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A Machine Learning Framework for Predicting Maximum Displacement of Reinforced 
Masonry Shear Walls under Lateral Loading
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ABSTRACT: Accurate estimation of the maximum displacement capacity of masonry shear walls 
under lateral loading is essential for performance-based seismic design, yet conventional analytical and 
numerical approaches remain computationally intensive, sensitive to modeling assumptions, and highly 
dependent on expert interpretation. These limitations restrict their applicability for rapid assessment and 
design optimization. To address this challenge, this study proposes a machine learning (ML) framework 
that integrates predictive accuracy, interpretability, and mechanical validation. A database of 93 fully 
grouted masonry walls tested under cyclic displacement-controlled loading is utilized to develop a 
systematically optimized Multi-Layer Perceptron Artificial Neural Network (MLP-ANN). The model 
incorporates geometric, reinforcement, material, and axial-load parameters under the assumption of 
rectangular, fully grouted walls with consistent boundary conditions. Extensive architectural trials 
yielded an optimized ANN achieving R² values of 0.98, 0.97, and 0.90 for training, validation, and 
testing datasets, respectively. Complementary Random Forest (RF) analysis identified wall length, 
height, reinforcement ratios, masonry strength, and axial-load ratio as the most influential predictors 
governing displacement response. To verify the mechanical plausibility of the ML predictions, a finite 
element model (FEM) of a representative specimen was developed, reproducing experimental backbone 
curves within 5–10% deviation. The combined ANN–RF–FEM framework offers a fast, interpretable, 
and reliable tool for evaluating seismic displacement capacity of masonry walls. Future research should 
expand the dataset to include diverse wall geometries, boundary conditions, and materials, and explore 
hybrid ML–FEM or physics-informed models to further improve generalization and design applicability.
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1- Introduction
Masonry shear walls are structural components that resist 

lateral forces arising from earthquakes, wind, and other 
external loads. Typically constructed with masonry units such 
as concrete blocks, clay bricks, or stone, they are designed 
to provide stiffness, strength, and stability to buildings [1, 
2]. The main role of these walls is to transfer lateral loads 
perpendicular to their plane to the foundation, thereby 
preventing collapse or severe structural damage [3]. Masonry 
shear walls are widely used in residential, commercial, and 
industrial structures [4]. For instance, in residential buildings, 
they are often placed at the perimeter to resist wind loads, 
while in seismic regions, they are strategically located inside 
the structure to mitigate earthquake effects [5, 6]. In industrial 
buildings, they ensure lateral stability against loads from 
heavy machinery and equipment [7, 8].

Displacement of shear walls under lateral forces is a 
critical factor in structural performance. When subjected 
to such loads, shear walls undergo in-plane displacements 
that directly affect their stability and serviceability [9, 10]. 

The extent of displacement depends on multiple factors, 
including wall height and thickness, foundation stiffness, and 
the magnitude and duration of external forces. Traditionally, 
displacement has been estimated through analytical or 
numerical models [9, 11, and 12]. Accurate prediction of 
maximum displacement is especially vital in seismic-prone 
areas [13].

Extensive research has been conducted on the behavior of 
masonry walls under monotonic and cyclic in-plane loading. 
Internationally, numerous experimental and numerical 
studies have investigated unreinforced and reinforced 
masonry shear walls, their stiffness degradation, strength, 
and displacement capacity, as well as the influence of axial 
load and reinforcement detailing. Complementary to these, 
several works have focused on the seismic performance of 
masonry and masonry-like wall systems. Recent studies 
have extensively examined the mechanical and seismic 
behavior of masonry walls using both experimental and 
numerical methods [37]. Experimental investigations have 
evaluated shear behavior, failure mechanisms, and nonlinear 
response characteristics, underscoring the influence of 
cracking patterns and ductility on seismic performance *Corresponding author’s email: rahai@aut.ac.ir
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[38]. Research on masonry walls reinforced with traditional 
wooden elements has further shown that timber inserts can 
enhance lateral strength and energy dissipation capacity [39]. 
On the numerical side, advanced modeling approaches—
such as fixed-crack smeared-crack formulations and linear 
homogenization techniques—have been developed to 
capture the orthotropic behavior of masonry and improve 
global structural analyses [40, 41]. Additional work has also 
focused on strengthening strategies, including the use of 
FRP strips to improve the blast resistance of masonry walls 
[42]. These works underline the diversity of masonry wall 
configurations, loading conditions, and retrofitting schemes, 
and they highlight the persistent need for efficient predictive 
tools capable of estimating displacement capacity over a wide 
range of design and detailing parameters, which motivates the 
machine-learning framework proposed in the present study.

