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ABSTRACT: Engineering structures are typically subjected to time-dependent deterioration processes, 
such as corrosion, fatigue, and carbonation, which gradually reduce their service life and reliability. This 
study investigates the time-dependent reliability of structures under different deterioration mechanisms 
using Dynamic Bayesian Networks (DBNs). This analysis has the potential to significantly influence 
future decisions about the structure’s usage. Three deterioration models: deterministic, stochastic, and 
Gamma process, are implemented to represent distinct degradation behaviors. The methodology involves 
discretizing the resistance variable in DBN and comparing reliability indices obtained from DBN and 
Monte Carlo simulation (MCS) to validate the approach. The DBN results are validated against Monte-
Carlo simulations, showing a maximum discrepancy of 3%, as well as providing standard deviation 
(0.0211) and root-mean-square error (0.023) of differences that demonstrate the DBN approach’s 
validity and precision. This paper calculates the time-dependent reliability of a portal frame structure 
experiencing resistance deterioration, influenced by various deterioration models. Finally, it presents 
a comparison of the results from time-dependent reliability analysis utilizing various deterioration 
processes. Among the models, the Gamma process yields the highest reliability index over a 40-year 
period, while deterministic and stochastic models exhibit slightly lower reliability. Estimates derived 
from measurements are more realistic than those based on design values. The findings demonstrate 
the capability of DBN to incorporate measurement evidence, providing a robust basis for lifetime 
reliability assessment and maintenance planning of deteriorating structures also DBN effectively 
captures deterioration effects and probabilistic uncertainty over time, offering a computationally and 
time-efficient alternative to Monte-Carlo simulations.
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1- Introduction
Conventional structural analysis assumes that the 

parameters of structural models possess a fixed value. In 
numerous civil engineering applications, uncertainty in 
geometric dimensions, input forces, material specifications, 
and other parameters is unavoidable and cannot be 
disregarded, as they significantly impact the final performance 
of the structure [1, 2]. Given uncertainties, it is preferable 
to assess structural safety using probabilistic methods. The 
reliability analysis method is a probabilistic framework used 
to calculate the structure’s confidence margin,  which plays 
an essential role in the analysis and design of structures [3].

Structures and infrastructure systems, crucial for 
the usability of modern societies, experience a gradual 
decline in performance throughout their service lives due 
to environmental degradation [4, 5], a process to which 
natural disasters, deterioration mechanisms, and harmful 
environmental stressors collectively contribute, thereby 

degrading the structure’s lifetime performance [6-8]. 
Classical reliability methods for structures neglect the long-
term impacts of environmental factors on the hardness and 
strength of concrete and steel, relying on simplifications, 
including the assumption of a constant loading rate. 

One of the fundamental components of time-dependent 
reliability analysis in structures is the deterioration function, 
which is related to the structure’s deterioration mechanism 
and is associated with uncertainty. Numerous empirical 
and analytical models have been suggested to address the 
structural resistance deterioration function while accounting 
for its uncertainties [9-11]. To facilitate an efficient 
examination of the structural time-dependent reliability of 
deterioration, numerous studies have been conducted. One 
of the initial models presented is the model by Ellingwood 
and Mori [9]. This applies to the reliability-based service-
life assessment of aging concrete structures, as studied by 
Rodriguez et al. [12] who investigated the extent of diameter 
reduction in rebars due to general and localized corrosion. 
Additionally, utilizing the variables of corrosion initiation *Corresponding author’s email: a.yazdani@uok.ac.ir
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time and corrosion propagation, Stewart and Rosowsky 
[13] proposed a formula for reducing the diameter of rebars. 
Enright and Frangopol [14] investigated the variables 
associated with corrosion initiation time and subsequently 
modeled the uncertainty stemming from this initiation using 
the lognormal distribution function. A process utilizing the 
outcrossing approach was presented [15], which facilitated 
the application of traditional reliability tools, including the 
first-order reliability method and the second-order reliability 
method. To forecast the likelihood and severity of cracking 
in reinforced concrete structures that are exposed to chloride 
ions, Stewart and Mullard [16] implement a spatial time-
dependent reliability analysis. To track the progression of 
the corrosion process, models are implemented that predict 
the initiation and propagation of corrosion, as well as the 
initiation and growth of cracks. Numerous methodologies for 
time-dependent reliability were introduced by Melchers and 
Beck [17], such as importance sampling and the first-passage 
method. An analytical approach that integrates the stochastic 
processes of resistance degradation and variable load was 
developed by Van Noortwijk et al. [18]. This approach 
employs a Poisson process for load and a Gamma process for 
resistance. Much of the prior research in reliability primarily 
focuses on assessing the time-dependent bending strength 
affected by the corrosion of reinforced concrete elements, 
as well as investigating the shear resistance resulting from 
corrosion phenomena. In the past two decades, Bhargava et 
al. [19] and colleagues have conducted extensive research 
to estimate time-dependent corrosion models in reinforced 
concrete beams under various shear and bending modes. 
Classical reliability methods typically utilize only the 
statistical indices of parameters and rely on simplifying 
assumptions regarding their distribution, thereby increasing 
uncertainty. One method for reducing these uncertainties 
is to adopt a Bayesian perspective and employ Bayesian 
probabilistic networks. 

