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ABSTRACT: Accurate estimation of the maximum displacement capacity of masonry shear walls
under lateral loading is essential for performance-based seismic design, yet conventional analytical and
numerical approaches remain computationally intensive, sensitive to modeling assumptions, and highly
dependent on expert interpretation. These limitations restrict their applicability for rapid assessment and
design optimization. To address this challenge, this study proposes a machine learning (ML) framework
that integrates predictive accuracy, interpretability, and mechanical validation. A database of 93 fully
grouted masonry walls tested under cyclic displacement-controlled loading is utilized to develop a
systematically optimized Multi-Layer Perceptron Artificial Neural Network (MLP-ANN). The model
incorporates geometric, reinforcement, material, and axial-load parameters under the assumption of
rectangular, fully grouted walls with consistent boundary conditions. Extensive architectural trials
yielded an optimized ANN achieving R? values of 0.98, 0.97, and 0.90 for training, validation, and
testing datasets, respectively. Complementary Random Forest (RF) analysis identified wall length,
height, reinforcement ratios, masonry strength, and axial-load ratio as the most influential predictors
governing displacement response. To verify the mechanical plausibility of the ML predictions, a finite
element model (FEM) of a representative specimen was developed, reproducing experimental backbone
curves within 5-10% deviation. The combined ANN-RF-FEM framework offers a fast, interpretable,
and reliable tool for evaluating seismic displacement capacity of masonry walls. Future research should
expand the dataset to include diverse wall geometries, boundary conditions, and materials, and explore
hybrid ML-FEM or physics-informed models to further improve generalization and design applicability.
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1- Introduction

Masonry shear walls are structural components that resist
lateral forces arising from earthquakes, wind, and other
external loads. Typically constructed with masonry units such
as concrete blocks, clay bricks, or stone, they are designed
to provide stiffness, strength, and stability to buildings [1,
2]. The main role of these walls is to transfer lateral loads
perpendicular to their plane to the foundation, thereby
preventing collapse or severe structural damage [3]. Masonry
shear walls are widely used in residential, commercial, and
industrial structures [4]. For instance, in residential buildings,
they are often placed at the perimeter to resist wind loads,
while in seismic regions, they are strategically located inside
the structure to mitigate earthquake effects [5, 6]. In industrial
buildings, they ensure lateral stability against loads from
heavy machinery and equipment [7, 8].

Displacement of shear walls under lateral forces is a
critical factor in structural performance. When subjected
to such loads, shear walls undergo in-plane displacements
that directly affect their stability and serviceability [9, 10].

*Corresponding author’s email: rahai@aut.ac.ir

The extent of displacement depends on multiple factors,
including wall height and thickness, foundation stiffness, and
the magnitude and duration of external forces. Traditionally,
displacement has been estimated through analytical or
numerical models [9, 11, and 12]. Accurate prediction of
maximum displacement is especially vital in seismic-prone
areas [13].

Extensive research has been conducted on the behavior of
masonry walls under monotonic and cyclic in-plane loading.
Internationally, numerous experimental and numerical
studies have investigated unreinforced and reinforced
masonry shear walls, their stiffness degradation, strength,
and displacement capacity, as well as the influence of axial
load and reinforcement detailing. Complementary to these,
several works have focused on the seismic performance of
masonry and masonry-like wall systems. Recent studies
have extensively examined the mechanical and seismic
behavior of masonry walls using both experimental and
numerical methods [37]. Experimental investigations have
evaluated shear behavior, failure mechanisms, and nonlinear
response characteristics, underscoring the influence of
cracking patterns and ductility on seismic performance
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[38]. Research on masonry walls reinforced with traditional
wooden elements has further shown that timber inserts can
enhance lateral strength and energy dissipation capacity [39].
On the numerical side, advanced modeling approaches—
such as fixed-crack smeared-crack formulations and linear
homogenization techniques—have been developed to
capture the orthotropic behavior of masonry and improve
global structural analyses [40, 41]. Additional work has also
focused on strengthening strategies, including the use of
FRP strips to improve the blast resistance of masonry walls
[42]. These works underline the diversity of masonry wall
configurations, loading conditions, and retrofitting schemes,
and they highlight the persistent need for efficient predictive
tools capable of estimating displacement capacity over a wide
range of design and detailing parameters, which motivates the
machine-learning framework proposed in the present study.