Numerous studies have explored machine learning 
techniques for structural prediction [34]. For example, 
Naderpour et al. [14] applied ANN, Group Method of 
Data Handling Neural Network (GMDH-NN), and Gene 
Expression Programming (GEP) to predict the shear strength 
of concrete shear walls, achieving high accuracy. Barkhordari 
and Tehranizadeh [15] combined ANN with Simulated 
Annealing (SA) to forecast the response of reinforced concrete 
shear walls using a dataset of 150 specimens, with highly 
effective results. Siam et al. [8] employed an unsupervised 
learning algorithm to categorize 97 reinforced masonry shear 
walls, then tested supervised models for classifying walls and 
predicting lateral displacement.

Although effective, traditional prediction methods remain 
time-intensive and expertise-dependent. By contrast, Artificial 
Neural Networks (ANN) can capture nonlinear input–output 
relationships and adjust predictions based on new data, 
making them particularly suitable for displacement modeling 
[16-19]. ANNs consist of interconnected nodes functioning 
like neurons in the human brain, processing geometric, 
material, and loading data to generate predictions [20, 21]. 
With an adequate database—such as the 93 experimentally 
tested walls used in this study [22]—ANNs can generalize 
displacement behavior under various loading conditions.

Recent findings [23] emphasize that the nonlinear 
displacement response of masonry walls is significantly 
influenced by boundary conditions, axial load ratio, and 
material anisotropy. Incorporating these parameters into 
ANN models enhances predictive performance, especially 
when datasets cover diverse failure modes and load scenarios. 
Such hybrid input features enable machine learning models to 
provide more reliable displacement thresholds compared to 
traditional approaches.

Despite the promising outcomes of previous studies, 
several research gaps remain unaddressed. Earlier works 
have concentrated on predicting shear strength or classifying 
failure modes, while the specific task of estimating the 
maximum displacement capacity of masonry shear walls has 
received limited attention. Furthermore, existing datasets 
were often small in size or mainly restricted to reinforced 
concrete specimens, which reduces their applicability to 

masonry walls under lateral loading. Another limitation is 
that many studies relied solely on predictive models, such as 
ANN, without incorporating ensemble approaches that can 
enhance interpretability [35]. As a result, little attention has 
been paid to identifying which geometric, material, or loading 
parameters exert the greatest influence on displacement 
behavior.

To fill these gaps, the present study develops a machine 
learning-based framework that combines accurate prediction 
with improved interpretability. A Multi-Layer Perceptron 
Artificial Neural Network (MLP-ANN) is employed to 
capture nonlinear relationships between input variables 
and maximum displacement, while its performance is 
systematically evaluated across training, validation, and 
testing datasets. Complementary analysis using the Random 
Forest (RF) algorithm quantifies the relative importance 
of key parameters, highlighting the role of wall geometry, 
reinforcement ratios, material strength, and axial load ratio. 
By integrating ANN and RF, this study not only achieves 
reliable displacement prediction but also provides valuable 
engineering insights, thereby offering a practical tool for 
seismic performance assessment and the resilient design of 
masonry structures.

2- Methodology
This section describes the dataset employed in the study, 

the preprocessing procedures, and the development of the 
prediction models. It also outlines the performance metrics 
adopted to evaluate predictive accuracy. The overall workflow 
of the proposed framework is shown in Fig. 1.

Start

Data
 collection

Data 
preparation

Split the data into training, 
validation, and testing

ANN 
training

Model performance 
evaluation

Random Forest 
training

Evaluating the importance 
of variables by Random 

Forest

Stop
 

Fig. 1. Flowchart of the proposed methodology, including Artificial Neural Network (ANN) and Random Forest (RF) 

algorithm.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Flowchart of the proposed methodology, includ-
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est (RF) algorithm.  



Sh. Mansouri et al., AUT J. Civil Eng., 9(4) (2025) 311-324, DOI: 10.22060/ajce.2025.24820.5953

313

The experimental dataset was randomly partitioned 
into training (70%), validation (15%), and testing (15%) 
subsets to provide a sufficiently large sample for model 
learning while maintaining independent sets for performance 
monitoring and generalization assessment; this random 
split was repeated several times to minimize potential 
ordering bias. Input parameters were selected based on 
structural significance, consistency of available experimental 
measurements, and established evidence from previous 
masonry wall studies. Geometric characteristics, mechanical 
properties, and loading-related variables were initially 
considered, after which a preliminary correlation analysis 
and engineering judgment were used to remove redundant or 
weakly informative features before model training.