Probabilistic Bayesian networks integrate Bayesian 
principles with graph theory. Bayesian networks are a 
graphical representation of the probability distribution of 
a collection of random variables. This network comprises 
nodes that signify random variables. The edges connecting 
the nodes represent the relationship between them, as well as 
the conditional probability distribution associated with each 
node [20]. For each node, a probability table is generated, 
which is then used in statistical inference. In the Bayesian 
approach, as opposed to the classical method, a comprehensive 
distribution is accounted for each parameter. In this case, all 
uncertainties can be accounted for in the parameter under 
discussion. A significant advantage of the Bayesian method 
is its capacity to integrate various types of information based 
on their uncertainty [21, 22]. Bayesian networks are typically 
constructed utilizing standard probabilistic models. Bayesian 
networks allow for the derivation of a collection of random 
variables’ posterior distribution based on a given set of 
observations. This procedure is referred to as inference. These 
networks are highly appropriate for integrating the potential 
for deterioration, signifying a reduction of resistance over 

time [23].
Bayesian networks have gained attention in engineering 

risk analysis in recent years because of their intuitive 
characteristics and capacity to manage numerous dependent 
random variables [24]. Several researchers have employed 
Bayesian networks in modeling temporal functions, including 
deterioration [25]. Montes-Iturrizaga et al. [26] employed 
a Bayesian network to enhance inspection strategies for 
offshore structures vulnerable to multiple failure mechanisms. 
Attoh-Okine and Bowers [27] introduced an empirical model 
for bridge deterioration utilizing Bayesian networks. Sani et 
al. [28] introduced a novel model for the analysis of structural 
resistance and loads. A Bayesian network is advantageous in 
domains characterized by statistical states. In such instances, 
each variable possesses a unique and definitive value. This 
assumption is a static issue and is inadequate for numerous 
problems. A DBN is an augmented Bayesian network 
incorporating a time dimension, utilized for modeling dynamic 
systems [29]. DBNs address these limitations by augmenting 
traditional BN with temporal dependencies, facilitating the 
examination of the evolution and dynamic interaction of 
risks over time [30].The term ‘temporal Bayesian network’ is 
preferable to ‘dynamic Bayesian network’ because it implies 
that the model’s structure remains constant while the temporal 
variables fluctuate over time, rather than being fixed and 
uniform. A DBN is a directed acyclic graphical model that is 
particularly suitable for modeling temporal deterioration and 
its accompanying uncertainties, and can be readily combined 
with real-time data for state inference and model updating 
[31, 32].

This paper employs DBN to model the time-dependent 
reliability of a portal frame structure experiencing resistance 
deterioration, acknowledging the significant impact of 
deterioration on structural strength throughout its lifetime and 
the efficacy of DBN in probabilistic analysis and deterioration 
modeling. The DBN framework models the probabilistic 
evolution of structural resistance over time and updates 
reliability based on available inspection or measurement 
data. Multiple approaches for modeling the degradation 
function have been proposed. In this study, instead of relying 
solely on classical models, recently proposed deterioration 
models have been employed for the deterioration function to 
ensure a consistent and comparable evaluation of structural 
degradation. Deterministic, stochastic, and Gamma process 
deterioration functions are selected to model the deterioration 
process. The main assumptions include: (1) structural loads 
are treated as random variables, (2) deterioration parameters 
are derived from experimental and literature-based data, and 
(3) the Gamma process is characterized by time-dependent 
shape and constant scale parameters. The DBN framework 
is employed as the core reliability assessment tool, enabling 
sequential updating of structural performance through its 
posterior inference capability when new evidence becomes 
available. To ensure the robustness and accuracy of the 
DBN predictions, an independent Monte Carlo simulation 
is conducted as an external validation benchmark. The 
integration of these modern deterioration models within a 
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unified DBN–MCS framework, along with the posterior 
updating of structural reliability, represents the principal 
novelty of this research and addresses an existing gap 
in the literature. Ultimately, deterministic and stochastic 
deterioration functions, along with the Gamma process, have 
been utilized on a one-bay frame, and the results have been 
compared.

