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Abstract: 

Pull-out tests and corresponding curves help analyze fiber pull-out behavior, which significantly influences 

the tensile and flexural properties of fiber-reinforced concrete. Artificial intelligence techniques provide an 

efficient means to predict fiber pull-out curves. In this study, four models based on convolutional neural 

networks (CNN), long short-term memory networks (LSTM), and extreme gradient boosting (XGBoost) 

are used to predict fiber pull-out curves: CNN1D, CNN2D, LSTM, and XGBoost. A dataset of 502 

experimental samples was compiled, primarily from laboratory studies conducted by one of the authors of 

this paper. Fiber aspect ratio, loading rate, type and quantity of cement, amount of: binder, silica fume, sand, 

gravel, quartz, superplasticizer, water, water-to-cement ratio, water-to-binder ratio, curing age, fiber 

embedded length, end-type of the fibers, the pitch of spirals, number of twists, fiber inclination angle, fiber 

length and diameter, and concrete compressive strength are among the used input parameters. To represent 

the expected curve, the model output comprises 1000 pairs of data (pull-out force vs slip). Among the tested 

models, XGBoost demonstrated superior performance with the lowest mean absolute error (8.39) and 

highest R² value (0.71), making it the optimal choice for predicting fiber pull-out curves. The parameters 

“embedded length”, “number of twists”, “Silica fume” and “pitch of spirals” were more important and 

influenced the model and prediction accuracy, as can be seen from the evaluation of the feature importance 

graph. 

Keywords: fiber pull-out curve; machine learning; convolutional neural networks (CNN); long short-term 

memory networks (LSTM); extreme gradient boosting (XGBoost). 
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1. Introduction 

The study of fiber pull-out behavior in cement matrices is an important topic for materials and construction 

engineers, as it significantly affects the mechanical properties and durability of concrete. Cement-based 

matrices have low tensile strength and ductility, necessitating reinforcement. However, the incorporation of 

fibers into these matrices significantly improves their tensile strength and ductility. The use of fibers in 

cement matrices not only increases crack resistance, but also improves energy absorption and the durability 

of the cement composite. 

Numerous laboratory studies have been carried out on this topic, each of which deals with different aspects 

of the topic. For example, Zeighami et al. [1] tested the pullout behavior of hooked steel fibers at various 

angles and found that most pullout forces occurred at angles between thirty and forty-five degrees. Isla et 

al. [2] investigated the pullout tests of various types of steel fibers. A significant variability in the pull-out 

force was identified and emphasized that the relationship between matrix and fiber strength must be taken 

into account in the FRC construction. Zanjani et al. [3] showed that three-dimensional fibers increase 

pullout energy and resistance when pullouted compared to two-dimensional fibers. Wu et al. [4] investigated 

the results of matrix composition and fiber shape with regard to the bending properties of ultra-high-

performance concrete (UHPC), and found that the use of deformed fibers can improve the bonding 

properties of the interfaces. McSwain et al. [5] investigated the effect of compressive stress on the pullout 

behavior of fibers and showed a positive correlation between peak force and confining stress, though total 

work did not exhibit such a relationship. Denga et al. [6] analyzed the pullout behavior of hook-shaped and 

straight fibers using analytical models and came to the conclusion that hybrid fibers significantly increased 

the pullout force. Cao et al. [7] investigated the effects of the loading rate on pullout behavior and found 

that overall performance depends on loading rates. Feng et al. [8] examined various types of metal fibers 

and found that reduced relative spacing reduces average bond strength. Chun et al. [9] showed that the 

surface roughness caused by sanding positively influences slip-hardening behavior. 
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In recent years, new numerical and analytical models have been developed to study fiber pullout behavior. 

Zhang & Yu [10] recommended a numerical model for reproducing the pullout behavior of a single fiber 

embedded in a cement matrix, taking into account the gradual deterioration of bond strength at the interface. 

In addition, Hoppe [11] used finite element models to simulate the interface separation between fibers and 

matrix. 