2- 1- Dataset and Variables
The dataset used in this study was obtained from the 

experimental program of Siam et al. [8], which investigated 
the in-plane behavior of reinforced masonry shear walls. A 
total of 93 fully grouted walls with rectangular cross-sections, 
constructed using concrete block units, were tested under 
displacement-controlled quasi-static cyclic loading with a 
cantilever-type curvature demand. The database provides 
detailed information on geometric dimensions (length, 
height, thickness, and aspect ratio), reinforcement details 
(vertical and horizontal reinforcement ratios, bar diameters, 
and yield strength of steel), material properties (masonry 
compressive strength), applied axial load levels, and the 
corresponding displacements. These parameters form the 
basis for developing the machine learning models in this study. 
Statistical techniques were applied to the dataset to ensure the 
accuracy and reliability of the collected measurements. Table 
1 summarizes all the variables considered in the modeling 
process.

2- 2- Data Description
The statistical characteristics of the variables considered 

in this study were analyzed to ensure a clear understanding of 
the dataset. A summary of these characteristics is provided in 
Table 1, while Table 2 presents a more detailed breakdown. 
Along with measures of central tendency and dispersion 
(mean, variance, and standard deviation), the tables report 
minimum and maximum values to define the observed 
ranges. Skewness and kurtosis are also included to describe 
the asymmetry and overall shape of the data distribution 
relative to a normal curve.  Collectively, these descriptors 
offer a comprehensive view of the dataset’s variability and 
distributional properties, reinforcing the reliability of the 
subsequent machine learning analyses.

2- 3- Data Preparation
Rescaling variables is a fundamental step in data 

preprocessing when working with multiple features that 
vary in magnitude. In the dataset analyzed for this study, for 
example, the wall height parameter Hw ranges from 700 to 
3660, whereas the horizontal reinforcement ratio ρsh lies within 
a much smaller range of 0.0001 to 0.0063. Such differences 
in scale can distort the learning process of machine learning 
algorithms, particularly those that rely on Euclidean distance 
as their objective function, because smaller-valued variables 
may be underestimated in their relative importance compared 
to larger-valued ones.

To address this imbalance, the variables in this study were 
rescaled as part of the data preparation process. Specifically, 
a normalization technique was applied to transform all input 
variables into a unified range between 0 and 1, as defined 
by Eq. (1). This ensures that each variable contributes 
proportionally during the model training phase, improving 
the stability and accuracy of the predictive analysis.

Table 1. Factors considered as variables affecting the formation of wall displacement.Table 1. Factors considered as variables affecting the formation of wall displacement. 

Variable ID Variable type Unit Description 

Δ80% Out-Put ( Target) mm Ultimate displacement capacity 

Δy Input mm Yield lateral displacement 

Hw Input mm Wall height 

Lw Input mm Wall length 

db Input mm Bar diameter of vertical reinforcement 

dsh Input mm Diameter of shear (horizontal) reinforcement 

tw Input mm Wall thickness 

f'm Input MPa Masonry compressive strength 

fy Input MPa Yield strength for reinforcement steel bars 

ρsh Input % Horizontal reinforcement ratio 

ρv Input % Vertical reinforcement ratio 

P Input N Axial compressive load 
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  𝑁𝑁𝑖𝑖 = 𝑖𝑖 − 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

 (1) 

 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑏𝑏 + ∑ 𝑊𝑊𝑖𝑖𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (2) 

𝑦𝑦 = 𝑓𝑓(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠) (3) 

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥) =  2
1 + 𝑒𝑒−2𝑥𝑥 − 1 (4) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =   1
1 + 𝑒𝑒−𝑥𝑥 (5) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥) =  𝑥𝑥 (6) 

 

 (1)

The properties of the desired variable are indicated by Ni, 
i, imin, and imax, which respectively represent the normalized 
value, actual value, minimum actual value, and maximum 
actual value [16].

2- 4- Artificial Neural Network (ANN)
Neural networks, modeled after the complex functions of 

the human brain, have emerged as groundbreaking instruments 
in data analysis and machine learning. These advanced 
architectures are composed of interconnected processing 
units that mimic the behavior of biological neurons, operating 
in parallel to manage information [30]. The distinctive 
feature of artificial neural networks lies in their outstanding 
capacity to solve complex, nonlinear problems without being 
restricted by the quantity or type of influencing factors. As a 
result, they are highly effective in detecting and representing 
intricate relationships between inputs and outputs, which 
conventional linear models are unable to capture [30].