2- Models of structural deterioration
The strength and stiffness of structures in service may 

be altered as a result of aging, which exceeds the baseline 
conditions that were assumed during the structural design 
process. The service life of structural components and 
systems is influenced by the temporal alterations in material 
properties. Certain aging effects are harmless; others may 
lead to a deterioration of component or system integrity 
over time, potentially increasing the risk of structural 
failure. The prediction of deterioration is a crucial phase in 
the comprehensive lifetime management of buildings [33]. 
Figure 1 schematically illustrates the decline in the structure’s 
resistance over time. The subsequent text delineates various 
perspectives on deterioration models, including deterministic, 
stochastic, and Gamma process deterioration functions.

2- 1- Deterministic deterioration model
The initial approach to modeling structural degradation 

examined in this research is the structure’s resistance based 
on a deterministic deterioration function. The degradation of 
structural resistance is typically represented by Equation 1 
[9].
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The stochastic deterioration function is represented 
by G(t), the initial resistance is represented by R0, and the 
structural resistance at time t is denoted by R(t). Elementary 
polynomial models, specifically linear, exponential, and 
square root functions of time t, are used to evaluate the 
reliability of G(t), a function that is typically represented by 
basic polynomial functions[9, 14, 34-36]. In recent years, 
various researchers have proposed a polynomial function to 
account for the effects of different deterioration mechanisms 
[28, 37].

The parameters of this function are established through 
the analysis of physical and chemical processes and are 
contingent upon the type of deterioration mechanism, as well 
as the type and usage. This research employs a particular 
function for deterministic deterioration and examines the 
distinct impacts of each failure mechanism on reliability.

   0R t R G t   (1) 

 

  1

1 exp

1 exp

Fg t m

cat b t
t

cat b t
t

  

         
      

                  (2) 

 

     ˆ1 .
1

n
G t d t ti i

i
  


 (3) 

 

     ˆ
id t q t t                                          (4) 

 

   
 

ˆ
, ˆ

i
i

i

d t
t Gamma

d t



 

   
 

            (5) 

 

   1G t F t   (a) 

 
 

0 ,

t
q t dt

F t Gamma 


 
 
 

  
 
 
 

 (b) 

 

     1
ˆ

i F i F id t m t m t                                      7 

 

    

      
 

,   

1var ,   and   X

t
E X t

u
t

X t t
u t










 
  8 

 

 (2)

	
Here, mF (0) represents the deterministic time-dependent 

deterioration ratio, while g(t) denotes a deterministic 
deterioration function, with terms chosen based on primary 
deterioration mechanisms. This polynomial function 
comprises three terms. The first term represents the linear 
model, the second term denotes the square root model, and 
the third term illustrates the exponential model, respectively. 
This formulation incorporates terms that explain the variations 

 

Fig. 1. Schematic representation of the resistance deterioration process over time 
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Fig. 1. Schematic representation of the resistance deterioration process over time.
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in resistance resulting from various degradation factors. The 
linear term denotes additional deterioration mechanisms, such 
as fatigue, while the exponential term represents corrosion, 
and the square root term represents carbonation.

The deterioration function’s parameters are typically 
estimated and can be adjusted through routine inspections 
or observations of the structure. Equation (2) estimates the 
parameters a, b, and c based on the assumption that each 
term is solely influenced by the designated deterioration 
mechanism. Fatigue affects a, carbonation affects b, and 
corrosion affects c. Consequently, the estimation of these 
parameters is facilitated by the quantification of the total 
deterioration that can be attributed to each mechanism. The 
structure’s type, usage, and location determine the fractional 
attribution of deterioration among various damaging 
mechanisms. The deterioration of steel structures is primarily 
influenced by corrosion, while concrete degradation is largely 
affected by carbonation. Additionally, coastal structures are 
more susceptible to corrosion, whereas bridge decks are more 
vulnerable to fatigue.

2- 2- Stochastic deterioration model
In time-dependent reliability analysis, the majority of 

structural deterioration models are empirical. The uncertainties 
associated with the most common degradation mechanisms 
may be substantial, as evidenced by experimental data. 
Studies have shown that the approximated mean degradation 
function is insufficient for accurately evaluating structural 
reliability when the coefficient of variation for the time-
dependent degradation function G(t) exceeds approximately 
4%. Consequently, the uncertainty inherent in the 
degradation function must be considered [19]. Additionally, 
the resistances at two temporal points, R(t1) and R(t2), do not 
exhibit statistical independence or dependence when G(t) is 
characterized as a non-stationary stochastic process. Without 
repair, the principles of deterioration physics are violated, 
and the derivative of R(t) cannot be positive. As a result, any 
model of resistance deterioration must adequately account for 
the stochastic dependence inherent in the degradation process 
and the variability associated with structural deterioration. 
This deterioration modeling method is predicated on the 
formula of the deterministic deterioration model. Additionally, 
to incorporate uncertainties in the degradation process and 
more accurately represent the stochastic nature of structural 
deterioration, the stochastic deterioration model proposed by 
Li et al. [36] may be utilized for G(t), as expressed in the 
following equation:
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where,  d̂ (ti) is the time-dependent mean deterioration 