These studies underscore the critical importance of studying fiber pullout behavior, especially in light of 

advances in science and artificial intelligence that require similar research in this area, as shown by several 

studies that used AI techniques for this purpose. Hemmatian et al. [12] presented an AI model for predicting 

maximum fiber pullout force and associated slip. 382 experimental information points were used to develop 

and train artificial neural network models (ANN). The results suggested that the proposed model provided 

logical predictions and could offer a data-driven approach to optimize fiber-reinforced cement composites. 

Huang et al. [13] commissioned six unique models, including ANN, gradient-boosted decision trees 

(GBDT), and XGBoost to predict the bond strength between fibers and matrix, with XGBoost showing 

advanced predictive performance with an R² value of 0.98. 

Over the past decades, significant advances have been made through experimental and numerical 

investigations to characterize the pullout response. While several artificial intelligence studies have 

successfully predicted key parameters such as the maximum pullout force and the corresponding slip, no 

research to date has addressed the prediction of the full pullout curve. 

The pullout curve provides a wealth of information beyond peak force values, enabling a more detailed 

understanding of the fiber-matrix interaction mechanisms. Analysis of the slip-pullout curve allows for the 

extraction of numerous critical parameters, including bond strength, frictional resistance, and energy 

absorption characteristics of both the fiber and the surrounding matrix. For example, a steep initial slope in 

the pullout curve is indicative of a strong interfacial bond between fiber and matrix, whereas a more gradual 

slope may reflect weaker bonding or increased frictional losses during fiber extraction [14]. Such detailed 

characterization is essential for elucidating the micromechanical behavior of composites and for optimizing 
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their performance in various engineering applications. This study aims to fill this gap by developing ML-

based models for accurate pullout curve prediction.  

 

Fig. 1. flowchart of the paper process 

2. Cement-Based Matrix 

A cement-based matrix, such as concrete and mortar, consists of three components: cement, sand, and 

aggregates combined with water. Although these materials have high compressive strength, they behave 

weakly when exposed to tension. Therefore, fibers are usually added to cement-mixed materials to improve 
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their mechanical and durable properties [15]. The use of fibers (whether steel, polypropylene, or recycled 

spring) in concrete is an effective solution to improve mechanical properties, increase durability, and 

enhance concrete's resistance in harsh conditions, especially after a fire [16]. The use of steel and 

polypropylene fibers, especially in optimal combination, can be an effective solution for increasing the 

strength, durability, and economic efficiency in the production of concrete sleepers [17]. Adding different 

types of fibers can improve the technical properties of concrete against pressure, tension, and heat [18]. The 

use of steel fibers in lightweight plastic concrete can largely compensate for the mechanical resistance 

weakness of this type of concrete, while polypropylene and glass fibers are more suitable for improving 

ductility and reducing surface cracking and do not have a significant effect on mechanical resistance at high 

temperatures [19]. 

3. Fiber pull-out behavior 

The pullout behavior of fibers in cementitious matrices is influenced by factors such as fiber type, 

orientation, and matrix properties.  

Fig. 2 shows the possible failure modes of the fiber-reinforced matrix: fiber bridging, debonding, pullout, 

and failure. 

 
Fig. 2. Mechanisms of fiber–matrix interactions [20]. 

By carrying out a fiber pullout test, a pullout-slip curve (Fig. 3) is determined from which important 

parameters such as maximum slip, peak pullout force, primary and secondary stiffness, pull-out energy, 

failure force, bond strength, corresponding slip at failure, etc. can be extracted.  
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Fig. 3. Pullout modes of fracture for steel fibers [20]. 

Two important features of pull-slip curves include: Debond process (At the beginning of the test process, 

fiber debonding begins from the cement matrix with increasing load [14, 21]), Pullout process (After the 

debonding step, the fibers begin to pull out of the matrix [22]). 

4. Background of the Machine learning architecture used 

CNN and LSTM models were selected due to their strong performance in time series and sequential data 

modeling, while XGBoost was included for its high accuracy and interpretability in regression tasks. 

4-1- Convolutional neural network (CNN)  

One of the most important deep learning methods is convolutional neural networks (CNNs), which are 

trained using an effective multi-layer technique. In general, a CNN consists of the three most important 

layers: the Convolutional Layer, the Pooling Layer, and the Fully Connected Layer (flattened layer). Each 

layer performs a different task. (Fig. 4) [23]. 

