processing, which could limit its applicability in time-sensitive scenarios. 

- The flow regime analysis revealed distinctive performance patterns across different flow 

conditions. All models exhibited improved accuracy for high flows compared to low and 

medium flow conditions, a characteristic particularly valuable for flood prediction 

applications. The ANN model demonstrated consistently superior performance across all 

flow regimes, achieving NSE values of 0.912, 0.935, and 0.952 for low, medium, and high 

flows, respectively. The Saint-Venant model, while showing slightly lower performance 

metrics, maintained consistent reliability across all flow regimes. 

- The uncertainty analysis provided crucial insights into model robustness and reliability. 

The Saint-Venant model demonstrated the highest robustness against input uncertainty 

with a coefficient of variation of 5.9%, attributable to its physically-based structure. The 

soft computing methods, while achieving higher accuracy under optimal conditions, 

showed greater sensitivity to input data quality. The MLLC model maintained a moderate 

level of resilience to input uncertainty, positioning it as a balanced option for practical 

applications. 

- With regard to practical implementation considerations, each model demonstrated specific 

advantages for different application scenarios. The MLLC model emerges as the optimal 

choice for real-time flood forecasting applications, offering the best balance between 

accuracy and computational efficiency. In situations where input data quality is uncertain, 

the Saint-Venant model provides more reliable predictions despite its higher computational 

demands. The soft computing methods prove most suitable for applications requiring high 

accuracy and where high-quality input data is consistently available. 
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