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ABSTRACT: In this study, a new numerical method is presented to solve the nonlinear Partial 
Differential Equations of second-order one-dimensional non-homogeneous traffic flow models based 
on transition velocities. The proposed Improved Flux Wave-HLLE (IFW-HLLE) method utilizes a 
particular type of approximate Riemann speed, that is, a unique combination of characteristic speeds 
and the Roe speed, to reach a solution with positive velocity and density. This method provides an 
equilibrium between the source terms and flux variations for steady-state conditions when solving the 
Riemann problem. The spatial variations in traffic density were also based on the transition velocities. 
For evaluating its performance, the proposed numerical solution is also compared with the results of the 
Original Roe Method (ORM) for solving widely-used Payne–Whitham (PW), Zhang, and Khan–Gulliver 
models. Moreover, both straight and circular paths with periodic boundary conditions were modelled to 
analyse and investigate the traffic flow of a bottleneck. Results demonstrate that the IFW-HLLE method 
captures more realistic traffic behaviours compared to ORM. Notably, negative and unrealistic velocity 
values observed in ORM—for the PW and Zhang models (ranging from -120 to 400 m/s and -600 to 
1200 m/s)—were effectively corrected with the proposed method (ranges from 16 to 25 m/s and 8 to 16 
m/s). Euclidean error norms calculated for 2D velocity profiles showed maximum errors of 2.6976×10-² 
and 4.0835×10-³ for straight and circular paths, respectively, confirming the improved accuracy. 
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1- Introduction
Due to ever-increasing population growth, the simulation 

of natural traffic flow on the road is crucial for reducing 
traffic problems such as congestion. The first study of the 
macroscopic traffic flow model was conducted by Lighthill 
and Whitham [1] and Richards [2], and is known as the 
first-order Lighthill-Whitham-Richards (LWR) model. In 
contrast to this study, subsequent research demonstrated that 
speed is not always in equilibrium with density, and ignoring 
vehicle acceleration can lead to unrealistic results [3]. Thus, 
Payne [4] introduced a second-order model considering an 
independent dynamic equation for vehicle velocity. Whitham 
[5] independently introduced the Payne-Whitham (PW) 
model. This model is one of the most prevalent second-order 
traffic models because of its capability to simulate traffic flow 
using a minimum number of variables accurately. The PW 
model does not conserve the non-isotropic nature of traffic 
flow under certain conditions, such as driving in reverse 
[6], which causes unrealistic behaviour (often oscillatory) 
at traffic discontinuities. Moreover, the PW model assumes 
that the regulation of traffic flow occurs at a constant speed, 

which can result in velocities greater than the maximum or 
less than zero, both of which are impossible [7]. Various 
studies have struggled to address the mentioned shortcomings 
of the PW model. For example, Catillo et al [8] investigated 
the impact of the drivers’ reaction time on the stability of 
traffic flow. Daganzo [9], Aw, and Rascle [10] proposed 
other second-order traffic flow models, and Berg et a [11] 
utilised the continuum approach. In the other study, Zhang 
[12] replaced the constant velocity with the derivative of the 
equilibrium speed distribution. Khan et al. [7] introduced a 
new model by presenting a traffic constant as a function of 
the driver’s physiological-psychological behaviour. They also 
incorporated variables, such as driver response, maximum 
speed, and distance between vehicles, into the traffic pressure 
function component of the motion equation [13]. They later 
considered the average traffic velocity in transition, maximum 
speed, and transition distance to enhance their model [14].