 

Fig. j4. Fundamental components of the CNN [23]. 
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Convolutional neural networks (CNNs) are increasingly being used in civil engineering to monitor 

structural health and identify faults. Key findings include: Object detection [24], Crack detection structural 

health monitoring [25], Image and defect detection [26], and Cost efficiency [27].  

4.2. Long short-term memory (LSTM) 

Long Short-Term Memory (LSTM) networks (Fig. 5) are a type of recurrent neural network (RNN) 

specifically designed for learning long-term dependencies in sequence data [28]. 

 
Fig. 5. Architecture of a typical LSTM [28]. 

The architecture of an LSTM unit comprises several critical components: 

Memory Cell: This is the center of the LSTM, which is responsible for storing data over time [35]. 

Gates: LSTMs use 3 types of gates to regulate data flow: Input gate (Controls how much of the brand-new 

data from the current entry should be entered into the memory cell [28]), Forget gate (Decides which records 

must be deleted from the storage cell [28]), Output gate (Determines which data sets must be output from 

the memory cell to the next layer [28]). 

A study showed that the combination of LSTM with optimization algorithms drastically complements the 

accuracy of deformation forecasts for concrete dams and thus effectively overcomes challenges associated 

with transient and complicated influencing factors [29]. In addition, LSTM was used to predict the 
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compressive strength of concrete with mineral components. It proved to be powerful in processing complex 

data sets and in achieving certain predictions that are essential for optimal management of production 

substances [30]. The results suggest that LSTM can effectively predict loads in different situations, which 

contributes to advanced methods for structural health monitoring [31]. 

4-3- Extreme gradient boosting (XGBoost) 

XGBoost (Fig. 6), described as a fairly streamlined and superior implementation of gradient 

boosting, is often used to fix supervised learning problems with excessive accuracy. He uses 

classification and regression trees (CART) as a basic learner [32]. 

 
Fig. 6. XGBoost model [33]. 

Initially, XGBoost generates several vulnerable trees that are personally low in accuracy, rather 

than trying to build a single tree with medium accuracy [32]. The next tree is trained on the 

remaining errors from the previous trees, which efficiently reduces prediction errors over the 

course of repetitions [34]. XGBoost includes innovative techniques such as regularized boosting, 

tree pruning, and parallel processing, which improve its accuracy and efficiency [34]. 

XGBoost is used to predict the compressive strength of UHPC and other types of concrete and is 

characterized by high accuracy (R² values around 0.90 to 0.93), efficiency, and low error fees 

compared to other machine learning models, making it a valuable tool for optimizing mix designs 
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and ensuring structural integrity [35, 36].  In addition, XGBoost is used to assess the behavior of 

superplasticized cement paste, which provides advanced predictions for rheological properties 

such as yield stress and plastic viscosity [37].  A model based entirely on XGBoost has been further 

developed to predict the mechanical properties of steel bridge deck systems. It provides accurate 

forecasts that help with structural design [38]. Furthermore, XGBoost, mixed with particle swarm 

optimization, is used to expect the axial compressive strength and modulus of rock samples [39]. 

5. Data collection 

Collection and preparation of information from previous experimental studies to predict the fibers pullout 

curve of the cement-based matrix using ML. 

5-1- Identifying data sources 

Data required for algorithm design are obtained through the review of published articles about fibers and 

cement matrices. Three articles' experimental data are used in this study; two of these were conducted by 

one of the current paper's authors. 

S1. Ataee et al. [40]: The pullout behavior of twisted fibers from cement matrices with different strengths 

was investigated. 330 samples were taken from 54 series of twisted fibers and 12 series of hookend fibers. 

S2. Peyvandi et al. [41]: Carrying out experiments on engineered spiral fibers, in which various parameters 

such as matrix strength and fiber inclination angle were analyzed. A total of 180 samples were obtained. 

S3. Zeighami et al. [1]: Investigated the pull-out behavior of inclined hookend fibers, testing specific angles 

and embedding lengths. 100 tests were then carried out. 