during time points ti-1 and ti,
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ε(ti) constitutes a sequence of independent random 
variables that adhere to Gamma distributions, characterized 
by a mean value of one:
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ξ is a time-invariant scaling factor. The mean value of 
F(t), denoted as mF, can be computed using Equation (2). 
Here, F(t) represents the deterioration ratio of component 
resistance, which follows a Gamma distribution with a mean 
value of ( )
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Furthermore, Equation (6b) remains applicable, with 
the parameter d̂ (ti) articulated as per Equation (7), thereby 
guaranteeing that resistance diminishes monotonically with 
independent increments while correlations remain among 
resistances at various temporal points.
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where, mF(.) is the mean value of deterioration as a 
function of lifetime, which follows Eq. (2).

It should be noted that the formulation of the stochastic 
deterioration model is based on the same fundamental 
degradation expressions presented in Equation (1) for the 
deterministic model. To avoid unnecessary repetition of 
identical equations, these relations are not rewritten here.

2- 3- Gamma process modeling of deterioration	
A recent approach to modeling structural deterioration 

is the Gamma process. The Gamma process is an efficient 
mechanism for modeling the gradual and monotonic 
deterioration of building components. The Gamma process 
model possesses a stochastic characteristic in deterioration 
prediction and accounts for the temporal variability in the 
structural deterioration progression. The Gamma process 
model is characterized by independent, non-negative 
increments that follow Gamma distributions, which 
have a uniform scale parameter and a shape parameter 
that varies over time. Deterioration, characterized by 
uncertainty stemming from wear, corrosion, fatigue, and 
crack propagation, is non-decreasing and can be effectively 
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modeled as a Gamma process [38], providing a suitable 
framework for random deterioration over time. The Gamma 
process models uncertainty in lifetime and/or deterioration 
rate. An appropriate model for the degradation of structural 
resistance is the Gamma process, which is distinguished by 
its independent non-negative increment properties [1, 39]. 
Various researchers have applied Gamma processes to data: 
Cinlar et al. [40] on concrete creep, Lawless and Crowder 
[41] on fatigue crack propagation, Kallen and Noortwijk [42] 
on corrosion-induced thinning, and Frangopol et al. [43] on 
corroded steel gates. Additionally, Samali et al. [44] employed 
the Gamma process to model the deterioration of bridges.

In mathematical terms, the continuous-time stochastic 
Gamma process [1] is defined as a random variable that 
represents the value of resistance deterioration for all t ≥ 0. 
Gamma(x|v(t), u) is the probability density function of the 
Gamma distribution with parameters v(t) and u. Its probability 
density function is denoted as fX(t)(x). The shape parameter v(t) 
is a non-decreasing, right-continuous, real-valued function of 
time. In this stochastic process, the initial deterioration value 
is set to zero to ensure a monotonic decline over time. The 
increase in deterioration from time t1 to t2 may be independent 
of the cumulative deterioration at time t1 and is a nonnegative 
value. The Gamma distribution is characterized by a constant 
scale parameter and a time-dependent shape parameter, 
and the increment X(t+Δt) - X(t) follows this distribution, 
specifically Gamma(x|v(t+Δt) - v(t), u). This distribution is 
applied to all increments over the time interval. The mean, 
variance, and coefficient of variation of the deterioration X(t) 
are presented below:
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The expectation is governed by a power law [15].
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Experimental studies can validate α and β, while the 

shape parameter v(t) is a function of time in this context. The 
parameters α and β represent the rate of deterioration and the 
predominant deterioration mechanism, respectively.

Conversely, the structural resistance degrades over 
time as described by the equation Rt =R0 (1 − α tβ), where 
Rt represents the resistance at time t, and α and β denote 
the deterioration rate and the predominant deterioration 
mechanism, respectively [9]. The shape parameter in the 
Gamma distribution within the deterioration model signifies 
the form of the structural resistance degradation and 
deterioration process. Deterioration models characterized by 
β = 1 (linear) for reinforcement corrosion, β = 2 (parabolic) 
for sulfate attack, and β = 0.5 (square root) for diffusion-

controlled aging [9]. A noteworthy exception to the Gamma 
process is represented by the probability density function of 
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3- Time-dependent reliability analysis using a dynamic 
Bayesian network

A Bayesian network is a probabilistic model that 
integrates Bayesian principles with graph theory, represented 
as a directed acyclic graph [45]. It comprises a network 
architecture featuring nodes, edges, and conditional 
probability tables (CPTs). These networks offer a concise 
graphical representation of existing parameters and their 
interrelationships. The nodes of the network signify random 
parameters, while the edges denote the relationships among 
them. A CPT is generated for each node, utilized in statistical 
inference computations. The output of a Bayesian network is 
the joint probability mass function of the network’s random 
variables.