The architecture of an ANN typically follows a three-tier 
structure:
•	 An entry point through the input layer, where initial data 

features are introduced
•	 One or more hidden layers that serve as the network’s 

processing powerhouse, performing sophisticated non-
linear computations

•	 A final output layer that produces the desired results
The fundamental building blocks of these networks 

are the processing units, or artificial neurons, which are 

interconnected across these layers. Each neuron’s behavior 
is governed by an activation function, while its operation is 
fine-tuned through parameters known as weights and biases. 
These parameters are carefully adjusted using specialized 
optimization algorithms to ensure optimal performance. The 
mathematical foundation of a neuron’s output in an ANN 
follows a specific computational formula that integrates 
all these elements.  The general architecture of an ANN, 
consisting of input, hidden, and output layers, is illustrated 
in Fig. 2

ANNs are composed of three different layers: the input 
layer, which contains input variable(s); hidden layers, which 
contain neurons; and the output layer, which contains output 
variable(s) [21, 24]. MLP-ANNs are the most common and 
practical types of ANNs, where each neuron is connected to 
its neighboring neurons [25, 26]. X1 to Xn represent the input 
variables, W1 to Wn represent the weights for these variables, 
d is a fixed number, f is a transfer function, and z represents 
the neuron’s output. The process of calculating the values of 
the weighted sum and y is shown in Eqs. (2) and (3):

  𝑁𝑁𝑖𝑖 = 𝑖𝑖 − 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

 (1) 

 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑏𝑏 + ∑ 𝑊𝑊𝑖𝑖𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (2) 

𝑦𝑦 = 𝑓𝑓(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠) (3) 

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥) =  2
1 + 𝑒𝑒−2𝑥𝑥 − 1 (4) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =   1
1 + 𝑒𝑒−𝑥𝑥 (5) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥) =  𝑥𝑥 (6) 

 

 (2)

  𝑁𝑁𝑖𝑖 = 𝑖𝑖 − 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

 (1) 

 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑏𝑏 + ∑ 𝑊𝑊𝑖𝑖𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (2) 

𝑦𝑦 = 𝑓𝑓(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠) (3) 

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥) =  2
1 + 𝑒𝑒−2𝑥𝑥 − 1 (4) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =   1
1 + 𝑒𝑒−𝑥𝑥 (5) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥) =  𝑥𝑥 (6) 

 

 (3)

The optimization method in the ANN is used to determine 
the weights, Wi, and constant number, b, in neurons. ANNs 
generally use three transfer functions: the Hyperbolic tangent 

Table 2. Summary of descriptive statistics for quantitative variables that impact wall displacement.Table 2. Summary of descriptive statistics for quantitative variables that impact wall displacement. 

Variable Mean Variance Standard 
deviation Minimum Maximum Skewness Kurtosis 

Lw 1631.677 227995.75 477.489 810 3000 0.219 -0.309 

Hw 2116.215 664605.06 815.233 700 3660 0.461 -0.121 

Hw/Lw 1.442 0.786 0.887 0.580 4.520 1.923 4.181 

ρv 0.005 0 0.002 0.002 0.013 0.943 1.445 

db 17.595 17.352 4.166 12.700 29.9 0.224 -0.742 

ρsh 0.002 0.000 0.001 0 0.006 0.799 1.127 

dsh 11.886 6.026 2.455 6 16 -0.684 0.698 

fy 436.325 2301.102 47.970 318 624 -0.465 3.434 

f'm 19.936 24.009 4.9 13.1 31 0.573 -0.441 

P/ (f'mA) 0.059 0.003 0.052 0 0.183 0.726 -0.107 

Δ80%/Hw 1.610 0.655 0.809 0.33 4.620 0.926 0.937 
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sigmoidal (TANSIG), the logarithmic sigmoid (LOGSIG), 
and the pure linear transfer function (PURELIN). These 
transfer functions are shown in Eqs. (4) to (6) [27].

  𝑁𝑁𝑖𝑖 = 𝑖𝑖 − 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

 (1) 

 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑏𝑏 + ∑ 𝑊𝑊𝑖𝑖𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (2) 

𝑦𝑦 = 𝑓𝑓(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠) (3) 

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥) =  2
1 + 𝑒𝑒−2𝑥𝑥 − 1 (4) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =   1
1 + 𝑒𝑒−𝑥𝑥 (5) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥) =  𝑥𝑥 (6) 

 

 (4)

  𝑁𝑁𝑖𝑖 = 𝑖𝑖 − 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

 (1) 

 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑏𝑏 + ∑ 𝑊𝑊𝑖𝑖𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (2) 

𝑦𝑦 = 𝑓𝑓(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠) (3) 

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥) =  2
1 + 𝑒𝑒−2𝑥𝑥 − 1 (4) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =   1
1 + 𝑒𝑒−𝑥𝑥 (5) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥) =  𝑥𝑥 (6) 

 

 (5)

  𝑁𝑁𝑖𝑖 = 𝑖𝑖 − 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

 (1) 