A total of 502 samples are available for analysis: 302 from Ataee et al., 180 from Peyvandi et al., and 20 

from Zeighami et al. 
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5-2- Selecting Input Features 

On the basis of the concrete compositions used in the three abovementioned articles, the main 

features of the selected were defined as follows: 

Material (type of material and geometric shape of the fibers), Matrix compressive strength (𝑓�𝑐�′), 

Fiber Diameter, Fiber length, Embedment Length, Number of Twists, Inclination Angle, Length-

to-Diameter Ratio, end-type of the fibers, pitch of spirals,  loading rate, kind cement, quantity 

cement, binder quantity, silica fume (micro silica), sand, gravel, quartz, superplasticizer, water, 

water-to-cement ratio (W/C), water-to-binder ratio(W/B), curing age in weeks. 

These 23 features were selected to model and predict the pullout behavior of fibers from the 

cement-based matrix in various configurations. In Table 1 and Table 2, the values extracted from  

the articles are offered for each input function. 

Table 1. The values of each input feature are extracted from the articles.    

Table 2. Continued values of each input feature are extracted from articles. 

Ref. 
binder 

kg/m3 

Silica fume 

(microsilica) 

kg/m3 

Sand 

kg/m3 

Gravel 

kg/m3 

Ground 

quartz   

kg/m3 

Water 

kg/m3 

SP(Superplasticizer) 

kg/m3 
W/C W/B 

Curing 

age(week) 
𝑓𝑐′ (MPa) 

Ataee et 

al. [40] 
0 0, 93, 203 0, 813.13 0, 665.29 

0, 1560.9, 

1283 

168, 

148.8, 181 
0, 7.13, 12.17 

0.42, 

0.24 

0.42, 

0.209, 

0.179 

20, 12 
47.7, 79.29, 

109.82 

Peyvandi 

et al. [41] 
880, 667 0 988, 792 0 0 188, 250 0 

0.5371, 

0.431 
0.153, 0.2 1 20.6, 30.8 

Zeighami 

et al. [1] 
0 25 158 0 0 25 1.2 0.25 0.2 4 40.4 

Ref. 

embedded 

Length 

(mm) 

Angle of 

inclination 
Material End-Type 

pitch of 

spirals(mm) 

Twisted 

Number 

in 10 

mm 

Length 

(mm) 

Diameter 

(mm) 

Aspect 

ratio 

(lf/df) 

Loading 

rate 

(mm/s) 

cement 

kg/m3 

Type 

Cement 

Ataee et 

al. [40] 
10, 15, 20 0 

Steel, hook end 

Steel, Twin-

twisted straight 

Yes Hook 

No Hook 
0 0, 2, 3, 4 35,40 

0.38, 0.41, 

0.5, 0.537 

70, 74, 

92, 97 
0.13 

400, 620, 

811 
II 

Peyvandi 

et al. [41] 
10, 15, 20 

0, 15, 30, 

45, 60 

Steel, Spirally 

Deformed 
No Hook 4.44 0 40 0.4 100 0.025 350, 580 II 

Zeighami 

et al. [1] 

10, 15, 20, 

25 
0 Steel, hook end Yes Hook 0 0 50 1 50 0.13 100 II 
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5-3- Output parameters 

The output parameters include Excel files derived from the results of the pull-out tests. There is one problem 

with using them in synthetic intelligence algorithms: The number of pairs of information contained in the 

Excel files for drawing curves had to be consistent across documents. This requirement has now not been 

met in most cases. In order to standardize the statistics, a total of 1,000 pairs of statistics were brought 

together for general research. All Excel files that contained the experimental results of the articles were 

converted into documents with 1,000 pairs of data using OriginPro 2024 software. 

6. Methodology 

The modeling methodology used in this study consists of six main steps: 

Step 1. Database collection. This step involves collecting the entire data set (input features and 

output target). 

Step 2. Manage and optimize data sets. In this stage, optimizing and preprocessing the data set 

includes data cleansing and removing unnecessary, incomplete information and empty rows, 

converting categorical variables to numerical variables, and using data correlation charts (Fig. B1) 

to identify relationships between features in the data, which can help make better decisions about 

feature selection and model design for machine learning. The data was converted into two sets of 

training and testing to provide a data set of sufficient and consistent quality for subsequent training 

and validation of ML models. 

