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ABSTRACT: Although dams are designed to regulate water extraction in river basins, environmental 
experts contend that excessive and poorly managed dam development can result in more harm than 
benefit. While dams can offer some benefits, the scale of dam construction in Iran has far exceeded what 
is considered sustainable. The widespread modification of river systems through damming and associated 
infrastructure far surpasses the water management objectives set by the Ministry of Energy, revealing 
a disconnect between the magnitude of infrastructure development and the effective management of 
water resources. This study proposes the development of a multivariate metric to evaluate the severity 
of sustained water stress, integrating alternative water supply sources in engineered sub-basins. The 
proposed index is based on entropy theory and is compared with conventional water stress indices, with 
key differences highlighted. Remotely sensed vegetation data are used as an independent validation tool 
to assess the new index. The results demonstrate that in sub-basins with minimal artificial water sources, 
the proposed index aligns closely with traditional drought metrics. However, in areas where engineered 
water supplies are present, the index provides a more accurate representation of water stress, as reflected 
by its ability to support vegetation growth. The results revealed that, in the upstream basin of the dam, 
the precipitation-based index and the combined index yielded identical outcomes in all years except for 
1998. In contrast, in the downstream basin, the two indices showed divergent results in 66% of the water 
years analyzed.
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1- Introduction
Drought and water scarcity are persistent challenges in 

Iran, often lasting for several consecutive years. To address 
these issues, the country has relied on dam construction 
and watershed management projects aimed at conserving 
groundwater and controlling surface water flows. Large 
dams serve multiple purposes, including securing drinking 
water, preventing floods, supplying water for industrial 
and agricultural use, and generating hydroelectric power. 
However, environmental experts argue that excessive and 
uncontrolled dam-building has caused more harm than 
good. With numerous large dams already in operation, 
concerns are growing that continued expansion could lead to 
irreversible depletion of critical water resources, destruction 
of river ecosystems, and the flooding of villages, agricultural 
lands, and pastures. Even if the necessity of some dams is 
acknowledged, their current scale has far exceeded reasonable 
limits. The water management goals set by the Ministry 
of Energy do not align with sustainable water resource 
management, leading to an imbalance between infrastructure 
development and long-term water security [1-2]. 

One of the key consequences of excessive water extraction 
and mismanagement is water stress. This occurs when water 
demand exceeds available supply or when poor water quality 
limits its usability. Water stress encompasses two critical 
factors: the quantity and quality of water. Over-extraction of 
groundwater, depletion of aquifers, and drying rivers reduce 
water availability, while pollution from agricultural runoff, 
industrial waste, and salinity intrusion degrades water quality. 
These issues not only threaten ecosystems but also pose 
significant risks to human health and food security. Water 
stress is often measured by the ratio of water withdrawals to 
available surface and groundwater resources, highlighting the 
need for effective water conservation strategies [3]. 

Climate change has further intensified water stress by 
increasing drought frequency and severity. Throughout 
Earth’s history, the climate has undergone natural fluctuations, 
including seven major cycles of glacial advance and retreat 
over the past 650,000 years. The most recent ice age ended 
roughly 7,000 years ago, coinciding with the rise of human 
civilization. While past climate shifts were largely driven 
by natural variations in Earth’s orbit, the current warming 
trend is primarily the result of human activities. Scientific 
evidence suggests with over 95% certainty that greenhouse *Corresponding author’s email: m.khoshoei@kashanu.ac.ir
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gas emissions have been the dominant driver of global 
warming since the mid-20th century. The consequences of 
climate change, such as altered precipitation patterns, rising 
temperatures, and increased evaporation rates, directly affect 
water availability, exacerbating existing drought conditions 
[4]. 

Drought, a prolonged period of deficient rainfall, is one 
of the most devastating consequences of climate change 
and water mismanagement. A lack of precipitation can lead 
to widespread agricultural losses, drinking water shortages, 
and severe economic and social crises. Prolonged droughts 
can trigger forced displacement, resource conflicts, and even 
famine. Unlike sudden natural disasters such as hurricanes 
or earthquakes, droughts develop gradually, making them 
difficult to predict. However, their impacts can be long-
lasting and far-reaching. Since 1900, droughts have claimed 
more than 11 million lives and affected over 2 billion people 
worldwide. They also rank among the most costly natural 
disasters—California, for instance, has suffered at least $2 
billion in annual economic losses due to drought conditions 
since 2014 [5]. 