Numerous studies have explored machine learning
techniques for structural prediction [34]. For example,
Naderpour et al. [14] applied ANN, Group Method of
Data Handling Neural Network (GMDH-NN), and Gene
Expression Programming (GEP) to predict the shear strength
of concrete shear walls, achieving high accuracy. Barkhordari
and Tehranizadeh [15] combined ANN with Simulated
Annealing (SA) to forecast the response of reinforced concrete
shear walls using a dataset of 150 specimens, with highly
effective results. Siam et al. [8] employed an unsupervised
learning algorithm to categorize 97 reinforced masonry shear
walls, then tested supervised models for classifying walls and
predicting lateral displacement.

Although effective, traditional prediction methods remain
time-intensive and expertise-dependent. By contrast, Artificial
Neural Networks (ANN) can capture nonlinear input—output
relationships and adjust predictions based on new data,
making them particularly suitable for displacement modeling
[16-19]. ANNSs consist of interconnected nodes functioning
like neurons in the human brain, processing geometric,
material, and loading data to generate predictions [20, 21].
With an adequate database—such as the 93 experimentally
tested walls used in this study [22]—ANNSs can generalize
displacement behavior under various loading conditions.

Recent findings [23] emphasize that the nonlinear
displacement response of masonry walls is significantly
influenced by boundary conditions, axial load ratio, and
material anisotropy. Incorporating these parameters into
ANN models enhances predictive performance, especially
when datasets cover diverse failure modes and load scenarios.
Such hybrid input features enable machine learning models to
provide more reliable displacement thresholds compared to
traditional approaches.

Despite the promising outcomes of previous studies,
several research gaps remain unaddressed. Earlier works
have concentrated on predicting shear strength or classifying
failure modes, while the specific task of estimating the
maximum displacement capacity of masonry shear walls has
received limited attention. Furthermore, existing datasets
were often small in size or mainly restricted to reinforced
concrete specimens, which reduces their applicability to
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masonry walls under lateral loading. Another limitation is
that many studies relied solely on predictive models, such as
ANN, without incorporating ensemble approaches that can
enhance interpretability [35]. As a result, little attention has
been paid to identifying which geometric, material, or loading
parameters exert the greatest influence on displacement
behavior.

To fill these gaps, the present study develops a machine
learning-based framework that combines accurate prediction
with improved interpretability. A Multi-Layer Perceptron
Artificial Neural Network (MLP-ANN) is employed to
capture nonlinear relationships between input variables
and maximum displacement, while its performance is
systematically evaluated across training, validation, and
testing datasets. Complementary analysis using the Random
Forest (RF) algorithm quantifies the relative importance
of key parameters, highlighting the role of wall geometry,
reinforcement ratios, material strength, and axial load ratio.
By integrating ANN and RF, this study not only achieves
reliable displacement prediction but also provides valuable
engineering insights, thereby offering a practical tool for
seismic performance assessment and the resilient design of
masonry structures.

2- Methodology

This section describes the dataset employed in the study,
the preprocessing procedures, and the development of the
prediction models. It also outlines the performance metrics
adopted to evaluate predictive accuracy. The overall workflow
of the proposed framework is shown in Fig. 1.

Fig. 1. Flowchart of the proposed methodology, includ-
ing Artificial Neural Network (ANN) and Random For-
est (RF) algorithm.
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Table 1. Factors considered as variables affecting the formation of wall displacement.