Step 3. Build ML models. In this stage, models for machine learning are constructed and the 

models are trained using the training data. 4 models were used in this study, each of which is 

explained below in terms of the architecture used. 

CNN1D: The architecture used in this model includes a Conv1D layer with 32 filters and a kernel 

size of 3, which uses the RELU activation function for feature extraction. A BatchNormalization 

layer is then added to improve stability and training speed. Another Conv1D layer with 64 filters 
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and RELU activation is then used to extract more complex features. The output of this layer is 

converted to a one-dimensional vector using a flattened layer, and a dropout level at a rate of 0.25 

is applied to reduce the risk of overfitting. Next, a dense layer of 128 neurons and ReLU activation 

is added, followed by another dense layer of 2000 neurons and a linear activation function for 

output prediction. 

CNN2D: The architecture used in this model includes two 2D convolutional layers with 32 and 

64 filters, using the ReLU activation function for feature extraction. After each convolution layer, 

a MaxPooling layer is added to reduce dimensionality, along with BatchNormalization layers to 

improve training speed and stability. A flattened layer is used to convert the multidimensional 

output of the convolutional layers into a 1D vector that can be entered into fully connected layers. 

A dropout layer is included to prevent overfitting. Finally, four dense layers of 128, 256, 512, and 

2000 neurons are added, using various activation functions (ReLU, Sigmoid, Linear) for final 

prediction tasks. 

LSTM: The architecture of this model includes a 32-unit LSTM level that receives inputs in the 

specified form and, by setting return_sequences=True, forwards the output sequence to the next 

level. A MaxPooling1d level is then added to reduce dimensionality, and a dropout level is added 

at a rate of 0.2 to reduce the risk of over-adjustment. Another LSTM level with 64 units followed 

by a BatchNormalization level and another dropout level at a rate of 0.2. Next, a final 64-unit 

LSTM level without return_sequences is added to produce the final output. Finally, a dense layer 

with 2000 units and a linear activation function is placed for the output forecast. 

XGBoost: Parameters defined in this model include “reg: squarederror” for regression tasks, 

where the squared error is calculated, and eval_metric as the metric for evaluating performance 

during the training, which is set to “rmse”. Training and test data are prepared as dMatrix 
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structures, which are optimized for XGBoost. The model is trained with a maximum of 1,000 

boosting rounds and uses an early stop after 5 rounds without any improvement in the validation 

set (this allows effective training of the model and avoids overfitting). 

Step 4. Prediction and Validation. In this step, the validation metrics R² (coefficient of 

determination) and MAE (mean absolute error) are calculated for the test data from all four models 

(Table 3). 

R²: The coefficient of determination shows the degree of fit of the data to a statistical model. This 

value varies between 0 and 1. The closer this value is to 1, the more the variance of the dependent 

variables is explained by the independent variables. Their formula is as follows: 

R2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������(1)� 

Where 𝑆𝑆𝑟𝑒𝑠�is the sum of squares of the remainder and 𝑆𝑆𝑡𝑜𝑡�is the sum of squares of the whole. 

MAE: This measure calculates the average of the errors regardless of the measurement direction 

and enables a direct interpretation of the error measurement. Their formula is as follows: 

MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|
𝑛
𝑖=1 �������������������������������������������������������������������������������������������������������������������������������������������������������������������(2)�������� 

Where 𝑦𝑖 represents the actual values, 𝑦̂𝑖 represents the predicted values, and 𝑛 is the number of 

observations. 

Table 3. R² and MAE for CNND, CNN2D, LSTM, and XGBoost model. 

 R² MAE 

CNN1D 0.63 9.11 

CNN2D 0.58 8.80 

LSTM 0.59 9.67 

XGBoost 0.71 8.38 
 

Next, using 4 models for a sample of data (Table 4), its curve is predicted from the test data set, 

and the curve predicted by each model is plotted with its actual curve for comparison (Fig. 7(a)- 

s7(d)). 
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Table 4. Sample data input features. 
feature value 

embedded Length (mm) 20 

Angle of inclination 30 

Material Steel, Spirally Deformed 

End-Type No Hook 

pitch of spirals(mm) 4.44 

Twisted Number in 10 mm 0 

Length (mm) 40 

Diameter (mm) 0.4 

Aspect ratio (lf/df) 100 

Loading rate (mm/s) 0.025 

cement kg/m3 580 

Type Cement II 

binder kg/m3 667 

Silica fume(microsilica) kg/m3 0 

Sand kg/m3 792 

Gravel kg/m3 0 

Ground quartz   kg/m3 0 

Water kg/m3 250 

SP(Superplasticizer) kg/m3 0 

W/C 0.43 

W/B 0.2 

Curing age(week) 1 

𝑓𝑐′ (MPa) 30.8 

 