PW-type traffic flow models are classified as nonlinear 
systems of hyperbolic Partial Differential Equations (PDEs), 
categorized as non-homogeneous in the presence of a source 
term. The continuity and momentum equations in these 
models are not analytically solvable because of their inherent 
PDE system, which necessitates numerical methods [15]. 
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One of the most commonly used approaches is the Finite 
Volume Method (FVM). FVM is based on the integral form 
of physical laws, which makes it capable of addressing 
issues arising from discontinuous problems. Explicit FVM, 
such as the wave propagation algorithm [16], used for shock 
capturing, belongs to the class of Godunov-type methods, 
providing non-oscillatory results in discontinuous problems. 
In general, two different methods are used to calculate the 
wave propagation speed in the Riemann problem. The exact 
Riemann solver calculates the wave speed using analytical 
solutions [17]. This method is accurate and solves nonlinear 
equations simultaneously in each time step, which is time-
consuming and costly. The approximate Riemann solution 
calculates the speed of shock, rarefaction, and contact 
discontinuity waves [18,19]. It is recommended to use 
approximate Riemann solvers, such as Roe, Harten-Lax-van 
Leer (HLL), Harten-Lax-van Leer-Einfeldt (HLLE), Harten-
Lax-van Leer Contact (HLLC), and the hybrid method. The 
differences between these methods can be summarized in 
their discretization schemes, considering factors such as the 
direction or propagation speed [16,20]. Mohammadian et 
al. [21] investigated the performance of the HLL, HLLC, 
and Rusanov Riemann solvers. They evaluated them for the 
homogeneous Aw-Rascle-Zhang model with a continuous 
solution area from free-flow to congestion zones. Araghi et al. 
[22] developed a new type of wave propagation algorithm for 
solving three non-homogeneous PW-type traffic flow models 
based on driver physiological response, reaction velocity 
[23], and driver physiological-psychological behaviour [24]. 
They used only the characteristic wave speed to calculate the 
right- and left-going fluctuations. Their proposed algorithm 
provided a stable and realistic response without numerical 
diffusion. However, it showed an assertive fluctuating 
behaviour on a circular road for all models. 

In this study, the flux wave formula for the wave 
propagation algorithm was improved using the HLLE 

approximate Riemann solver by comparing the characteristic 
velocities and Roe speed. The proposed approach is named 
IFW-HLLE. This improvement aims to stabilize the numerical 
solution of the macroscopic traffic flow models based on 
transition velocities [12,14] and reduce the fluctuating 
behaviour near discontinuities. Furthermore, the Van Leer 
limiter has been utilized, which produces more suitable 
results for the proposed approach [10]. To our knowledge, 
IFW-HLLE has not been applied to non-homogeneous PW-
type traffic flow models. Moreover, the applicability of the 
proposed method against the Original Roe Method (ORM) 
for solving the PW, Zhang, and Khan-Gulliver (KG) models 
is evaluated in an inactive bottleneck on straight and circular 
roads with different constraints and conditions imposed on 
the traffic flow status. 

2- Methods
The non-homogeneous second-order PW model [4, 5, 

25], conceptually describes the behaviour of a compressible 
gas [4]. The PW model assumes that drivers react similarly 
to different conditions and that only minor changes occur 
in speed and density. This is an insufficient description of 
driver behaviour, which can lead to unrealistic and oscillatory 
traffic behaviour over short distances [13]. Another standard 
heterogeneous traffic flow model is Zhang’s model. This 
model was formulated for a single type of vehicle through a 
homogenous path without lateral access. Zhang [12] aimed 
to improve the PW model by deriving an acceleration 
relationship based on a microscopic model, which led 
to a better representation of the non-isotropic properties 
of traffic flow. Khan and Gulliver [14] incorporated 
transitional speeds into the formulation of the PW model, 
representing traffic flow as a function of current speed 
deviation from the equilibrium speed. Table 1 presents 
all the three traffic models and their eigenvalues and 
eigenvectors.

Table 1. Characteristics of non-homogeneous traffic flow models of Payne-Witham typeTable 1 Characteristics of non-homogeneous traffic flow models of Payne-Witham type 
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where ρ  is traffic flow density ( )veh/m .  u  and mυ   
represent the traffic flow velocity ( )m/s  and maximum 
flow velocity (m/s), respectively. In addition, ( )eV ρ  is the 
equilibrium velocity of vehicles. The velocity constant,  0C
, represents the drivers’ response to traffic flow density. 
Moreover, λ  and r are eighenvalue and eighenvector, 
respectively. The transfer distance, trd  is defined as:Equations typed in MathType Equation 
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Where sl  is the distance between vehicles at rest.