Variable ID Variable type Unit Description

Aso Out-Put ( Target) mm Ultimate displacement capacity
4, Input mm Yield lateral displacement

H, Input mm Wall height
L, Input mm Wall length
dp Input mm Bar diameter of vertical reinforcement
dsh Input mm Diameter of shear (horizontal) reinforcement
tw Input mm Wall thickness

I Input MPa Masonry compressive strength
f Input MPa Yield strength for reinforcement steel bars
Psh Input % Horizontal reinforcement ratio
P Input % Vertical reinforcement ratio
P Input N Axial compressive load

The experimental dataset was randomly partitioned
into training (70%), validation (15%), and testing (15%)
subsets to provide a sufficiently large sample for model
learning while maintaining independent sets for performance
monitoring and generalization assessment; this random
split was repeated several times to minimize potential
ordering bias. Input parameters were selected based on
structural significance, consistency of available experimental
measurements, and established evidence from previous
masonry wall studies. Geometric characteristics, mechanical
properties, and loading-related variables were initially
considered, after which a preliminary correlation analysis
and engineering judgment were used to remove redundant or
weakly informative features before model training.

2- 1- Dataset and Variables

The dataset used in this study was obtained from the
experimental program of Siam et al. [8], which investigated
the in-plane behavior of reinforced masonry shear walls. A
total of 93 fully grouted walls with rectangular cross-sections,
constructed using concrete block units, were tested under
displacement-controlled quasi-static cyclic loading with a
cantilever-type curvature demand. The database provides
detailed information on geometric dimensions (length,
height, thickness, and aspect ratio), reinforcement details
(vertical and horizontal reinforcement ratios, bar diameters,
and yield strength of steel), material properties (masonry
compressive strength), applied axial load levels, and the
corresponding displacements. These parameters form the
basis for developing the machine learning models in this study.
Statistical techniques were applied to the dataset to ensure the
accuracy and reliability of the collected measurements. Table
1 summarizes all the variables considered in the modeling
process.

2- 2- Data Description

The statistical characteristics of the variables considered
in this study were analyzed to ensure a clear understanding of
the dataset. A summary of these characteristics is provided in
Table 1, while Table 2 presents a more detailed breakdown.
Along with measures of central tendency and dispersion
(mean, variance, and standard deviation), the tables report
minimum and maximum values to define the observed
ranges. Skewness and kurtosis are also included to describe
the asymmetry and overall shape of the data distribution
relative to a normal curve. Collectively, these descriptors
offer a comprehensive view of the dataset’s variability and
distributional properties, reinforcing the reliability of the
subsequent machine learning analyses.

2- 3- Data Preparation

Rescaling variables is a fundamental step in data
preprocessing when working with multiple features that
vary in magnitude. In the dataset analyzed for this study, for
example, the wall height parameter /7 ranges from 700 to
3660, whereas the horizontal reinforcement ratio p , lies within
a much smaller range of 0.0001 to 0.0063. Such differences
in scale can distort the learning process of machine learning
algorithms, particularly those that rely on Euclidean distance
as their objective function, because smaller-valued variables
may be underestimated in their relative importance compared
to larger-valued ones.

To address this imbalance, the variables in this study were
rescaled as part of the data preparation process. Specifically,
a normalization technique was applied to transform all input
variables into a unified range between 0 and 1, as defined
by Eq. (1). This ensures that each variable contributes
proportionally during the model training phase, improving
the stability and accuracy of the predictive analysis.
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Table 2. Summary of descriptive statistics for quantitative variables that impact wall displacement.