The severity of a drought depends on regional precipitation 
patterns, making its definition highly variable. In regions 
with high average rainfall, such as Atlanta, Georgia, 
which receives approximately 127 cm (50 inches) of rain 
annually, even a slight reduction can lead to water shortages. 
Conversely, in arid regions like the American Southwest, 
where annual rainfall is typically less than 25 cm (10 inches), 
a drought may last much longer before its impacts become 
apparent. Identifying the onset and conclusion of a drought is 
particularly challenging. Unlike storms, which have clear start 
and end points, droughts evolve slowly over weeks, months, 
or even years. A brief rain shower may provide temporary 
relief, but long-term droughts require sustained precipitation 
to restore normal water levels, making recovery a complex 
process [6]. 

Droughts typically arise when disruptions in weather 
patterns interrupt the natural water cycle. Changes in 
atmospheric circulation can cause storm tracks to shift or 
stall, reducing precipitation over extended periods. Wind 
pattern shifts can also limit moisture absorption, worsening 
drought conditions. One well-documented example of such 
climatic disruptions is El Niño, a phenomenon characterized 
by warmer-than-normal sea surface temperatures in the 
central Pacific Ocean. This warming influences global 
storm patterns and is associated with drought conditions in 
regions such as Indonesia, Australia, and northeastern South 
America. Climate scientists predict that El Niño events occur 
approximately every two to seven years, highlighting the 
need for better forecasting and preparedness strategies to 
mitigate drought impacts [6-7]. 

By understanding the interplay between dam construction, 
water stress, climate change, and drought, policymakers can 
develop more sustainable water management strategies. 
Iran, like many other drought-prone regions, must balance 
infrastructure development with environmental conservation 

to ensure long-term water security [5-6]. 
Many researchers have developed water stress indices 

to better understand and manage drought conditions. For 
example, Smith and Maidment introduced the Integrated 
Drought Information System in the United States, which 
provides a comprehensive overview of drought conditions 
by integrating data from different types of droughts [8]. 
Similarly, Karamouz et al. employed three key indices—the 
Standardized Precipitation Index (SPI) for meteorological 
droughts, the Palmer Drought Severity Index (PDSI) 
for agricultural droughts, and the Surface Water Supply 
Index (SWSI) for hydrological droughts. Their study in 
Iran’s Zayandehrood Basin introduced a novel method for 
quantifying drought impacts by analyzing drought-related 
damages. These indices play a crucial role in improving 
drought prediction and water resource management, helping 
policymakers develop strategies to mitigate water shortages 
and protect vulnerable regions [9]. 

Pandey et al. introduced the Drought Vulnerability Index 
(DVI), which incorporates seven key parameters: basin slope, 
land use, soil type, groundwater availability, surface water 
availability, water demand/consumption, and precipitation 
deviation [10]. In 2012, Pandey et al. also applied a 
spatial geoinformatics method for assessing agricultural, 
meteorological, and hydrological drought risks in the Palamu 
region [11]. Liu et al. reconstructed historical drought 
events and evaluated future drought risks in Oklahoma, a 
drought-prone basin, under climate change scenarios using 
the Standardized Precipitation Index (SPI), Palmer Drought 
Severity Index (PDSI), and Standardized Runoff Index (SRI) 
[12].

Hao and Aghakouchak presented a multivariate drought 
index approach based on the concept of copulas. Their 
model, the Multivariate Standard Drought Index (MSDI), 
probabilistically combines the Standard Precipitation 
Index (SPI) and the Standard Soil Moisture Index (SSI) to 
describe drought conditions [13]. Similarly, Rajsekhar et al. 
introduced the Multivariate Drought Index (MDI), which 
integrates variables related to meteorological, hydrological, 
and agricultural droughts to present a more comprehensive 
picture of drought [14].

Safavi et al. developed an integrated drought index that 
incorporates key drought factors, using the Zayandehrood 
basin as a study area due to its hydrological significance 
within the central plateau of Iran [15]. In 2015, Huang et 
al. introduced the Integrated Drought Index (IDI), which 
combines meteorological, hydrological, and agricultural 
drought indices in the Yellow River Basin [16]. That same 
year, Wasim et al. developed the Composite Drought Index 
(CDI), which accounts for variables related to all three types 
of drought [17]. Khoshoei et al. designed and implemented 
a drought monitoring system for the Zayandehrood basin, 
based on various drought-related factors [18].