3- The proposed numerical method: IFW-HLLE 
In response to hyperbolic systems such as the three 

models presented in Table 1, a simple jump discontinuity may 
propagate along the characteristic line [26]:
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The initial value of Eq. (2) is known as the Riemann 
problem. The wave propagation algorithm [17] is an approach 
for re-averaging the Riemann problem in the neighbouring 
cell for the FVM. The second-order Godunov-type wave 
propagation algorithm is as follows [20].
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In which TU [ , ]uρ ρ=  is the vector of unknowns, k,i-1/2W  
is the k-th wave, kλ  represents the eigenvalue, and k,i-1/2ξ  is 
the k-th created wave from the i-1/2 cell interface, calculable 
by multiplying the eigenvector i-1/2r  by eigenvalue i-1/2β . 
The third term on the right-hand side of Eq. (3) is necessary 
to achieve a higher-order solution accuracy. The first-order 
Godunov method is obtained if this term is set to zero. An 
appropriate high-order limiter function ( )ϕ θ  should be 
chosen to calculate this term. In this study, the Van Leer 
limiter [27] was utilized because of its performance near 
discontinuities [2]:
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In which “θ” is a scalar coefficient. Generally, finding 
an exact solution for nonhomogeneous Riemann problems 
is difficult owing to the effect of the source terms on the 
characteristic speed. A well-balanced method balances the 

source terms and flux differencing components. The well-
balanced wave flux method [28] was first proposed to solve 
gas dynamics problems. This method has been modified for 
one- and two-dimensional shallow water equations and for 
the Euler equation [18]. The summation of the relevant fluxes 
must be equal to the flux difference between two adjacent 
cells and the source term, as follows:
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In which i-1/2u  is the velocity at the i-1/2 cell interface, 
which can be calculated from the combination of exact and 
approximate Riemann wave speeds. The above equation 
is based on characteristic speeds. Characteristic speeds 
in various fields refer to a speed that’s significant for 
understanding a system’s behaviour. In vehicle dynamics, 
it defines the speed at which an understeer vehicle’s control 
sensitivity is reduced. The HLLE method calculates the wave 
speeds by comparing the characteristics and Roe speeds 
[20]. Roe speeds are the eigenvalues of the Roe-averaged 
flux Jacobian matrix, important for wave propagation in 
numerical solutions. They enhance accuracy and stability in 
compressible fluid dynamics, especially for shock waves. It 
can be extended to nonhomogeneous models based on the 
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 (6)

Roe speeds 1, 1/2Roe is −  and 2, 1/2 Roe is −  were calculated 
based on the following relations:
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where the approximate density and velocity at cell 
interface i-1/2 are obtained as follows:
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Eq. (5) can be rewritten as follows:
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The coefficients 1β  and 2β  are calculated by solving the 
linear system of Eq. (9). The calculation process of 1β  and 

2β  in Zhang and PW models is similar to the KG model.

4- Results and discussion 
The focus of this part is on evaluating the performance 

of the IFW-HLLE algorithm in solving the second-order 
macroscopic traffic flow models for one-dimensional PW, 
Zhang, and KG models. The grid dimensions and variables 
were defined as those used by Khan and Gulliver [14]. The 
initial distribution of the density at t=0s is presented in Eq. 
(10):
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Free-flow conditions dominate the first 30 m and the last 
40 m of the route, whereas congestion exists between 30m and 
60m. Two discontinuities are observed in the initial density 
profile, resulting in two simultaneous Riemann problems 
in this example. The first situation leads to the upward 
propagation of shock waves, and the second discontinuity 
results in expansion waves moving both upward and 
downward over time. The Greenshields equilibrium equation 
is used for the velocity-density equilibrium relationship:
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where mρ  and ñ  are the maximum and average traffic 
density, respectively. The maximum velocity on the road is 
presented by mv . The CFL number was defined as follows to 
examine the stability of this method [29]:Equations typed in MathType Equation 
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 (12)

The Euclidean error norm is defined as follows to evaluate 
the accuracy of the results [30]:
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where  iy∆ ​  represents the difference in the vertical 
parameter (e.g., velocity) at a specific horizontal position, 
and n is the total number of comparison points.

4- 1- A straight path
A straight road with a length of 100 m was considered to 

study the performance of the proposed approach. The initial 
velocity is 0C =25 m/s . The velocity profiles of the PW and 
KG models obtained using the original Roe method (ORM) 
and the proposed IFW-HLLE approach are presented in Fig. 
1. Fig. 2 compares 2D velocity profiles of the  mentioned 
models using ORM and IFW-HLLE methods at times 0.006, 
0. 6, and 1.2 seconds.