 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑏𝑏 + ∑ 𝑊𝑊𝑖𝑖𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (2) 

𝑦𝑦 = 𝑓𝑓(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠) (3) 

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥) =  2
1 + 𝑒𝑒−2𝑥𝑥 − 1 (4) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =   1
1 + 𝑒𝑒−𝑥𝑥 (5) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥) =  𝑥𝑥 (6) 

 

 (6)

This study aimed to predict the displacement (∆) as 
the primary output variable by utilizing ten selected input 
parameters that reflect the geometric, material, and loading 

characteristics of masonry shear walls. The dataset was 
randomly divided into three subsets: 70% for training, 
15% for testing, and 15% for validation, ensuring robust 
model development and unbiased performance evaluation. 
Determining the optimal architecture of a Multi-Layer 
Perceptron Artificial Neural Network (MLP-ANN), including 
the number of hidden layers, the number of neurons per 
layer, the selection of transfer functions, and the choice of 
optimization algorithms, lacks a universally accepted formula. 
Instead, model configuration often relies on an iterative trial-
and-error process aimed at minimizing prediction error while 
avoiding overfitting. In this study, a systematic experimental 
approach was adopted, where multiple configurations were 
evaluated based on performance metrics such as the Mean 
Squared Error (MSE) and the coefficient of determination 
(R²). Through this process, the architecture delivering 
the most accurate and stable predictions was identified, as 
summarized in Table 3. 

 

Fig. 2. Structure of an ANN showing input, hidden, and output layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Structure of an ANN showing input, hidden, and output layers.

Table 3. Analysis of various modes parameters for identifying the most suitable architecture of MLP-ANN.Table 3. Analysis of various modes parameters for identifying the most suitable architecture of MLP-ANN. 

Setting Hidden layers ID Parameter 

1 and 2 - NHL Number of hidden layers 

30 - NR Number of runs 

1-30 
1-30 and 5, 10, 15, 20, 25, 30 

1 
2 NN Number of neurons 

TANSIG and LOGSIG 
Best transfer function in one layer 

1 
2 TF Type of transfer function 
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The step-by-step procedure adopted for identifying the 
optimal architecture of the MLP-ANN is illustrated in Fig. 3. 
This flowchart summarizes the iterative process of adjusting 
hidden layers, neurons, transfer functions, and optimization 
methods to achieve the best predictive performance. Through 
this process, the architecture delivering the most accurate 
and stable predictions was identified, as described in the next 
section.

2- 5- Random Forest algorithm
Random Forest (RF) algorithm is a well-known 

algorithm designed by Breiman [28] to solve regression 
and classification problems. This algorithm is composed 
of multiple decision trees, which are non-parametric 
supervised learning methods capable of making decisions 
on the dataset and solving classification and regression 
problems using the tree structure. The RF algorithm 
allows for measuring the relative importance of variables 
associated with target prediction. Breiman [28] proposed 
a method for determining variable importance [29]. 
To determine the importance of the H/L variable, for 
example, the displacement prediction accuracy model is 
first calculated without H/L, and then another prediction 
model is developed with H/L. The H/L importance 
is determined by the difference in accuracy of these 
two models. Random forest algorithm measures the 
importance of variables in relative terms between 0 and 
1, with the sum of all variable importance equal to 1. 
The random forest method was used to assess variable 
importance for displacement prediction.

2- 6- Evaluating machine learning methods
 In order to rigorously evaluate the predictive accuracy 

and error characteristics of the developed models, several 
widely recognized statistical performance metrics were 
applied. These included the Mean Squared Error (MSE), 
Mean Absolute Error (MAE), Root Mean Square Error 
(RMSE), and the coefficient of determination (R²). Together, 
these indices provide a comprehensive understanding of 
both the magnitude and the dispersion of the prediction 
errors. Incorporating these measures allowed for an objective 
benchmarking of alternative model architectures and 
facilitated the identification of configurations offering the 
highest reliability in displacement prediction.

The investigation extended to Multi-Layer Perceptron 
Artificial Neural Networks (MLP-ANNs) with two hidden 
layers, thereby substantially increasing the number of 
potential architectural scenarios. To manage this complexity, 
the optimal transfer function and optimization algorithm—
initially determined from extensive trials on a single hidden 
layer network—were consistently applied to both layers in the 
two-layer configurations [16, 25]. The experimental design 
involved scaling the number of neurons in the first hidden 
layer to five times the baseline value, while systematically 
varying the number of neurons in the second hidden layer 
from 1 to 30. This parameter sweep enabled a structured 
exploration of the combinatorial design space.