Faiz et al. introduced a new composite drought index 
(CDI) by integrating potential and actual evapotranspiration, 
climatic water balance, and precipitation. This CDI was 
assessed by comparing it with various drought indicators 
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such as soil moisture, the Palmer Drought Severity Index 
(PDSI), scaled crop yield index (sCYI), the evaluation 
integrated drought index (EIDI), and the standardized runoff 
index (SRI) in China [19]. Shah and Mishra developed an 
Integrated Drought Index (IDI) that combines meteorological, 
hydrological, and agricultural drought responses, also 
factoring in groundwater storage [20]. Jing Zhang and 
colleagues evaluated different drought indices for monitoring 
drought conditions using remote sensing data [21]. Li et al. 
compared drought conditions across China using remote 
sensing, focusing on different drought indices from 2017 
[22]. Zhou et al. included the climate anomaly index in a 
drought model to study the impacts of the El Niño-Southern 
Oscillation (ENSO) and the Madden-Julian Oscillation 
(MJO) on drought across various eco-geographic zones 
of China [23]. Heidarizadi et al. utilized twelve remotely 
sensed indices from MODIS and DEM to monitor drought 
between 2000 and 2018, with the Standardized Precipitation 
Index (SPI) as a reference, employing machine learning 
techniques to model the relationship between the indices and 
SPI at various time scales [24]. These diverse indices and 
technologies enhance drought prediction and water resource 
management, helping policymakers develop more effective 
strategies for mitigating water scarcity.

This research aims to investigate water stress in two distinct 
types of watersheds: a natural watershed located upstream of 
the dam and an engineered watershed situated downstream of 
the dam. The natural watershed refers to the area where water 
flow and distribution are governed by natural hydrological 
processes without significant human intervention. In contrast, 
the engineered watershed downstream has been altered by the 
presence of the dam, which influences water flow, storage, 
and distribution through artificial means such as controlled 
releases and infrastructure modifications. By comparing 
these two types of watersheds, the study seeks to evaluate 
the dam’s influence on water availability, distribution, and 
drought resilience. Specifically, the research will examine 
how the dam impacts water stress in both regions, considering 
variables such as changes in surface and groundwater levels, 
shifts in agricultural water use, and the overall alteration of 
the hydrological cycle. Additionally, the study will assess the 
dam’s effect on drought conditions, including the frequency 
and severity of drought events in the downstream basin, 
compared to the natural flow conditions upstream. This 
comparative analysis will help elucidate the extent to which 
dams, as a form of human intervention, mitigate or exacerbate 
water stress and drought in different watershed environments. 
The findings are expected to provide insights into the broader 
implications of dam construction on regional water resources, 
ecosystem health, and long-term sustainability, offering 
valuable information for water management and policy-
making in regions facing similar challenges.

2- Methodology 
Drought indicators are commonly defined based on 

several key variables, specifically in meteorological, 
hydrological, and agricultural contexts. These indicators serve 

as measurable factors that help identify the onset, severity, 
and duration of drought conditions. Drought triggers, on 
the other hand, are threshold values for each indicator; once 
these thresholds are reached, they signal different stages of 
drought intensity and dictate the timing for implementing 
drought management actions. Establishing and formalizing 
these indicators and triggers involves understanding their 
spatial and temporal relevance, their consistency over time 
and across locations, and ensuring statistical alignment. This 
alignment includes the coherence of triggers with one another 
and with the conditions marking the start and end of drought 
events.

In the field of information theory, entropy serves as a 
metric for the average amount of information required to 
describe the probability distribution of a random variable. 
Essentially, it gauges the level of uncertainty inherent in a 
system or process. By quantifying this uncertainty, entropy 
provides insight into a system’s potential to generate 
information from existing data, a feature that makes it widely 
applicable across various fields. Since drought patterns are 
inherently random and difficult to predict, entropy theory 
proves useful in modeling drought characteristics. Here, we 
aim to capture drought conditions driven by limited water 
availability from diverse sources. Entropy theory facilitates 
this by enabling the integration of these varied, random water 
sources that contribute to the overall water supply. Through 
an entropy-based weighting approach, we can effectively 
combine these inputs, creating a composite measure that 
better represents the unpredictability and impact of drought.