As shown in Fig. 1(a), the response of the PW model using 
the ORM method is not realistic for sudden traffic density 
changes. Specifically, oscillatory behaviour is observed with 
velocities above 400 m/s and below -120 m/s, which violates 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 1. The velocity profiles of PW and KG traffic flow models on a 100-meter length straight road with 
C0=25 m/s  using the ORM method (a, c) [14] and the proposed IFW-HLLE approach (b, d)
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maintaining positive speed values. By contrast, realistic 
velocities ranging from 0 to 25 m/s were achieved in the KG 
model using the same method. However, some oscillations 
were observed during the initial seconds of movement (Figs. 
1(c) and 2). Moreover, it is evident in Figs 1(b), 1(d), and 
2 that the proposed method significantly outperforms the 
ORM in controlling numerical diffusion errors and exhibits 
a more realistic velocity behaviour of the vehicle in traffic 
flow (within a range of 16 m/s to 25 m/s). In addition, 
the oscillations in the KG model using the ORM method 
decreased noticeably with the proposed model.

As shown in Fig. 2, the velocity profile variations were 
faster during the initial seconds of the numerical simulation. 
As time passed, these variations gradually became smoother. 
The Euclidean error norms for the KG model, calculated 
between the ORM and IFW-HLLE approaches at 0.006, 0.6, 
and 1.2 seconds, are presented in Table 2-a.

4- 2- A circular path
Fig. 3 depicts the results of applying the ORM and IFW-

HLLE methods to the Zhang model. The velocity profile in 
Fig. 3(a) shows that the ORM violates the maintenance of 
positive speed values. The velocity varies from -600 m/s to 
400 m/s. On the other hand, the velocity profile of the proposed 
IFW-HLLE approach (Fig. 3(b)) demonstrates a consistent 
maintenance of positive values. The velocity increases from 
10 m/s to 15.10 m/s within the first 21.5 meters length of 
the road. Subsequently, a decreasing trend starts and reaches 
10 m/s at x=30 m. At this point, the velocity progressively 
increases to 13.72 m/s as it moves towards the end of the 
road. It is clear from Fig. 3(b) that a discontinuity exists 
between x=25m and x=33m, where the velocity decreases.

Fig. 3(c) illustrates the velocity profile of the Zhang model 
using the proposed method with maximum mv =25 m / s  and 
the same boundary conditions as the KG and PW models. 

It can be observed that the Zhang model produces more 
realistic behaviour compared to a model with mv =15 m / s . 
Specifically, the traffic velocity varied within an acceptable 
range: 17.5 m/s to 24.77 m/s. Moreover, the negative and 
unrealistic velocity values observed in the ORM were 
rectified, and the velocity irregularities in the initial seconds 
of movement and discontinuities were entirely resolved using 
the proposed method.

The velocity profiles of the PW, KG, and Zhang models 
using the ORM and IFW–HLLE methods are depicted in Fig. 
4. As can be seen in Fig. 4(a), the velocity varies from 1400 
m/s to -120 m/s after 0.4 s, which is unrealistic. On average, 
the velocity variation was 30 m/s within the clusters through 
a distance of 5 m, which is unrealistic. The worst scenario 
occurred near x=20 m, where the velocity changed drastically 
from 23 m/s to 64 m/s and then decreased to 14 m/s near x=25 
m. In contrast, the velocities obtained using the IFW-HLLE 
method were within the minimum and maximum limits.

The velocity profile of the KG model obtained using the 
ORM method is shown in Fig. 4(c). From x=0 m to x=10 m 
and from x=75 m to x=100 m, the velocity was almost constant 
at approximately 22.5 m/s, whereas it varied from 20 m/s to 
23.3 m/s within the cluster. This traffic behaviour is realistic 
and falls within the maximum and minimum values. This 
pattern is also evident in Fig. 4(d). As presented in Table 2-b, 
the Euclidean error norms for the KG model on the circular 
path are calculated equal to -47.6269×10   and -34.0835×10  at 
t=3 s and t=6 s, Based on Fig. 5, the velocity variation became 
smoother and gradual from maximum to minimum and vice 
versa in all models. In addition, the KG model showed good 
agreement with both methods. The behaviour of the PW 
model using the proposed method was similar to that of KG, 
except at the initial 15 m and the final five meters of the path. 
Delayed behaviour was also observed in the Zhang model at 
discontinuities compared to the PW and KG models.