Given the inherent stochasticity of MLP-ANN training, 
each candidate architecture was executed n independent 
times to capture variability in convergence behavior. In this 
study, n = 25 runs were conducted for every architectural 

 

Fig. 3. Algorithmic process for identifying the optimal architecture of the MLP-ANN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Algorithmic process for identifying the optimal architecture of the MLP-ANN.
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configuration, with the model exhibiting the lowest 
aggregate error retained as the optimal solution. This 
rigorous multi-run evaluation mitigated the influence of 
random initialization effects and ensured reproducibility of 
results. The complete methodological sequence adopted for 
architecture determination is depicted in Fig. 4. By following 
this procedure, a general displacement prediction model 
encompassing all relevant input variables was constructed, 
and achieved both improved accuracy and enhanced 
generalization capability.

3- Results and Discussion
3- 1- ANN model Performance

The study begins by constructing a comprehensive 
displacement prediction model that incorporates all available 
input variables, capturing the geometric, material, and 
loading characteristics of the masonry shear walls under 
investigation. The predictive framework is primarily based 
on the Multi-Layer Perceptron Artificial Neural Network 

(MLP-ANN), which is trained and optimized to capture the 
complex nonlinear relationships between the input parameters 
and the target displacement (∆). Once the general model is 
established, detailed results are presented, highlighting the 
predictive performance across the dataset. Following this, 
the MLP-ANN approach is employed iteratively to refine the 
architecture, minimize error metrics, and ensure generalization 
capability. In parallel, the Random Forest (RF) algorithm 
is implemented, not as a primary predictor but as a robust 
interpretative tool, leveraging its ensemble-based variable 
importance analysis to quantify the relative contribution of 
each input parameter to displacement prediction.

The developed general prediction model, constructed 
using the MLP-ANN approach, integrated all ten input 
variables presented in Table 1, enabling a comprehensive 
representation of the geometric, material, and loading 
conditions. As described in the previous sections, a systematic 
trial-and-error strategy was employed to determine the 
optimal network architecture. Due to the inherently stochastic 
nature of heuristic learning algorithms, each configuration 
was executed 25 times, culminating in over 1000 independent 
runs. Through this exhaustive evaluation, the combination of 
the LOGSIG transfer function and TRAINLM optimization 
algorithm consistently yielded the lowest predictive error, with 
a mean squared error (MSE) of 0.17. Once the architecture 
was finalized, the model was constructed to meet the 
defined specifications, producing a robust and generalizable 
framework for displacement prediction. Fig. 5 illustrates the 
comparative performance across training, validation, and 
testing datasets, delivering R² values of 0.98, 0.97, and 0.90, 
respectively, demonstrating exceptional alignment between 
predicted and measured displacements.

The results presented in Fig. 5 further reinforce the 
model’s predictive credibility, highlighting its ability to 
precisely capture complex input–output relationships. 
Across the full dataset, the predicted values closely follow 
the experimental displacement measurements, with only 
minor deviations attributable to localized overestimation or 
underestimation. These discrepancies are both infrequent and 
marginal, underscoring the ANN model’s capacity to achieve 
high-fidelity forecasts even in scenarios characterized by 
nonlinearity and parameter interdependence. Collectively, the 
performance metrics, coupled with visual verification from 
the comparative plots, confirm that the proposed MLP-ANN 
model is not only a statistically accurate predictor of wall 
displacement but also an effective engineering tool capable 
of supporting decision-making in structural safety assessment 
and performance-based seismic design.

In this study, the predictive performance of the proposed 
models was evaluated through a comprehensive set of 
statistical indicators, namely the Nash–Sutcliffe Efficiency 
(NSE), Mean Squared Error (MSE), Mean Absolute Error 
(MAE), Root Mean Squared Error (RMSE), and the 
coefficient of determination (R²). These metrics collectively 
provide both absolute and relative measures of model 
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Fig. 4. The process of using an algorithm to identify the most efficient structure for a MLP-ANN. 
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accuracy and reliability. Among them, RMSE and R², each 
bounded between zero and one, are particularly indicative 
of predictive precision, while lower MAE, MSE, and RMSE 
values correspond directly to higher accuracy in replicating 
observed displacements.

As detailed in Table 4, the overall performance of the 
general Artificial Neural Network (ANN) model was robust 
across all three dataset partitions, training, validation, and 
testing, demonstrating its ability to generalize well beyond 
the training phase. For the training dataset, the model 
achieved exceptionally low error values (MAE = 0.144, 
MSE = 0.080, RMSE = 0.279) along with high NSE and R² 
values (0.9764), indicating a very strong correlation between 
predicted and observed outputs, and minimal deviation from 
actual displacement values.