To quantify drought, various sources of information are 
considered based on different factors, such as precipitation 
levels, surface water storage, and other relevant indicators. 
Entropy weighting helps determine the importance or “weight” 
of each factor, allowing a more accurate representation of 
each indicator’s contribution to drought assessment. In this 
approach, we introduce a matrix with m rows and n columns 
to estimate these weights, where m represents the number of 
indicators, and m corresponds to the number of evaluation 
objects, typically, sample data points from a time series for 
each indicator. This structure results in an original indicator 
value matrix, which serves as the foundation for calculating 
the entropy weights and provides a comprehensive view of 
the data distribution across all selected indicators.
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In this study, ( )ij x  represents the jth evaluation object 
corresponding to the ith indicator data. The indicators for the 
X matrix examined in this research include precipitation and 
surface water storage, which will be detailed in the subsequent 
sections. The matrix mentioned above can be normalized as 
follows:
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Here, ( )ijr ​  denotes the jth evaluation object of the 
normalized data for the ith indicator, where ( )ijr ​ falls within 
the range of [0, 1]. Each term is defined as follows:
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The calculation for the ith evaluation metric is as follows:
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Where fij ​and k are defined as follows:
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where fij​ denotes the frequency associated with the jth 
evaluation object and the ith indicator, except when if 0ijf =  
then ( )   0ij ijf ln f =  

Accordingly, the weight of the ith indicator can be 
determined using the following formula:
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where 0 1iw≤ ≤  and 
m

1

1i
i

w
=

=∑ .
In this study, we applied entropy weighting theory 

to construct a multivariate drought index. This index is 
calculated as the weighted sum of the entropy values linked 
to each indicator. Specifically, we selected precipitation 
and surface water storage as the two key indicators (where 
m=2), representing meteorological and hydrological drought 
conditions, respectively. By focusing on these indicators, the 
multivariate drought index provides a composite measure that 
reflects the combined impact of both precipitation patterns 
and water storage levels. The final weight for each indicator 
was derived through entropy calculations, producing a 
comprehensive drought index as follows:
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The relationship between precipitation weight and surface 
runoff weight is established through a pre-calculated matrix 
that represents the respective weights. These matrices are then 
multiplied by the corresponding precipitation and surface 
runoff data to facilitate the computation of weighted values. 
Specifically, the matrix for rainfall weight is multiplied by 
the rainfall data, and the matrix for surface runoff weight is 
multiplied by the surface runoff data. This process ensures 
that the respective weights are appropriately applied to the 
observed precipitation and runoff values, enabling more 
accurate modeling and analysis of hydrological processes.

3- Case Study
The Zayandehrood basin ranks among the country’s key 

population centers, yet it has increasingly struggled with 
water shortages driven by rapid industrial development and 
a growing population, largely due to migration from other 
provinces. This rising demand for water has widened the 
gap between supply and consumption. Historically, water 
transfer initiatives were introduced to mitigate shortages in 
this basin, but escalating demand—especially from desert 
regions beyond the basin—suggests that the supply-demand 
imbalance will likely worsen in the coming years. This 
challenge underscores the urgent need to assess both the 
supply and demand dynamics within the basin.

To address this issue, comprehensive studies on water 
resources and usage patterns in the Zayandehrood basin 
are essential. Such studies must also examine atmospheric 
contributions to water availability across different years, 
assessing how rainfall and other climate factors influence the 
region’s overall water resources. Covering an area of 26,917 
square kilometers, the Zayandehrood basin not only supports 
its immediate population and industries but also encompasses 
much of the Gavkhoni wetland watershed. This wetland 
forms part of the greater watershed of Iran’s central desert, 
which further complicates water management efforts, given 
the basin’s interconnected water needs across desert and 
urban regions.

The Zayandehrood River, spanning 350 kilometers, is a 
critical resource in its basin, supporting agriculture, industry, 
domestic water supply, and numerous economic activities 
with its natural annual flow averaging around 900 million 
cubic meters (MCM). The Zayandehrood Dam, the primary 
surface water reservoir in the region with a storage capacity 
of 1,450 MCM, has been operational since 1971. During 
winter and spring, seasonal runoff allows the dam to release 
regulated flows into the river.

The basin’s upper area consists of mountainous highlands 
with relatively low water demand, whereas its central and 
lower regions are arid to semi-arid, with sedimentary plains, 
moderate slopes, and dry beds. In this setup, the Chelgerd 
sub-basin, situated upstream, is a natural area where flows 
are largely unaffected by human intervention. In contrast, 
the Esfahan-Borkhar sub-basin downstream is engineered, 
where water distribution is managed by the Zayandehrood 
Dam. Figure (1) shows the locations of the natural, upstream 
Chelgerd sub-basin and the managed, downstream Esfahan-
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Borkhar sub-basin.
This study uses precipitation and surface water storage 

as key indicators to evaluate drought susceptibility and 
to develop a multivariate drought index. Data collection 
involves 145 precipitation measurement stations across the 
Zayandehrood River basin. Daily surface water flow data, 
provided by the Isfahan Regional Water Authority, were 
collected from two stations to determine surface water 
storage. For flow modeling in each sub-basin, we used data 
from one hydrometric station.