 

Fig. 2 Comparison between velocity profiles of PW and KG traffic flow models on a straight road with C0=25 m/s using the ORM 

method [14] and the proposed IFW-HLLE approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Comparison between velocity profiles of PW and KG traffic flow models on a straight road with 
C0=25 m/s using the ORM method [14] and the proposed IFW-HLLE approach
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Fig. 3 The velocity profile of the Zhang model on a 100-meter length circular road with vm=15m s⁄  (a-b) and vm=25m s⁄  (c) using 

the ORM method (a) [14] and the proposed IFW-HLLE approach (b-c) 

 

 

 

 

 

Fig. 3. The velocity profile of the Zhang model on a 100-meter length circular road with vm=15m ⁄s (a-b) 
and vm=25m ⁄s (c) using the ORM method (a) [14] and the proposed IFW-HLLE approach (b-c)

5- Conclusions
This paper presented the IFW-HLLE numerical method, 

based on a combination of characteristic velocities and the 
Roe velocity, to solve three well-known non-homogeneous 
second-order macroscopic traffic flow models: PW, KG, 
and Zhang. The approach consisted of the embedding of 
relaxation source terms into flux differences in a well-
balanced finite-volume method. The results demonstrated 
that the application of the original Roe method (ORM) to the 
PW and Zhang models has the tendency to produce unrealistic 

velocity profiles with significant non-physical oscillations, 
where the velocities exceed plausible ranges (e.g., values 
greater than 400 m/s or negative velocities), particularly near 
discontinuities. The oscillations violate the physical bounds 
and yield sudden, discrete velocity jumps, contrary to the 
nature of traffic flow. In contrast, the KG model, when solved 
with ORM, exhibited relatively smoother and physically more 
acceptable velocity variations but still had initial oscillatory 
artifacts.

On the other hand, the IFW-HLLE method steadily 
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(d) 

 
Fig. 4. The velocity profiles of PW and KG traffic flow models on a 100-meter length circular road with 

C0=25 m/s using the ORM method (a, c) [14] and the proposed IFW-HLLE method (b, d)



M. Rastegar Moghadam Najafzadeh et al., AUT J. Civil Eng., 9(2) (2025) 159-170, DOI: 10.22060/ajce.2025.23594.5887

167

Table 2. The Euclidean error norms between the ORM and IFW-HLLE methods for the KG model 
in the case of a) a straight path, and b) a circular path at different times 

respectively.  

Table 2: The Euclidean error norms between the ORM and IFW-HLLE methods for the KG model in the case of a) a straight path, 
and b) a circular path at different times  

(a) 

Time (s) Error Norm (m) 

0.006 1.0885×10-2 

0.6 1.0772×10-2 

1.2 2.6976×10-2 

(b) 

Time (s) Error Norm (m) 

3 7.6269×10-4 

6 4.0835×10-3 

 

 

 

 

 
 
Fig. 5 Comparison between the velocity profiles of PW, KG, and Zhang traffic flow models on a circular road with C0=25 m/s 
using the ORM method [14] and the proposed IFW-HLLE approach. 

 

 

 

 

 

 

 

Fig. 5. Comparison between the velocity profiles of PW, KG, and Zhang traffic flow models on a 
circular road with C0=25 m/s using the ORM method [14] and the proposed IFW-HLLE approach.

yielded stable and sensible velocity profiles for the three 
models under study. Numerical diffusion and oscillation 
damping were very effective, particularly in the vicinity of 
discontinuities, and velocity values were maintained within 
physically acceptable limits (e.g., between approximately 
16 m/s to 25 m/s on straight roads and 10 m/s to 25 m/s 
on curved trajectories). Quantitatively, the Euclidean error 
norms of the KG model between ORM and IFW-HLLE 
reached a minimum of 7.63×10−47.63×10−4 at t=3 s, thereby 
validating the enhanced numerical accuracy and reliability 
of the proposed methodology. The IFW-HLLE method 
also exhibited improved control of wave propagation and 

relaxation effects, and smoother velocity transitions that 
more accurately capture actual traffic flows. Extending these 
encouraging results, avenues for future research are:
•	 Implementing the IFW-HLLE approach on multilane 

highways, urban intersections, and heterogeneous traffic 
conditions characterized by a combination of vehicle 
types, in order to test its robustness and scalability towards 
more realistic environments.