 

Fig. 7. Comparison of the actual curve and the curve predicted by a) CNN1D model, b) CNN2D model, 

c) LSTM model, and d) XGBoost model. 

Step 5. Select the best model.  The XGBoost model is the best model with the highest R² of 0.71 and the 

lowest MAE of 8.38. The XGBoost model also made the best prediction when it came to comparing the 

predicted curves with the actual curve and comparing the predicted curves of the models with each other. 

(a) (b) 

(c) (d) 
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Step 6. Feature Importance Graph. This graph, drawn using the best-selected model (XGBoost), is great 

for interpreting the effect of input features on the curve predicted by the model. The feature importance 

chart shows the effect of each feature on the model's predictions. Two types of feature importance graphs 

were extracted from the model. In the first graph (Fig. 8), The horizontal axis of the graph shows how often 

each feature was used in the decision trees. If a feature is used frequently in various decision trees, it is 

likely to provide useful information about the effect of the feature, and special attention should be paid to 

that feature. 

 
Fig. 8. Feature Importance Graph (frequency) 

 

In Fig. 8, the diagram shows how often a characteristic is used in different decision trees and how 

much it contributes to the structure of the model trees. Therefore, features such as “embedded 

length” and “twisted number in 10 mm,” which have the highest values, indicate that these input 

features have a significant effect on curve prediction. Features such as Cement Type (II), “No 

Hook” and “Yes Hook” that do not appear in this diagram indicate that these features are 

ineffective. 

In the second graph (Fig. 9), the horizontal axis shows the percentage importance of each feature 

based on how much each feature contributes to reducing the error. It is calculated as the average 

gain of all splits that use the feature. Features with a higher percentage of importance (gain) are 
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considered more important because they significantly contribute to reducing prediction errors. 

According to this graph, the features “Silica fume” with 56.7% and “pitch of spirals” with 18.04% 

have the greatest influence on the model's predictions. 

 
Fig. 9. Feature Importance Graph (gain) 

7. Discussion 

It was not possible to compare this study with a similar sample, as no research has been carried 

out to date in the field of predicting fiber pullout curves. Therefore, the results of the study were 

discussed in three ways: 

7-1- Compare curves 

As can be seen in Fig. 7(d), the curve predicted by the XGBoost model almost correctly predicted 

the behavior and properties of the experimental curve, and this indicates a relatively good and 

acceptable accuracy of the algorithm, as previous studies (Fig. 10) with similar comparisons 

confirmed the accuracy of the predicted curve and its precision. 
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Fig. 10. Comparison of the experimental stress-strain curve with CNN predicted curve [42]. 

7-2- Compare validation metrics 

Letif et al. [43] state that the model is acceptable for 0.2< R² <0.8. In another study, which predicted 

stress-crack width curves, the CNN model was used and an R² value of 0.75 was obtained [44]. 

Muzaffer et al. [45] also stated that an R² above 0.67 indicates a strong model. In another article, 

deep learning models were used as an artificial intelligence method to predict the compressive 

strength of concrete. In particular, five Deep Neural Network (DNN) models named MLM1, 

MLM2, MLM3, MLM4, and MLM5 were examined, each with a different level of computing 

complexity. The MLM5 model with R² = 0.64 was the best [46]. According to previous research, 

the XGBoost model with the R² criterion (0.71) in this study therefore has a relatively good and 

acceptable accuracy in predicting the fiber pullout curve and can be regarded as a reliable result. 