Average precipitation levels for both the upstream and 
downstream sub-basins were determined by analyzing data 
collected from various precipitation monitoring stations. 
Significant fluctuations were observed throughout the study 
period, which spanned from 1991 to 2020, as illustrated in 
Figure (2). This figure clearly shows that the upstream sub-
basin receives more precipitation on average compared to its 
downstream counterpart, highlighting a notable difference in 
hydrological conditions between the two areas.

Additionally, Figure (3) displays the annual variations 
in surface water volume, measured in million cubic meters, 
for two key monitoring stations: Ghale-Shahrokh, located 
in the upstream sub-basin, and Pole Khajo, situated in the 
downstream sub-basin. The data depicted in this figure further 
emphasizes the discrepancies in water availability between 
the upstream and downstream regions throughout the years 
under review. These variations in surface water volume 
and precipitation patterns are critical for understanding the 
overall hydrological dynamics of the Zayandehrood basin 

and can provide valuable insights into water management and 
drought vulnerability assessments in the area. Overall, the 
results underscore the importance of continuous monitoring 
and analysis of precipitation and surface water resources to 
address future water challenges effectively.

4- Result
The bivariate drought index relies on two primary data 

sources: precipitation and the volume of available surface 
water storage. These datasets are critical in assessing drought 
conditions and can be obtained through various monitoring 
stations, specifically rain gauge stations for measuring 
precipitation and hydrometric stations for tracking water 
storage levels. These stations provide valuable data on 
a monthly basis, which is essential for accurate drought 
assessments. The process of calculating the bivariate drought 
index begins with the estimation of a continuous 12-month 
time series for both precipitation and available surface water. 
This step is crucial for understanding long-term trends and 
variations in both factors, which are key indicators of drought 
severity.

In this study, the time frame under consideration spans 
from the water year 1985 to the water year 2014. The 
12-month precipitation time series is derived by continuously 
calculating the average annual precipitation for a given basin. 
This approach helps create a robust dataset that captures 
seasonal and annual variations in precipitation. By using 
this continuous precipitation data, researchers are able to 
estimate the water availability and surface water storage for 

 

Fig. 1: Zayandehrood river basin, situation of engineered and non-engineered sub-basins, Zayandehrood river, and 
Zayandehrood Dam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Zayandehrood river basin, situation of engineered and non-engineered sub-basins, 
Zayandehrood river, and Zayandehrood Dam.
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Fig. 2: The average yearly precipitation for sub-basins located upstream and downstream over the 1991-2020 water 
years. 
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Fig. 2. The average yearly precipitation for sub-basins located upstream and downstream over the 1991-2020 
water years.

 

Fig. 3: Yearly surface water volume (MCM) recorded at Ghale-Shahrokh station (located in the upstream, 

natural sub-basin) and at PoleKhajo station (situated in the downstream, engineered sub-basin). 
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Fig. 3. Yearly surface water volume (MCM) recorded at Ghale-Shahrokh station (located in the upstream, 
natural sub-basin) and at PoleKhajo station (situated in the downstream, engineered sub-basin).
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each month over the course of several years. This allows for a 
more precise understanding of how water resources fluctuate 
over time.

Once the continuous time series for both precipitation 
and surface water storage have been established, the next 
critical step is to calculate the weight coefficients for each 
input or variable in the bivariate drought index. These weight 
coefficients are fundamental in determining the relative 
importance of each variable when calculating the overall 
drought index. In this study, the weight coefficients for the 
second variable of the drought index are derived using a 
method known as entropy weighting, which helps to quantify 
the uncertainty and variability associated with each variable.

As described in the methodology section, entropy 
weighting is a statistical technique that assigns weights to 
variables based on the amount of information they contribute 
to the overall system. For the second variable of the bivariate 
drought index, which involves both precipitation and surface 
water storage, this technique ensures that each indicator 
is appropriately weighted according to its contribution to 
drought conditions. This method improves the accuracy of 
the drought index by ensuring that the most informative 
variables receive greater weight in the final calculation.