•	 Implementation of this methodology in traffic simulators 
and control systems for predictive traffic management, 
focusing on real-time application and adaptive traffic 
control.
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•	 Incorporating stochastic elements and driver behavior 
models to capture traffic variability and improve model 
precision.

•	 Optimizing the algorithm for high-performance 
computing to facilitate large-scale network simulations 
with better spatial and temporal resolution.

Declarations
Conflict of interest

The authors declare that they have no known competing 
financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Data Availability Statement
The data that support the findings of this 

study are available from the corresponding author 
upon reasonable request.

Funding
This research did not receive any specific grant from 

funding agencies in the public, commercial, or not-for-profit 
sectors.

References
[1] 	M.J. Lighthill, G.B. Whitham, On kinematic waves II. A 

theory of traffic flow on long crowded roads, Proceedings 
of the Royal Society of London. series a. mathematical 
and physical sciences, 229(1178) (1955) 317-345.

[2] P.I. Richards, Shock waves on the highway, Operations 
Research, 4(1) (1956) 42-51.

[3] Mohammadian S (2017). Numerical Study on Traffic 
Flow Prediction Using Different Second-Order 
Continuum Traffic Flow Models. Ferdowsi University of 
Mashhad [in Persian].

[4] H.J. Payne, Model of freeway traffic and control, 
Mathematical Model of Public System, (1971) 51-61.

[5] G.B. Whitham, Linear and nonlinear waves, John Wiley 
& Sons, 2011.

[6] A. Delis, I. Nikolos, M. Papageorgiou, High-resolution 
numerical relaxation approximations to second-order 
macroscopic traffic flow models, Transportation 
Research Part C: Emerging Technologies, 44 (2014) 318-
349.

[7] Z.H. Khan, T.A. Gulliver, H. Nasir, A. Rehman, K. 
Shahzada, A macroscopic traffic model based on 
driver physiological response, Journal of Engineering 
Mathematics, 115(1) (2019) 21-41.

[8] J. Del Castillo, P. Pintado, F. Benitez, The reaction time 
of drivers and the stability of traffic flow, Transportation 
Research Part B: Methodological, 28(1) (1994) 35-60.

[9] C.F. Daganzo, Requiem for second-order fluid 
approximations of traffic flow, Transportation Research 
Part B: Methodological, 29(4) (1995) 277-286.

[10] A. Aw, M. Rascle, Resurrection of” second order” 
models of traffic flow, SIAM Journal on Applied 
Mathematics, 60(3) (2000) 916-938.

[11] P. Berg, A. Mason, A. Woods, Continuum approach to 
car-following models, Physical Review E, 61(2) (2000) 
1056.

[12] H.M. Zhang, A non-equilibrium traffic model devoid 
of gas-like behavior, Transportation Research Part B: 
Methodological, 36(3) (2002) 275-290.

[13] Z.H. Khan, T.A. Gulliver, K.S. Khattak, A. Qazi, A 
macroscopic traffic model based on reaction velocity, 
Iranian Journal of Science and Technology, Transactions 
of Civil Engineering, 44(1) (2020) 139-150.

[14] Z.H. Khan, T.A. Gulliver, A macroscopic traffic model 
based on transition velocities, Journal of Computational 
Science, 43 (2020) 101131.

[15] K. Mohamed, M.A. Abdelrahman, The NHRS scheme 
for the two models of traffic flow, Computational and 
Applied Mathematics, 42(1) (2023) 53.

[16] S. Moodi, H. Mahdizadeh, J. Shucksmith, M. Rubinato, 
M. Azhdary Moghaddam, Experimental and numerical 
modelling of water waves in sewer networks during 
sewer/surface flow interaction using a coupled ODE-
SWE solver, Journal of Flood Risk Management, 17(1) 
(2024) e12953.

[17] R.J. LeVeque, Finite volume methods for hyperbolic 
problems, Cambridge University Press, 2002.