7-3- Cross Validation 

Cross-validation is an important machine-learning technique used to assess model performance. It 

helps us ensure that machine learning models have good generalization and can perform well on 

new data. ShuffleSplit is a flexible method for cross-validation. It randomly divides the data into 

training and test sets and repeats this process several times. In this study, cross-validation using 

the ShuffleSplit method was used to validate the results of the best-selected model (XGBoost) by 
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specifying the following parameters: the number of times the data was split 5 times, 10% of the 

data was used for testing, and 90% of the data was used for training. The validation criteria 

obtained from the 5-fold are given in the table below. 

Table 5. validation metrics obtained from cross-validation. 

Fold R² MAE 

1 0.82 7.78 

2 0.70 8.20 

3 0.71 8.08 

4 0.78 7.74 

5 0.66 11.33 

According to Table 5, the highest value for R² is 0.82, the lowest value is 0.66, and the average is 

0.73, which indicates the accurate performance and generalizability of the model. 

8. Conclusions 

In this study, machine learning models were used to fill a significant gap in the research literature 

related to predicting fiber pullout curves from cementitious matrices. Four machine learning 

models, named CNN1D, CNN2D, LSTM, and XGBoost, were used to predict the pullout curve 

with 23 input features based on a total of 502 laboratory sample data. These four trained models 

were compared in two ways: by comparing the predicted curves and evaluation criteria. The results 

of the best model were then confirmed by a comparison with previous research and cross-

validation. In addition, the effect of the input features on the predicted curve was investigated by 

creating a graph of the importance of features for the best model. Based on this study, the following 

results were obtained: 

• Among the evaluated models, XGBoost provided the most accurate pullout curve predictions, 

demonstrating its effectiveness for modeling fiber-reinforced cementitious composites. 

• The results of the feature importance graphs showed that based on the most frequent use in the 

XGBoost model decision trees, the parameters “embedded length” and “number of twists in 10 

mm” have the greatest importance in the prediction, and based on increasing accuracy and reducing 
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error, the parameters “Silica fume” and “pitch of spirals” have the most positive influence on the 

predicted curve. 

• It is suggested that future research should expand the number of databases as well as the 

quantitative diversity of input features. In particular, laboratory data with different fiber types (only 

steel fibers were modeled in this study) should be used to model and predict the curve. 
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Appendix A 
The figures show in Table A1 the comparison of the prediction curve with the actual curve with 4 

models for 4 data samples with the characteristics of Table A2. 

Table A1. Comparison of the prediction curve with the actual curve with 4 models for 4 data samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A2. Input features of 4 sample data 

 CNN CNN(2D) LSTM XGBoost 

Sample 

1 

 
  

 

Sample 

2 

 
 

 

 

Sample 

3 

  
  

Sample 

4 

  

 

 

feature 
value 

Sample 1 Sample 2 Sample 3 Sample 4 

embedded Length (mm) 15 15 20 15 

Angle of inclination 0 45 0 0 

Material 
Steel, Twin-twisted 

straight 

Steel, Spirally 

Deformed 

Steel, Twin-twisted 

straight 
Steel, hook end 

End-Type No hook No hook No hook Yes hook 

pitch of spirals(mm) 0 4.44 0 0 

Twisted Number in 10 mm 4 0 2 0 

Length (mm) 40 40 40 35 

Diameter (mm) 0.537 0.4 0.537 0.5 

Aspect ratio (lf/df) 74.48 100 74.48 70 

Loading rate (mm/s) 0.13 0.025 0.13 0.13 

cement kg/m3 811 350 620 400 

Type Cement II II II II 

binder kg/m3 0 880 0 0 

Silica fume(microsilica) kg/m3 203 0 93 0 

Sand kg/m3 0 988 0 813.13 

Gravel kg/m3 0 0 0 665.29 
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Appendix B 

Correlation charts to identify relationships between features in the data. 

 

Fig. B1. correlation chart 

Ground quartz   kg/m3 1283 0 1560.9 0 

Water kg/m3 181 188 148 168 

SP(Superplasticizer) kg/m3 12.17 0 7.13 0 

W/C 0.42 0.53 0.24 0.42 

W/B 0.17 0.15 0.20 0.42 

Curing age(week) 12 1 12 20 

𝑓𝑐′ (MPa) 109.82 20.6 79.29 47.7 
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