To further enhance the reliability of the bivariate drought 
index, two sub-basins within the Zayandehrood basin—
Chalgerd and Esfahan Borkhar—were selected for this study. 
These two sub-basins serve as representative examples 
of natural and artificial basins, respectively. Chalgerd is 
considered a natural basin, while Esfahan Borkhar is an 
artificial basin that is influenced by human interventions, 
such as water management practices and infrastructure. 
By comparing these two types of basins, the study aims to 
provide a more comprehensive analysis of drought conditions, 
as natural and artificial basins may respond differently to 
precipitation and water storage fluctuations.

Table 1 in the study presents the calculated entropy 
weight values for both the Chalgerd and Esfahan Borkhar 
sub-basins. These values are critical in understanding how 
the variables—precipitation and surface water volume—are 
weighted in the drought index calculation. The variables 
used to assess the second variable of the drought index are 
precipitation and the volume of available surface water, both 
of which play a significant role in determining the severity 
of drought conditions. By combining these two indicators 
and applying the appropriate weight coefficients (Table 1), 
the bivariate drought index provides a more nuanced and 

accurate measure of drought severity, which is essential for 
effective water resource management and drought mitigation 
strategies.

By accurately measuring and assessing both precipitation 
and water storage levels, this index can help identify areas 
at risk of drought and guide decision-making processes to 
address water scarcity and ensure the sustainable management 
of water resources over time.

Table 1 presents the modified entropy weights for the 
Chelgerd and Esfahan-Borkhar sub-basins. In the Chelgerd 
sub-basin, the modified entropy weight for precipitation is 
0.716, while the weight for the available surface water volume 
is 0.284. This distribution is attributed to the relatively high 
precipitation in this sub-basin, which has a greater influence 
on the drought index compared to the downstream sub-basin 
near the Zayandehrood Dam. As a result, precipitation plays a 
more significant role in the calculation of the second variable 
index for Chelgerd.

On the other hand, in the Esfahan-Borkhar sub-basin, 
the modified entropy weight for precipitation is much lower, 
at 0.206, whereas the weight for surface water volume 
is significantly higher at 0.794. This is due to the greater 
importance of surface water storage in this engineered sub-
basin, where the volume of water is controlled by regulatory 
dams. These dams play a central role in managing and 
regulating water availability, which makes surface water 
a more influential factor in calculating the second variable 
drought index for Esfahan-Borkhar. Therefore, in this sub-
basin, surface water volume is the dominant factor affecting 
the drought index, contrasting with the natural Chelgerd sub-
basin, where precipitation has a more pronounced impact.

To determine the bivariate drought index, the next step 
involves calculating the integrated index values for the 
specified time intervals using Equation 8. As outlined, 
there are 360 time intervals available for analyzing both 
precipitation and surface water volume data. Following 
Equation 8, the Water Stress Index (WSI) will be computed 
across these 360 intervals. Matrix X, described in Equation 
1, contains 360 rows and 2 columns, which also applies to 
Matrix R (Equation 2). Elements in Matrix R are derived 
by normalizing those in Matrix X. Using Equation 8, along 
with the entropy-adjusted weight coefficients previously 
discussed, we produce the WSI matrix, structured as one 
column with 360 rows. Each row in this matrix corresponds 
to a calculated WSI, representing the drought bivariate index.

Values within Matrix R range from zero to one, so 

Table 1. Numerical value of entropy weight in Chalgerd and Esfahan-Borkhar sub-basins.Table 1- Numerical value of entropy weight in Chalgerd and Esfahan-Borkhar sub-basins. 

Sub-Basin Precipitation Available Surface Water 

Chelgerd (Upstream) 0.716 0.284 

Esfahan-Borkhar (Downstream) 0.206 0.794 
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applying the entropy-adjusted weights results in WSI values 
also ranging between zero and one. This study uses Equation 
4 to derive the R matrix, where higher values in each R matrix 
basin signify greater precipitation and available surface water 
within the basin. Consequently, a higher drought index value 
implies better conditions regarding drought. In other words, 
as the index value approaches zero, drought conditions 
worsen, while values closer to one indicate reduced drought 
impact in the analyzed basin.

In this study, to enhance the comparison of the bivariate 
drought index, a separate index called the precipitation index 
was introduced. This precipitation index corresponds to the 
first column in the R matrix, representing precipitation data. 
Figures 4 and 5 present a 12-month continuous time series 
of both the bivariate drought index and the precipitation 
index for the Chelgerd and Esfahan-Borkhar sub-basins, 
representing natural and engineered basins, respectively.