DBNs are a distinct category of Bayesian networks 
that depict stochastic processes. They comprise a series of 
slices, each representing a basic Bayesian network at time 
t, containing one or more Bayesian network nodes [46]. The 
quantization of these links is represented by P(Xi,0) for nodes 
in the initial slice and P(Xi,t+1| Xi,t)  for subsequent nodes, 
and the slices are interconnected by directed links from nodes 
in slice t to nodes in slice t+1. DBNs model systems that 
undergo dynamic changes or evolve over time. They allow 
users to manage the system and forecast future variable values 
(prediction). They also enable evaluation of unobserved 
variables from the past (smoothing), and assessment of 
unobserved variables at the present moment (filtering). In 
this context, the posterior distribution of the state at time 
t is computed by utilizing all available evidence up to that 
point. DBN can be regarded as a generalization of Markov 
process models, which have frequently been employed to 
simulate deterioration [23, 47, 48]. The model is further 
enhanced to accommodate broader scenarios involving 
resistance deterioration [23]. The DBN model comprises 
three components (Figure 2). One of the primary advantages 
of the defined model is that, when information is accessible, 
it can enhance the reliability of the updating process.

The initial component, the reliability model, comprises 
two elements: time-invariant model parameters, which remain 
constant, and time-variant model parameters, which change 
over time steps t = 0, It comprises the structural state Et at 
time t, random variables (x1,x2,…,xt), and structural resistance 
Rt, defined by the following mathematical expressions:
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where ( ){ }, 0E tLS X rΩ = ≤ and LS (X,rt) is the limit 
state function.

The deterioration model at time step t and the preceding 
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time step t−1 are defined in the second part. This section 
defines various deterioration models, specifically 
deterministic, stochastic, and Gamma process deterioration 
functions. Deterioration is represented as {R0,...,Rt, Rt+1}, 
where Rt+1 is solely dependent on Rt. The change Δx between 
Rt and Rt+1 adheres to deterioration models. The mathematical 
parameters of the model are provided by:
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where 
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In the final section, the observation model at any given 
time step can include data on the condition of a model 
parameter or its deterioration, which can be obtained from 
inspections, monitoring systems, environmental parameter 
recordings, or other pertinent measurements related to the 
model parameters. Indirect and error-prone, resistance 
measurements can be expressed as:
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Mt represents the measurement of Rt, with the error 
corresponding to a normal distribution.

The measurement uncertainty is modeled using 
a Gaussian distribution, which is a widely accepted 
assumption in structural reliability and health monitoring 
applications. This probabilistic representation accounts for 
potential deviations between the true structural state and 
the measured values due to factors such as sensor noise, 
environmental variability, and modeling simplifications. 
The inclusion of measurement uncertainty plays a significant 
role in the updating process of the DBN. During Bayesian 
inference, the posterior probability of the structural state 
is obtained by combining the prior probability (predicted 
from the deterioration model) with the likelihood function 
derived from observations. As a result, higher measurement 
uncertainty leads to a broader posterior distribution and 
reduced confidence in the updated reliability, whereas lower 
measurement uncertainty results in a sharper posterior 
distribution and higher reliability accuracy.

To enhance the clarity of the proposed framework, 
the overall computational procedure adopted in this study 
is summarized in Figure 3. The flowchart integrates all 
methodological components, including the formulation of 
deterioration models, evaluation of time-variant structural 
resistance, discretization of state variables, construction of 
the DBN, sequential posterior updating using observational 
evidence, and the statistical validation of DBN-based 
reliability estimates through Monte Carlo simulation. This 
schematic representation provides a unified view of how 
deterministic, probabilistic, and Gamma process deterioration 
models are embedded within the DBN framework and 
subsequently compared under consistent conditions.

 

Fig. 2. Structural time-dependent reliability analysis using the general DBN model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Structural time-dependent reliability analysis using the general DBN model.
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4- The Impact of Different Deterioration Processes
Figure 4 illustrates the portal frame structure [49], which 

is subject to concentrated forces in both the horizontal and 
vertical directions. The frame structure comprises five 
nodes and four elements. This figure illustrates the material 
properties of the elements.