Standard

Variable Mean Variance deviation Minimum Maximum Skewness Kurtosis
L, 1631.677 227995.75 477.489 810 3000 0.219 -0.309
H, 2116.215 664605.06 815.233 700 3660 0.461 -0.121
H,/L,, 1.442 0.786 0.887 0.580 4.520 1.923 4.181
Dy 0.005 0 0.002 0.002 0.013 0.943 1.445
dp 17.595 17.352 4.166 12.700 299 0.224 -0.742
Psh 0.002 0.000 0.001 0 0.006 0.799 1.127
dsn 11.886 6.026 2.455 6 16 -0.684 0.698
5 436.325 2301.102 47.970 318 624 -0.465 3.434
Vi 19.936 24.009 4.9 13.1 31 0.573 -0.441
P/ (fnA) 0.059 0.003 0.052 0 0.183 0.726 -0.107
Asopos/Hyy 1.610 0.655 0.809 0.33 4.620 0.926 0.937
o interconnected across these layers. Each neuron’s behavior
N, = L= Unin 0 is governed by an activation function, while its operation is

Umax — bmin

The properties of the desired variable are indicated by N,
i,i ,and i , which respectively represent the normalized
value, actualvvalue, minimum actual value, and maximum
actual value [16].

2- 4- Artificial Neural Network (ANN)

Neural networks, modeled after the complex functions of
the human brain, have emerged as groundbreaking instruments
in data analysis and machine learning. These advanced
architectures are composed of interconnected processing
units that mimic the behavior of biological neurons, operating
in parallel to manage information [30]. The distinctive
feature of artificial neural networks lies in their outstanding
capacity to solve complex, nonlinear problems without being
restricted by the quantity or type of influencing factors. As a
result, they are highly effective in detecting and representing
intricate relationships between inputs and outputs, which
conventional linear models are unable to capture [30].

The architecture of an ANN typically follows a three-tier
structure:

* An entry point through the input layer, where initial data
features are introduced

* One or more hidden layers that serve as the network’s
processing powerhouse, performing sophisticated non-
linear computations

* A final output layer that produces the desired results

The fundamental building blocks of these networks
are the processing units, or artificial neurons, which are
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fine-tuned through parameters known as weights and biases.
These parameters are carefully adjusted using specialized
optimization algorithms to ensure optimal performance. The
mathematical foundation of a neuron’s output in an ANN
follows a specific computational formula that integrates
all these elements. The general architecture of an ANN,
consisting of input, hidden, and output layers, is illustrated
in Fig. 2

ANNs are composed of three different layers: the input
layer, which contains input variable(s); hidden layers, which
contain neurons; and the output layer, which contains output
variable(s) [21, 24]. MLP-ANNs are the most common and
practical types of ANNs, where each neuron is connected to
its neighboring neurons [25, 26]. X, to X represent the input
variables, W to W represent the weights for these variables,
d is a fixed number, f'is a transfer function, and z represents
the neuron’s output. The process of calculating the values of
the weighted sum and y is shown in Egs. (2) and (3):

n
weighted sum = b + Z W; X; )

=1

y = f(weighted sum) (3)

The optimization method in the ANN is used to determine
the weights, W, and constant number, b, in neurons. ANNs
generally use three transfer functions: the Hyperbolic tangent
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Output layer

Hidden layer

Input layer

Fig. 2. Structure of an ANN showing input, hidden, and output layers.

Table 3. Analysis of various modes parameters for identifying the most suitable architecture of MLP-ANN.

Parameter ID Hidden layers Setting
Number of hidden layers NHL - 1 and 2
Number of runs NR - 30
1 1-30
Number of neurons NN 2 1-30 and 5, 10, 15, 20, 25,30
. 1 TANSIG and LOGSIG
Type of transfer function TF 2 Best transfer function in one layer

sigmoidal (TANSIG), the logarithmic sigmoid (LOGSIG),
and the pure linear transfer function (PURELIN). These
transfer functions are shown in Egs. (4) to (6) [27].