It is important to note that in these analyses, lower index 

 

Fig. 4: Time series of Precipitation index and bivariate index in Chelgerd sub-basin. 
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Fig. 4. Time series of Precipitation index and bivariate index in Chelgerd sub-basin.

 

Fig. 5: Time series of Precipitation index and bivariate index in Esfahan-Borkhar sub-basin. 
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Fig. 5. Time series of Precipitation index and bivariate index in Esfahan-Borkhar sub-basin.
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values indicate drought conditions, while higher values 
suggest water abundance in the basin under study. In Figures 
4 and 5, the horizontal axis represents the examined time span 
(30 wet years, equating to 360 consecutive months), and the 
vertical axis displays the drought index values, which range 
between zero and one.

As shown in Figure 4, the difference between the rainfall 
index and the combined index in the Chelgerd basin is 
minimal, measuring less than 5 percent. This suggests a 
strong correlation between rainfall patterns and the overall 
drought assessment in the region, indicating that precipitation 
plays a dominant role in shaping the combined index values. 
This is because, in natural basins, precipitation is converted 
to surface runoff through natural processes. Essentially, the 
volume of surface water is determined by the amount of 
natural runoff within the basin, with runoff in these basins 
being a proportion of the total precipitation.

Figure 5 depicts the precipitation index and the bivariate 
index in the engineered sub-basin of Esfahan Borkhar, 
showing a 45% difference between them. This variation 
occurs because, in engineered basins, surface water volume is 
regulated by dams. For example, in the Esfahan Borkhar sub-
basin, surface water availability depends on the outflow from 
the Zayandehrood Dam. Consequently, the second component 
of the bivariate drought index does not align with the first 
component, which represents the basin’s precipitation.

The final stage in determining the bivariate drought 
index involves validating the index. For this, the Normalized 
Difference Vegetation Index (NDVI) was utilized as a 
vegetation measurement index to validate the bivariate drought 
index. NDVI, often referred to as an agricultural drought or 
remote sensing index, has a numerical range from -1 to +1. 
Various satellite systems measure NDVI components, but the 
MODIS satellite, operated by NASA, is especially reliable 
and precise. MODIS provides NDVI values based on latitude 
and longitude every 16 days or monthly. The process of 
creating an NDVI time series aligns with the bivariate drought 
index, producing a continuous 12-month time series estimate. 
Monthly NDVI values were first extracted from MODIS for 
the geographic area of the Zayandehrood watershed. Using 
GIS software, the monthly average NDVI was then calculated 
for both the natural (Chelgerd) and engineered (Esfahan 
Borkhar) sub-basins of the Zayandehrood watershed. Finally, 

to develop a continuous 12-month NDVI series, the annual 
average NDVI for each basin was calculated continuously.

To validate the bivariate drought index, the NDVI 
index was used as an indicator of agricultural conditions 
in the study area. A linear relationship was established 
between the target index and the NDVI, and the correlation 
coefficient for this relationship was calculated. As shown 
in Table 2, the precipitation index (representing normalized 
precipitation levels) was also used to compare results with 
the second variable drought index. In the upstream sub-basin, 
the correlation coefficient (R²) between the precipitation 
index and the NDVI is 0.74, while the correlation between 
the bivariate drought index and the NDVI is 0.81. In the 
downstream sub-basin, the R² between the precipitation 
index and the NDVI is 0.52, whereas the correlation between 
the second variable drought index and the NDVI is notably 
higher at 0.87. 

The results indicate that, in the natural sub-basin 
(Chelgerd), there is little difference between the correlation 
of the bivariate drought index with the NDVI and that of 
the precipitation index with the NDVI. This is because, in 
natural basins, surface water volume is directly influenced 
by precipitation levels without human intervention; thus, 
the available surface water volume is largely a factor of the 
natural precipitation received. Consequently, precipitation 
indices or meteorological drought indices like the SPI can be 
used to assess drought conditions in natural basins.

In contrast, a significant difference exists in the 
engineered Esfahan Borkhar sub-basin between the 
correlation coefficients of the precipitation index with the 
NDVI and the bivariate drought index with the NDVI. This 
disparity arises because, in engineered basins, stored water 
resources are managed to meet various needs—domestic, 
agricultural, industrial, or environmental—based on water 
resource management decisions. Therefore, for engineered 
basins, the bivariate drought index is recommended for 
assessing drought and water resource status, while in natural 
basins, changes in precipitation alone can be sufficient for 
determining drought conditions.