[18] H. Mahdizadeh, P.K. Stansby, B.D. Rogers, On the 
approximation of local efflux/influx bed discharge in the 
shallow water equations based on a wave propagation 
algorithm, International Journal for Numerical Methods 
in Fluids, 66(10) (2011) 1295-1314.

[19] H. Mahdizadeh, P.K. Stansby, B.D. Rogers, Flood wave 
modeling based on a two-dimensional modified wave 
propagation algorithm coupled to a full-pipe network 
solver, Journal of Hydraulic Engineering, 138(3) (2012) 
247-259.

[20] H. Mahdizadeh, S. Sharifi, P. Omidvar, On the 
approximation of two-dimensional transient pipe flow 
using a modified wave propagation algorithm, Journal of 
Fluids Engineering, 140(7) (2018) 071402.

[21] S. Mohammadian, A.M. Moghaddam, A. Sahaf, On 
the performance of HLL, HLLC, and Rusanov solvers 
for hyperbolic traffic models, Computers & Fluids, 231 
(2021) 105161.

[22] M. Araghi, H. Mahdizadeh, S. Moodi, Numerical 
modelling of macroscopic traffic flow based on 
driver physiological response using a modified wave 
propagation algorithm, Journal of Decisions and 
Operations Research, 6(3) (2021) 350-364.

[23] M. Araghi, S. Mahdizadeh, H. Mahdizadeh, S. Moodi, 
Correction to: A modified flux-wave formula for the 
solution of second-order macroscopic traffic flow 
models, Nonlinear Dynamics, 107(3) (2022) 3179-3179.

[24] M. Araghi, H. Mahdizadeh, S. Moodi, Applying High-
Resolution Wave Propagation Method in Numerical 
Modeling of Macroscopic Traffic Flow based on Driver 
Physiological-Psychological Behavior, Journal of Civil 
and Environmental Engineering, 53(110) (2023) 1-12.

[25] F. van Wageningen-Kessels, H. Van Lint, K. Vuik, S. 
Hoogendoorn, Genealogy of traffic flow models, EURO 
Journal on Transportation and Logistics, 4(4) (2015) 
445-473.

[26] S. Moodi, H. Mahdizadeh, Numerical Modeling of 
Water Influx Falling into an Empty Tank using a Modified 



M. Rastegar Moghadam Najafzadeh et al., AUT J. Civil Eng., 9(2) (2025) 159-170, DOI: 10.22060/ajce.2025.23594.5887

169

Wave Propagation Algorithm, Modares Mechanical 
Engineering, 18(6) (2018) 182-190.

[27] B. Van Leer, Towards the ultimate conservative 
difference scheme I. The quest of monotonicity, in:  
Proceedings of the Third International Conference on 
Numerical Methods in Fluid Mechanics: Vol. I General 
Lectures. Fundamental Numerical Techniques July 3–7, 
1972 Universities of Paris VI and XI, Springer, 2008, pp. 
163-168.

[28] D.S. Bale, R.J. Leveque, S. Mitran, J.A. Rossmanith, 

A wave propagation method for conservation laws and 
balance laws with spatially varying flux functions, SIAM 
Journal on Scientific Computing, 24(3) (2003) 955-978.

[29] R. Courant, K. Friedrichs, H. Lewy, On the partial 
difference equations of mathematical physics, IBM 
Journal of Research and Development, 11(2) (1967) 215-
234.

[30] P.L. Roe, Approximate Riemann solvers, parameter 
vectors, and difference schemes, Journal of Computational 
Physics, 43(2) (1981) 357-372.

HOW TO CITE THIS ARTICLE
M. Rastegar Moghadam Najafzadeh, M Araghi, S Moodi, M. Mollazadeh, H. Mahdizadeh, 
An Improved Flux Wave-HLLE approach for the Solution of Traffic Flow Models Based on 
Transition Velocities , AUT J. Civil Eng., 9(2) (2025) 159-170.

DOI: 10.22060/ajce.2025.23594.5887

https://dx.doi.org/10.22060/ajce.2025.23594.5887


M. Rastegar Moghadam Najafzadeh et al., AUT J. Civil Eng., 9(2) (2025) 159-170, DOI: 10.22060/ajce.2025.23594.5887

170