The corrosion of steel reinforcement and the creep of 
concrete result in a decrease in the plastic moment capacities 
(M1, M2, and M3). In an effort to avoid complexity, it is 
assumed that only M3 is deteriorating, while the applied 
loads (P1 and P2) and moment capacities of M1 and M2 are 
considered statistically independent random variables. The 
parameters of the probabilistic distributions are delineated 
in Table 1. Deterioration processes are represented using 
deterministic, stochastic, and Gamma process deterioration 
functions as outlined in Section 2. In the Gamma process, 
the shape parameter v(t) is defined as α.t, while the scale 
parameter u is chosen. The parameter values are presented 
in Table 1. 

The limit state is exclusively defined for moment capacity 
in this example. A component failure event occurs when the 
bending moment at a hinge attains its moment capacity. Given 
that a hinge may develop on either side of an element, a total 
of eight hinge locations are identified, labeled 1 through 8 
in Figure 4. Prior research has utilized a plastic mechanism 
to determine the failure modes of these frame structures [50, 
51].

The plastic mechanisms method applies to simple 
structures, whereas identifying all failure modes in larger 
structures poses challenges. A systematic approach 
appropriate for such building frames is the Branch and Bound 
method [52]. This study identifies two predominant modes: 
the beam failure mode and the lateral failure mode of the 
frame structure, as illustrated in Figure 5. These two principal 
failure mechanisms have been employed in modeling the 
failure of elements within a DBN. Subsequently, the relevant 
limit state functions can be derived directly through plastic 
analysis or the virtual work theorem.

The DBN formulated for structural time-variant reliability 
in the context of deterioration is illustrated in Figure 6. 
Equivalent variables defined in finite domains are used to 
replace all random variables defined in continuous domains. 
Discretization is extensively employed for managing 
continuous random variables in Bayesian networks, as 
it represents the most straightforward method for exact 
inference [54]. Through the partition of its domain ΩX into 
a finite collection of intervals wi = 1,...,m, a discretization 
of the continuous variable X is obtained. This discretization 
occurs sequentially, with one variable addressed at a time 
and hierarchically within the Bayesian network, whereby 
parent variables are discretized prior to their children. 
Consequently, DBN comprises solely discrete variables. The 
network structure can be modeled with nodes, edges, CPTs, 
and connectivity via direct links between slices to determine 

 

Fig. 3. Comprehensive flowchart of the proposed methodology, illustrating deterioration modeling, build DBN and inference, 

posterior updating, and Monte Carlo–based validation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Comprehensive flowchart of the proposed methodology, illustrating deterioration modeling, build 
DBN and inference, posterior updating, and Monte Carlo–based validation.
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Table 1. Statistical parameters and distribution types of random variables.Table 1. Statistical parameters and distribution types of random variables. 

Random 
variables Distribution Mean Coefficient of 

variation 
References 

P1 Gumbel 20 kN 0.30 [52] 
P2 Gamma 40 kN 0.30 [52] 
M1 Lognormal 75 kN.m 0.05 [52] 
M2 Lognormal 75 kN.m 0.05 [52] 
M3 Lognormal 101 kN.m 0.05 [52] 
α Deterministic 0.5 - [53] 
u Deterministic 0.5 - [53] 
ξ Deterministic 0.01 - [37] 

ε (kN.m) Normal 0 0.15 [53] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A portal frame structure with 5 nodes and four members subjected to horizontal and vertical concentrated forces 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A portal frame structure with 5 nodes and four members subjected to horizontal and vertical 
concentrated forces.

  

(a) (b) 
Fig. 5. Failure mechanisms of the five dominant failure modes identified by the branch and bound method: (a) 

beam mode and (b) combined mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Failure mechanisms of the five dominant failure modes identified by the branch and bound 
method: (a) beam mode and (b) combined mode..
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the frame’s reliability over time. The degradation process for 
R3 is modeled using the three previously discussed methods. 
To make inferences in DBNs, three distinct types of CPTs 
need to be computed. The CPTs’ calculations are based on the 
mathematical parameters of the three models.
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where rk
- and rk

+ denote the lower and upper limits of 
the interval wk, and fRt(rk) represents the probability density 
function of uniform distribution on the interval {LS ≤ 0| rk

-

˂rk˂ rk
+}. Equation (16) can be evaluated using structural 

reliability techniques, including the first-order and second-
order reliability methods.