2
TANSIG(x) = Tre2 1 “4)
LOGSIG = ————
1+e™* )
PURELIN(x) = x (6)

This study aimed to predict the displacement (A) as
the primary output variable by utilizing ten selected input
parameters that reflect the geometric, material, and loading

characteristics of masonry shear walls. The dataset was
randomly divided into three subsets: 70% for training,
15% for testing, and 15% for validation, ensuring robust
model development and unbiased performance evaluation.
Determining the optimal architecture of a Multi-Layer
Perceptron Artificial Neural Network (MLP-ANN), including
the number of hidden layers, the number of neurons per
layer, the selection of transfer functions, and the choice of
optimization algorithms, lacks a universally accepted formula.
Instead, model configuration often relies on an iterative trial-
and-error process aimed at minimizing prediction error while
avoiding overfitting. In this study, a systematic experimental
approach was adopted, where multiple configurations were
evaluated based on performance metrics such as the Mean
Squared Error (MSE) and the coefficient of determination
(R?). Through this process, the architecture delivering
the most accurate and stable predictions was identified, as
summarized in Table 3.
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Maximum Displacement
model by the second tree

Maximum Displacement
model by the first tree

Maximum Displacement
model by the third tree

Maximum Displacement
model by the last tree

Fig. 3. Algorithmic process for identifying the optimal architecture of the MLP-ANN.

The step-by-step procedure adopted for identifying the
optimal architecture of the MLP-ANN is illustrated in Fig. 3.
This flowchart summarizes the iterative process of adjusting
hidden layers, neurons, transfer functions, and optimization
methods to achieve the best predictive performance. Through
this process, the architecture delivering the most accurate
and stable predictions was identified, as described in the next
section.

2- 5- Random Forest algorithm

Random Forest (RF) algorithm is a well-known
algorithm designed by Breiman [28] to solve regression
and classification problems. This algorithm is composed
of multiple decision trees, which are non-parametric
supervised learning methods capable of making decisions
on the dataset and solving classification and regression
problems using the tree structure. The RF algorithm
allows for measuring the relative importance of variables
associated with target prediction. Breiman [28] proposed
a method for determining variable importance [29].
To determine the importance of the H/L variable, for
example, the displacement prediction accuracy model is
first calculated without H/L, and then another prediction
model is developed with H/L. The H/L importance
is determined by the difference in accuracy of these
two models. Random forest algorithm measures the
importance of variables in relative terms between 0 and
1, with the sum of all variable importance equal to 1.
The random forest method was used to assess variable
importance for displacement prediction.
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2- 6- Evaluating machine learning methods

In order to rigorously evaluate the predictive accuracy
and error characteristics of the developed models, several
widely recognized statistical performance metrics were
applied. These included the Mean Squared Error (MSE),
Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and the coefficient of determination (R?). Together,
these indices provide a comprehensive understanding of
both the magnitude and the dispersion of the prediction
errors. Incorporating these measures allowed for an objective
benchmarking of alternative model architectures and
facilitated the identification of configurations offering the
highest reliability in displacement prediction.

The investigation extended to Multi-Layer Perceptron
Artificial Neural Networks (MLP-ANNs) with two hidden
layers, thereby substantially increasing the number of
potential architectural scenarios. To manage this complexity,
the optimal transfer function and optimization algorithm—
initially determined from extensive trials on a single hidden
layer network—were consistently applied to both layers in the
two-layer configurations [16, 25]. The experimental design
involved scaling the number of neurons in the first hidden
layer to five times the baseline value, while systematically
varying the number of neurons in the second hidden layer
from 1 to 30. This parameter sweep enabled a structured
exploration of the combinatorial design space.

Given the inherent stochasticity of MLP-ANN training,
each candidate architecture was executed n independent
times to capture variability in convergence behavior. In this
study, n=25 runs were conducted for every architectural
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configuration, with the model exhibiting the lowest
aggregate error retained as the optimal solution. This
rigorous multi-run evaluation mitigated the influence of
random initialization effects and ensured reproducibility of
results. The complete methodological sequence adopted for
architecture determination is depicted in Fig. 4. By following
this procedure, a general displacement prediction model
encompassing all relevant input variables was constructed,
and achieved both improved accuracy and enhanced
generalization capability.