When evaluated on the validation dataset, which 
represents unseen data, the ANN maintained high predictive 
accuracy with MAE = 0.256, MSE = 0.250, RMSE = 0.670, 
and an impressive R² of 0.9687. The NSE value of 0.9423 
further confirms the model’s capability to maintain stability 
and precision in real predictive scenarios.

The testing dataset results MAE = 0.361, MSE = 0.140, 
RMSE = 0.480, and R² = 0.8955 show that even under cross-

checking conditions, the ANN exhibited good agreement 
between predictions and measurements. Although slightly 
lower than the training and validation results, these metrics 
still indicate strong performance, reflecting the expected 
minor variability inherent in testing phases.

Overall, the ANN model proposed in this research 
demonstrated not only high accuracy but also an excellent 
balance between fitting capability and generalization, as 
evidenced by its consistently high NSE and R² values across 
all datasets. Such stability across different data partitions 
underscores the model’s potential as a reliable predictive tool 
for displacement estimation in masonry shear walls under 
varying lateral loading conditions.

3- 2- RF Variable Importance Analysis
By employing the RF algorithm, the relative significance of 

each input variable contributing to faulting and displacement 
prediction was quantitatively assessed. This ensemble-based 
method computes variable importance on a normalized scale, 
providing a transparent basis for identifying the parameters 
with the greatest influence on model output. As illustrated 
in Fig. 6, the percentage contribution of each predictor was 
calculated for the simplified models, revealing that certain 

 

 

 

Fig. 5. Predicted versus actual displacement values of the general ANN model for (a) training, (b) validation, and (c) 
testing datasets. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Predicted versus actual displacement values of the general ANN model for (a) training, (b) validation, 
and (c) testing datasets.
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variables dominate the prediction process. Among these, 
Lw, Hw and Hw/Lw stand out as the most critical geometric 
measures affecting displacement behavior.

In addition to geometric parameters, several reinforcement 
and material properties were also highlighted as highly 
influential. The variables ρv, db, ρsh, db-sh, 

'
yf , '

mf , and  '
m

P
f A

 
demonstrated a substantial role in the RF ranking results, 
indicating their strong correlation with the displacement 
capacity of masonry shear walls. These influential parameters 
collectively govern aspects such as stiffness, load-bearing 
capacity, and resistance to crack development, thereby shaping 

the overall structural response. The variable importance 
ranking derived from RF thus serves a dual role: guiding the 
simplification of predictive models by focusing on the most 
impactful variables, and enhancing engineering interpretation 
through a data-driven understanding of parameter influence, 
ensuring that predictive accuracy is maintained while 
promoting model efficiency.

3- 3- Numerical Validation 
To validate the accuracy of the proposed ML-based 

framework, a finite element model (FEM) was developed in 
Abaqus. Among the walls included in the dataset, wall Sh_2 

Table 4. Performance evaluation of the developed ANN model across training, validation, and testing datasets.
Table 4. Performance evaluation of the developed ANN model across training, validation, and testing datasets. 

Model name Type of data MAE MSE NSE RMSE R2 

General Training data 0.144 0.080 0.9764 0.279 0.9764 

General Validation data 0.256 0.250 0.9423 0.670 0.9687 

General Testing data 0.361 0.140 0.9174 0.480 0.8955 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Variable importance ranking in displacement prediction obtained from the RF algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Variable importance ranking in displacement prediction obtained from the RF algorithm.
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[8]—corresponding to wall 2 in Shedid et al. [31]—was 
selected for validation due to its intermediate reinforcement 
ratio (ρv = 0.78%) and its well-documented experimental 
results (Table 5).

The experimental dataset employed in this study is 
derived from full-scale laboratory tests on masonry shear 
walls subjected to monotonic in-plane lateral loading under 
controlled axial compression, from which load–displacement 
behavior, stiffness degradation, failure mechanisms, and 
the maximum displacement capacity (Δ80%) were directly 
obtained. In parallel, a finite element model (Fig. 7) was 
developed solely for numerical verification. This model 
simulates the nonlinear response of masonry walls and is 
validated by comparing its load–displacement results with 
those of one experimentally tested wall.