This study proposes that, to estimate the parameters a, 
b, and c for the deterministic and stochastic deterioration 
models, the remaining resistance at the conclusion of the 
40th year is 80% of the initial resistance, indicating 20% 
deterioration. The mechanisms of carbonation, corrosion, 
and fatigue contribute to the deterioration of the structure at 
rates of 10%, 45%, and 45%, respectively. These assumptions 
are more accurate for steel structures [37]. This assumption 

aligns with the findings of Li et al. [36], allowing us to 
compare our findings with those of the prior study. This 
research endeavors to evaluate the probability of failure for 
deterministic, stochastic, and Gamma process deterioration 
functions, recognizing that the reduction in structural strength 
will vary depending on the type of structure and its location. 
In deterministic deterioration, it is posited that g(40)= 
1-a.40-b 40 -exp( 40

c
). The three unknown parameters can 

thus be determined by equating the total decrease fraction to 
the individual terms. The values of a, b, and c are 0.09/40, 
0.02/ 40 , and ln(0.09)×40, respectively.

Figure 7 illustrates the outcomes of a time-dependent 
reliability analysis employing a deterministic deterioration 
model through the DBN model and the Monte-Carlo 
simulation method. The results of the DBN exhibit a 
maximum discrepancy of 3% compared to the Monte-Carlo 
results, with standard deviation(STDV) and root mean-square 
deviation (RMSD) values ​​of 0.0211 and 0.023, respectively, 
thereby confirming the accuracy of the proposed DBN 
model. The stochastic deterioration model was computed 
using the stochastic deterioration function, incorporating the 
uncertainty of the deterioration process, with the deterioration 
ratio F(t) characterized by a Gamma process. 

Figure 8 illustrates various time-dependent resistance 
functions derived from the combined and individual effects 
of degradation functions obtained through three probabilistic 
resistance degradation models: linear, square root, and 
exponential. These functions facilitate calculations of time-
dependent reliability and joint probability. To investigate the 
influence of the degradation function on a stochastic model, 

 

 

Fig. 6. Dynamic Bayesian network for time-dependent reliability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Dynamic Bayesian network for time-dependent reliability.
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Fig. 7. Validation of dynamic Bayesian network results and Monte-Carlo simulation based on deterministic deterioration model 
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Fig. 7. Validation of dynamic Bayesian network results and Monte-Carlo simulation based on deter-
ministic deterioration model.

  

(a) Linear (b) Square root 

  
(c) Exponential (d) Combination 

 

Fig. 8. Samples of the degradation function for different mechanisms obtained by the stochastic deterioration function. 
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the values of G(ti) are determined from independent Gamma 
distribution functions. The sample functions presented in 
Figure 8 illustrate the values of structural degradation for the 
statistically independent process. Figure 8 illustrates that the 
assumption of stochastic independence allows for strength 
reversals without any external influences.

In the stochastic method for determining failure 
probability in resistance degradation models over 40 years, 
the values of G(ti) are represented using various Gamma 
distribution functions, whereas in the deterministic method, 
the degradation function corresponds to the mean values of 
these different Gamma distribution functions.

Figure 9 illustrates the significance of quantitatively 
assessing the parameters that characterize the time-dependent 
increase in the deterioration of structural resistance due 
to aging, evaluated both in combination and separately, 
utilizing linear, square root, and exponential models within 
the deterministic and stochastic deterioration functions, 
respectively. Figure 9(a) presents results indicating the 
probability of failure under a deterministic approach, wherein 
uncertainties are disregarded; consequently, the value of 
G(ti) is numerically equivalent to the mean values of various 
Gamma distribution functions. The results of the stochastic 
deterioration function utilize samples of the deterioration 
function to compute the reliability index and, consequently, 
the probability of failure, as illustrated in Figure 9(b). This 
calculation incorporates probabilities and uncertainties 
derived from the Gamma distribution functions presented in 
Figure 8 for G(ti).

For deterministic and stochastic deterioration functions, 
the square root model’s failure probability is at its highest 
for up to 40 years, while the exponential model’s failure 

probability rises quickly. Ellingwood and Mori [9] and Li et al. 
[36] have also reported these observations. The configuration 
of the deterioration functions exerts a more significant impact 
as G(40) diminishes. The failure probability is highly sensitive 
to minor variations in strength when the residual strength at 
time t is low; this sensitivity compounds over time.

In the Gamma process, the linear shape parameter is 
defined as v(t)=α.t, and the scale parameter is denoted as 
u. The parameter values are presented in Table 1. Figure 10 
illustrates the comparison of results from the time-dependent 
reliability analysis using the Gamma process, alongside 
deterministic and stochastic deterioration models derived 
from DBN, with respect to the reliability index over a 40-
year period.