3- Results and Discussion
3- 1- ANN model Performance

The study begins by constructing a comprehensive
displacement prediction model that incorporates all available
input variables, capturing the geometric, material, and
loading characteristics of the masonry shear walls under
investigation. The predictive framework is primarily based
on the Multi-Layer Perceptron Artificial Neural Network

Fig. 4. The process of using an algorithm to identify the
most efficient structure for a MLP-ANN.

(MLP-ANN), which is trained and optimized to capture the
complex nonlinear relationships between the input parameters
and the target displacement (A). Once the general model is
established, detailed results are presented, highlighting the
predictive performance across the dataset. Following this,
the MLP-ANN approach is employed iteratively to refine the
architecture, minimize error metrics, and ensure generalization
capability. In parallel, the Random Forest (RF) algorithm
is implemented, not as a primary predictor but as a robust
interpretative tool, leveraging its ensemble-based variable
importance analysis to quantify the relative contribution of
each input parameter to displacement prediction.

The developed general prediction model, constructed
using the MLP-ANN approach, integrated all ten input
variables presented in Table 1, enabling a comprehensive
representation of the geometric, material, and loading
conditions. As described in the previous sections, a systematic
trial-and-error strategy was employed to determine the
optimal network architecture. Due to the inherently stochastic
nature of heuristic learning algorithms, each configuration
was executed 25 times, culminating in over 1000 independent
runs. Through this exhaustive evaluation, the combination of
the LOGSIG transfer function and TRAINLM optimization
algorithm consistently yielded the lowest predictive error, with
a mean squared error (MSE) of 0.17. Once the architecture
was finalized, the model was constructed to meet the
defined specifications, producing a robust and generalizable
framework for displacement prediction. Fig. 5 illustrates the
comparative performance across training, validation, and
testing datasets, delivering R? values of 0.98, 0.97, and 0.90,
respectively, demonstrating exceptional alignment between
predicted and measured displacements.

The results presented in Fig. 5 further reinforce the
model’s predictive credibility, highlighting its ability to
precisely capture complex input—output relationships.
Across the full dataset, the predicted values closely follow
the experimental displacement measurements, with only
minor deviations attributable to localized overestimation or
underestimation. These discrepancies are both infrequent and
marginal, underscoring the ANN model’s capacity to achieve
high-fidelity forecasts even in scenarios characterized by
nonlinearity and parameter interdependence. Collectively, the
performance metrics, coupled with visual verification from
the comparative plots, confirm that the proposed MLP-ANN
model is not only a statistically accurate predictor of wall
displacement but also an effective engineering tool capable
of supporting decision-making in structural safety assessment
and performance-based seismic design.

In this study, the predictive performance of the proposed
models was evaluated through a comprehensive set of
statistical indicators, namely the Nash—Sutcliffe Efficiency
(NSE), Mean Squared Error (MSE), Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), and the
coefficient of determination (R?). These metrics collectively
provide both absolute and relative measures of model
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Fig. 5. Predicted versus actual displacement values of the general ANN model for (a) training, (b) validation,
and (c) testing datasets.

accuracy and reliability. Among them, RMSE and R?, each
bounded between zero and one, are particularly indicative
of predictive precision, while lower MAE, MSE, and RMSE
values correspond directly to higher accuracy in replicating
observed displacements.

As detailed in Table 4, the overall performance of the
general Artificial Neural Network (ANN) model was robust
across all three dataset partitions, training, validation, and
testing, demonstrating its ability to generalize well beyond
the training phase. For the training dataset, the model
achieved exceptionally low error values (MAE =0.144,
MSE = 0.080, RMSE = 0.279) along with high NSE and R?
values (0.9764), indicating a very strong correlation between
predicted and observed outputs, and minimal deviation from
actual displacement values.

When evaluated on the wvalidation dataset, which
represents unseen data, the ANN maintained high predictive
accuracy with MAE = 0.256, MSE = 0.250, RMSE = 0.670,
and an impressive R? of 0.9687. The NSE value of 0.9423
further confirms the model’s capability to maintain stability
and precision in real predictive scenarios.