To categorize drought, specific drought triggers must be 
defined. These triggers, or thresholds, are boundary values 
that help identify the type of drought occurring in a particular 
area. Essentially, drought thresholds allow for the translation 

Table 2. Correlation coefficient (R²) between the precipitation index or the bivariate drought 
index and the NDVI in Chalgerd and Esfahan-Borkhar sub-basins.

Table 2- Correlation coefficient (R²) between the precipitation index or the bivariate drought index and the NDVI in Chalgerd 

and Esfahan-Borkhar sub-basins. 

 Correlation (R²) Precipitation Available Surface Water 

NDVI Upstream 0.74 0.81 

NDVI Downstream 0.52 0.87 
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of quantitative values from drought indicators into descriptive 
terms representing drought severity. As noted in the index 
input matrix (R matrix) in Chapter 3, the inputs for the 
second drought index variable display a uniform distribution. 
Consequently, based on calculations involving the bivariate 
drought index using a modified entropy weighting approach, 
the output of this index also follows a uniform distribution. 
Since the second drought index variable’s output is uniformly 
distributed and ranges between zero and one, this interval can 
be divided into five categories to establish the drought index 
thresholds. Table (3) presents the drought thresholds based 
on the bivariate index. In Table (3), Rank 1 indicates severe 
drought (range from 0 to 0.2), Rank 2 indicates moderate 
drought (range from 0.2 to 0.4), Rank 3 represents normal 
conditions (range from 0.4 to 0.6), Rank 4 corresponds to 
moderate wet conditions (range from 0.6 to 0.8), and Rank 
5 to extremely wet conditions (range from 0.8 to 1). As seen, 
a decrease in the second variable index signals increasing 
drought severity, while an increase indicates less severe 
drought conditions.

According to the thresholds outlined in Table (3), Figures 
(6) and (7) display the drought or wet conditions for two sub-
basins, Chelgerd and Esfahan Borkhar, across the water years 
from 1991 to 2020, covering the years analyzed in this study.

5- Conclusion
The primary aim of this study was to create a 

comprehensive multivariate drought index, referred to as the 
integrated drought index, which encompasses meteorological, 
hydrological, and agricultural components. Rainfall was 
identified as the key factor in assessing the meteorological 
dimension of drought. Additionally, the volumes of surface 
and groundwater resources were utilized to represent 
hydrological aspects of drought.

The initial step in developing the integrated drought 
index involved determining the method for combining 
these indicators. After reviewing various approaches in 

existing studies, the entropy weighting method was chosen. 
The process for calculating input weights for the integrated 
index is detailed in the methodology section, including 
an explanation of a modified entropy weight designed to 
address limitations identified in prior studies. Using rainfall, 
surface water volume, and groundwater volume as inputs, the 
integrated drought index was subsequently calculated. This 
index can function as a bivariate model (pairing rainfall with 
either surface or groundwater volume) or as a multivariate 
model (incorporating rainfall, surface water, and groundwater 
volumes).

For validation purposes, the Normalized Difference 
Vegetation Index (NDVI), a remote sensing tool, was used. 
NDVI data, acquired from MODIS satellite imagery, were 
correlated with the integrated drought index to verify its 
accuracy. NDVI, as an agricultural drought indicator, allowed 
the combined use of rainfall, surface water, groundwater, and 
NDVI parameters to provide a detailed and comprehensive 
drought assessment across meteorological, hydrological, and 
agricultural dimensions. Finally, the integrated drought index 

Table 3. Drought index thresholds.Table 3- Drought index thresholds. 

Type Range  

Extreme Drought 0<DI<0.2 

Moderate Drought 0.2<DI<0.4 

Normal 0.4<DI<0.6 

Moderate Wet 0.6<DI<0.8 

Extreme Wet 0.8<DI<1 

 

 

 

Fig. 6: Drought or wet condition based on precipitation and bivariate index in Chelgerd sub-basin. 
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Fig. 6. Drought or wet condition based on precipitation and bivariate index in Chelgerd sub-basin.
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was recalculated based on the weighted and normalized input 
parameters, with the NDVI index supporting its validity.
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Fig. 7: Drought or wet condition based on precipitation and bivariate index in the Esfahan sub-basin. 
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Fig. 7. Drought or wet condition based on precipitation and bivariate index in the Esfahan sub-basin.
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