The results derived from the DBN are unobserved, 
as indicated in Section 3. Utilizing DBNs allows for the 
derivation of the posterior distribution of a collection of 
random variables based on a set of observations. In this article, 
the filtering model is employed to account for observations, 
representing the primary advantage of this tool. Figure 10’s 
first line displays the results obtained by DBN regarding the 
reliability index over a 40-year period, excluding evidence. 
The resistance measurements of R3 over 40 years are based 
on a deterministic deterioration function. Upon evaluating the 
evidence and adhering to the precise inference for dynamic 
Bayesian networks, the results depicted in Figure 10 and 
Table 2 indicate that the structural posterior reliability indices 
of filtering based on the Gamma process are inferior to 
those obtained without evidence, due to the selected Gamma 
process’s overestimation of actual resistance deterioration, 
particularly after the seventh year.

The findings of deterministic and stochastic deterioration 

  

(a) (b) 
Fig. 9. Dependence of cumulative failure probability on combination and separate effect of three resistance degradation models 

(Linear, Exponential, and Square-root): (a) Deterministic degradation function and (b) Probabilistic degradation function. 
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models indicate that these approaches align more closely 
with evidence-based filtering, and until the 30th year, their 
reliability indices are nearly identical; thereafter, both 
stochastic and deterministic models exhibit a decline in value.

5- Conclusion
This study addressed the problem of time-dependent 

reliability assessment in a structure with resistance 
deterioration, where material degradation and load 
uncertainties reduce structural safety over time. The 
importance of this topic lies in its direct impact on lifetime 
performance, maintenance planning, and cost efficiency of 
infrastructure systems. The DBN approach was employed 
to model and infer the reliability evolution of a deteriorating 
structure, offering a probabilistic framework that integrates 
uncertainty and evidence updating. The study considered 

three deterioration models: deterministic and stochastic 
degradation models, as well as the Gamma process, with 
loads being treated as random variables. Their impact on 
the reliability index of a one-span frame with resistance 
deterioration was compared over a 40-year service life with 
the aid of DBN modeling in MATLAB software.

The adopted methodology provided a systematic and 
flexible framework capable of incorporating inspection data 
and updating structural reliability dynamically. The results of 
the frame structure reliability index show the importance of 
examining deterioration models, and that the correct selection 
of deterioration models is vital in the design of structures, 
which is very important from an economic point of view, 
and that deterioration over time significantly reduces the 
reliability index of structures. The use of DBN allows for the 
explicit modeling of dependencies among parameters and 

Table 2. Reliability index of the frame with evidence (Gamma process), without evidence (Gamma process), 
and deterministic and stochastic degradation models for different years.

Table2. Reliability index of the frame with evidence (Gamma process), without evidence (Gamma process), and 

deterministic and stochastic degradation models for different years 

Models 
Years 

1 10 20 30 40 STDV RMSD 

Stochastic approach 2.24 2.05 1.93 1.74 2.00 0.0563 0.0591 

Deterministic approach 2.25 2.11 2.05 1.99 2.08 0.0455 0.0477 

Gamma approach without evidence 2.22 2.05 1.94 1.77 2.00 0.0329 0.0641 

Gamma approach with evidence 2.26 2.05 1.97 1.90 2.01 - - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Analysis of time-dependent reliability with evidence (Gamma process), without evidence (Gamma process), and 

deterministic and stochastic degradation models. 
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enables posterior reliability estimation when new evidence 
becomes available. While the MCS was used as a reference 
for validation, the DBN demonstrated high computational 
and time efficiency and accuracy, with only minor deviations.

The proposed DBN framework effectively captures 
time-varying deterioration mechanisms and provides 
accurate reliability predictions under different degradation 
models. The deterministic and stochastic models showed 
closer alignment with the evidence-based filtering approach 
compared to the Gamma process without evidence, especially 
during early service life. The Gamma process tended to 
overestimate deterioration after the seventh year, leading to 
lower posterior reliability indices. Quantitative comparison 
of deterioration functions demonstrated that the square-root 
model results in the highest failure probability, followed 
by the exponential and linear models. The DBN approach 
achieved less than 3% deviation from the MCS results, 
confirming its validity for structural reliability analysis. 
From an economic and maintenance perspective, the findings 
emphasize the importance of selecting suitable deterioration 
models for planning inspection intervals and maintenance 
strategies, ensuring cost-effective service life management. 
The study’s novelty lies in integrating deterministic, 
stochastic, and Gamma deterioration processes into a unified 
DBN framework that can incorporate evidence updating, 
providing a realistic and adaptive reliability assessment tool.

While the current study focused on the general 
deterioration behavior of structural systems, it is important 
to note that the same modeling framework can be directly 
extended to real-world structures, such as bridges exposed 
to corrosive environments, by appropriately calibrating the 
deterioration parameters. This extension will be considered 
in future research to evaluate the influence of corrosion on 
reliability and maintenance planning. Also, integrate sensor-
based inspection data for real-time updating. Additionally, 
linking the DBN model with optimization-based maintenance 
scheduling can provide more direct economic decision 
support.
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