The testing dataset results MAE = 0.361, MSE = 0.140,
RMSE = 0.480, and R? = 0.8955 show that even under cross-
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checking conditions, the ANN exhibited good agreement
between predictions and measurements. Although slightly
lower than the training and validation results, these metrics
still indicate strong performance, reflecting the expected
minor variability inherent in testing phases.

Overall, the ANN model proposed in this research
demonstrated not only high accuracy but also an excellent
balance between fitting capability and generalization, as
evidenced by its consistently high NSE and R? values across
all datasets. Such stability across different data partitions
underscores the model’s potential as a reliable predictive tool
for displacement estimation in masonry shear walls under
varying lateral loading conditions.

3- 2- RF Variable Importance Analysis

By employing the RF algorithm, the relative significance of
each input variable contributing to faulting and displacement
prediction was quantitatively assessed. This ensemble-based
method computes variable importance on a normalized scale,
providing a transparent basis for identifying the parameters
with the greatest influence on model output. As illustrated
in Fig. 6, the percentage contribution of each predictor was
calculated for the simplified models, revealing that certain
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Table 4. Performance evaluation of the developed ANN model across training, validation, and testing datasets.

Model name Type of data MAE MSE NSE RMSE R?
General Training data 0.144 0.080 0.9764 0.279 0.9764
General Validation data 0.256 0.250 0.9423 0.670 0.9687
General Testing data 0.361 0.140 0.9174 0.480 0.8955
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Fig. 6. Variable importance ranking in displacement prediction obtained from the RF algorithm.

variables dominate the prediction process. Among these,
L, H and H /L stand out as the most critical geometric
measures affecting displacement behavior.

In addition to geometric parameters, several reinforcement

and material properties were also highlighted as highly
. . . : ' P
influential. The variables p , d,, p,, d, ,, f ) f, »and ﬁ

demonstrated a substantial role in the RF ranking results,
indicating their strong correlation with the displacement
capacity of masonry shear walls. These influential parameters
collectively govern aspects such as stiffness, load-bearing
capacity, and resistance to crack development, thereby shaping

the overall structural response. The variable importance
ranking derived from RF thus serves a dual role: guiding the
simplification of predictive models by focusing on the most
impactful variables, and enhancing engineering interpretation
through a data-driven understanding of parameter influence,
ensuring that predictive accuracy is maintained while
promoting model efficiency.

3- 3- Numerical Validation

To validate the accuracy of the proposed ML-based
framework, a finite element model (FEM) was developed in
Abaqus. Among the walls included in the dataset, wall Sh_2

319



Sh. Mansouri et al., AUT J. Civil Eng., 9(4) (2025) 311-324, DOI: 10.22060/ajce.2025.24820.5953

Table 5. Key properties of the wall specimen Sh_2 [8].

Dy mm P G am ) mm oty e PO T
Sh_2 1800 3600 2 0.78 20 0.13 9.5 502 14.8 0.006 1.86
Table 6. Comparison of experimental vs. numerical results.
Parameter 7 7Test FEM Difference (%)
Ultimat(ekll\lo)ad (Qu) 260 275 58
D“f(to o Qu 0.53 0.48 9.5
Drift a(to/s)“% Qu 1.54 1.40 9.7

[8]—-corresponding to wall 2 in Shedid et al. [31]—was
selected for validation due to its intermediate reinforcement
ratio (p, = 0.78%) and its well-documented experimental
results (Table 5).

The experimental dataset employed in this study is
derived from full-scale laboratory tests on masonry shear
walls subjected to monotonic in-plane lateral loading under
controlled axial compression, from which load—displacement
behavior, stiffness degradation, failure mechanisms, and
the maximum displacement capacity (A, ) were directly
obtained. In parallel, a finite element model (Fig. 7) was
developed solely for numerical verification. This model
simulates the nonlinear response of masonry walls and is
validated by comparing its load—displacement results with
those of one experimentally tested wall.