The masonry wall was modeled using three-dimensional 
solid elements (C3D8R) for the masonry blocks and grout, 
while steel reinforcement was represented through embedded 
truss elements (T3D2) using an embedded-region constraint. 
Masonry behavior was captured with the Concrete Damage 
Plasticity (CDP) model, calibrated based on compressive 
strength (f′m = 14.8 MPa), prism test results, and defined 
tensile and compressive damage evolution laws, with a small 
viscosity parameter included to aid numerical convergence. 
Reinforcement was modeled as bilinear elastoplastic with a 
yield strength of fy = 502 MPa. A mesh size of 25–50 mm was 
adopted following refinement studies and sensitivity checks 
to ensure mesh-independent results [33, 36]. Boundary 
conditions reproduced the experimental setup, consisting of 

a fully fixed base and displacement-controlled lateral loading 
applied at the top in terms of drift ratios, with axial compression 
introduced prior to lateral loading [32]. The loading protocol, 
step definitions, increment strategy, and stabilization controls 
were explicitly defined. This comprehensive numerical 
modeling framework—including material calibration, 
element selection, mesh configuration, and boundary and 
loading conditions—provides full transparency and ensures 
reproducibility of the software simulation.

Fig. 7 compares the load–displacement backbone curves 
of the FEM against experimental data. Table 6 summarizes 
the key response parameters, showing close agreement 
with deviations below 10%. The FEM captured the flexural 
cracking, plastic hinge formation, and bar yielding observed 
experimentally, though a slightly stiffer initial response and 
marginally smaller ultimate drift were obtained.

Numerical validation confirmed the reliability of the 
proposed ML framework. The FEM reproduced the experimental 
backbone within an engineering tolerance, providing additional 
confidence in both the numerical modeling approach and the 
predictive capability of the ML-based framework.

4- Conclusions
This study investigated the application of machine 

learning techniques to predict the maximum displacement 
of masonry shear walls subjected to lateral loads, aiming to 
provide a more efficient and accurate alternative to traditional 
analytical methods. Based on the conducted analysis, the 
following conclusions can be drawn.

Table 5. Key properties of the wall specimen Sh_2 [8].Table 5. Key properties of the wall specimen Sh_2 [8]. 
 

ID Lw 
(mm) 

Hw 
(mm) Hw/Lw 

ρv 
(%) 

db 
(mm) 

ρsh 
(%) 

dsh 
(mm) 

fy 
(MPa) 

f′m 
(MPa) P/ (f'mA) Δ80%/Hw 

(%) 

Sh_2 1800 3600 2 0.78 20 0.13 9.5 502 14.8 0.006 1.86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Comparison of experimental vs. numerical results.
Table 6. Comparison of experimental vs. numerical results. 

Parameter Test FEM Difference (%) 

Ultimate load (QU)  
(kN) 260 275 5.8 

Drift at QU  
(%) 0.53 0.48 9.5 

Drift at 80% QU  
(%) 1.54 1.40 9.7 
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4- 1- Key Findings
•	 A Multi-Layer Perceptron Artificial Neural Network 

(MLP-ANN) was successfully developed and optimized 
for predicting the maximum displacement of masonry 
shear walls.

•	 The optimized ANN architecture achieved strong 
predictive performance with R2 values of 0.98 (training), 
0.97 (validation), and 0.90 (testing), confirming its 
generalization capability.

•	 Error indices confirmed the robustness of the ANN model, 
with MAE = 0.256, MSE = 0.250, and RMSE = 0.670 for 
the validation dataset.

•	 Complementary analysis using the Random Forest 
(RF) algorithm identified wall length, wall height, and 
reinforcement ratios as the most influential predictors of 
displacement behavior, followed by material strength and 
axial load ratio.

•	 Finite element validation of experimental specimen 
demonstrated < 10% deviation from experimental 
results in stiffness, peak load, and ultimate drift, thereby 
corroborating both the ML predictions and the mechanical 
plausibility of the framework.

•	 Combining ANN for prediction accuracy with RF 
for parameter interpretability and FEM for numerical 
validation offers a multi-layered advantage: reliable 
forecasting, engineering insight into key parameters, and 
independent corroboration.

•	 This three-way consistency among experiment, ML, and 
FEM further supports the reliability and practical utility 
of the framework.

4- 2- Limitations and Future Works
•	 The experimental database was limited to 93 masonry 

wall specimens, which may restrict the generalizability of 
the developed models to other wall types, geometries, or 
boundary conditions.

•	 Only two algorithms (ANN and RF) were employed; 
benchmarking against additional approaches such as 
Support Vector Machines, Gradient Boosting, or Deep 
Learning architectures could further enhance predictive 
accuracy.

•	 A key direction for further development is the formulation 
of a simplified predictive equation—using approaches 
such as Linear Regression or ElasticNet—to provide 
an engineer-friendly expression based on the same 
parameters employed in the machine-learning models.

•	 FEM validation was restricted to one representative 
wall; extending such analyses to other specimens would 
strengthen the framework.

•	 Future studies may expand to diverse wall materials and 
load conditions, as well as integrate ML–FEM hybrid 
approaches for more comprehensive seismic design 
support.
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