The masonry wall was modeled using three-dimensional
solid elements (C3D8R) for the masonry blocks and grout,
while steel reinforcement was represented through embedded
truss elements (T3D2) using an embedded-region constraint.
Masonry behavior was captured with the Concrete Damage
Plasticity (CDP) model, calibrated based on compressive
strength (f = 14.8 MPa), prism test results, and defined
tensile and compressive damage evolution laws, with a small
viscosity parameter included to aid numerical convergence.
Reinforcement was modeled as bilinear elastoplastic with a
yield strength of / = 502 MPa. A mesh size of 25-50 mm was
adopted following refinement studies and sensitivity checks
to ensure mesh-independent results [33, 36]. Boundary
conditions reproduced the experimental setup, consisting of
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a fully fixed base and displacement-controlled lateral loading
applied at the top in terms of drift ratios, with axial compression
introduced prior to lateral loading [32]. The loading protocol,
step definitions, increment strategy, and stabilization controls
were explicitly defined. This comprehensive numerical
modeling framework—including material calibration,
element selection, mesh configuration, and boundary and
loading conditions—provides full transparency and ensures
reproducibility of the software simulation.

Fig. 7 compares the load—displacement backbone curves
of the FEM against experimental data. Table 6 summarizes
the key response parameters, showing close agreement
with deviations below 10%. The FEM captured the flexural
cracking, plastic hinge formation, and bar yielding observed
experimentally, though a slightly stiffer initial response and
marginally smaller ultimate drift were obtained.

Numerical validation confirmed the reliability of the
proposed ML framework. The FEM reproduced the experimental
backbone within an engineering tolerance, providing additional
confidence in both the numerical modeling approach and the
predictive capability of the ML-based framework.

4- Conclusions

This study investigated the application of machine
learning techniques to predict the maximum displacement
of masonry shear walls subjected to lateral loads, aiming to
provide a more efficient and accurate alternative to traditional
analytical methods. Based on the conducted analysis, the
following conclusions can be drawn.
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1- Key Findings

A Multi-Layer Perceptron Artificial Neural Network
(MLP-ANN) was successfully developed and optimized
for predicting the maximum displacement of masonry
shear walls.

The optimized ANN architecture achieved strong
predictive performance with R? values of 0.98 (training),
0.97 (validation), and 0.90 (testing), confirming its
generalization capability.

Error indices confirmed the robustness of the ANN model,
with MAE = 0.256, MSE = 0.250, and RMSE = 0.670 for
the validation dataset.

Complementary analysis using the Random Forest
(RF) algorithm identified wall length, wall height, and
reinforcement ratios as the most influential predictors of
displacement behavior, followed by material strength and
axial load ratio.

Finite element validation of experimental specimen
demonstrated < 10% deviation from experimental
results in stiffness, peak load, and ultimate drift, thereby
corroborating both the ML predictions and the mechanical
plausibility of the framework.

Combining ANN for prediction accuracy with RF
for parameter interpretability and FEM for numerical
validation offers a multi-layered advantage: reliable
forecasting, engineering insight into key parameters, and
independent corroboration.

This three-way consistency among experiment, ML, and
FEM further supports the reliability and practical utility
of the framework.
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4- 2- Limitations and Future Works

» The experimental database was limited to 93 masonry
wall specimens, which may restrict the generalizability of
the developed models to other wall types, geometries, or
boundary conditions.

e Only two algorithms (ANN and RF) were employed;
benchmarking against additional approaches such as
Support Vector Machines, Gradient Boosting, or Deep
Learning architectures could further enhance predictive
accuracy.

* Akey direction for further development is the formulation
of a simplified predictive equation—using approaches
such as Linear Regression or ElasticNet—to provide
an engineer-friendly expression based on the same
parameters employed in the machine-learning models.

 FEM validation was restricted to one representative
wall; extending such analyses to other specimens would
strengthen the framework.

* Future studies may expand to diverse wall materials and
load conditions, as well as integrate ML-FEM hybrid
approaches for more comprehensive seismic design
support.
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