)

~AUT JOURNAL OF
CIVIL

ENVEINEERING AUT Journal of Civil Engineering

AUT J. Civil Eng., 10(1) (2026) 49-64
DOI: 10.22060/ajce.2025.23682.5895

Impacts of Different Deterioration Processes on Structural Time-Dependent Reliability
via Dynamic Bayesian Networks

Pouyan Zargar', Azad Yazdani'*, Mohammad-Rashid Salimi', Mohammad-Sadegh Shahidzadeh?

' Department of Civil Engineering, University of Kurdistan, Sanandaj, Iran.
2Department of Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.

Review History:

Received: Nov. 17, 2024
Revised: Nov. 26, 2025
Accepted: Dec. 19, 2025
Available Online: Dec. 30, 2025

ABSTRACT: Engineering structures are typically subjected to time-dependent deterioration processes,
such as corrosion, fatigue, and carbonation, which gradually reduce their service life and reliability. This
study investigates the time-dependent reliability of structures under different deterioration mechanisms
using Dynamic Bayesian Networks (DBNs). This analysis has the potential to significantly influence
future decisions about the structure’s usage. Three deterioration models: deterministic, stochastic, and

Gamma process, are implemented to represent distinct degradation behaviors. The methodology involves
discretizing the resistance variable in DBN and comparing reliability indices obtained from DBN and
Monte Carlo simulation (MCS) to validate the approach. The DBN results are validated against Monte-
Carlo simulations, showing a maximum discrepancy of 3%, as well as providing standard deviation
(0.0211) and root-mean-square error (0.023) of differences that demonstrate the DBN approach’s
validity and precision. This paper calculates the time-dependent reliability of a portal frame structure
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experiencing resistance deterioration, influenced by various deterioration models. Finally, it presents ~ Time-dependent Reliability

a comparison of the results from time-dependent reliability analysis utilizing various deterioration =~ Gamma Distribution
processes. Among the models, the Gamma process yields the highest reliability index over a 40-year  Dynamic Bayesian Networks
period, while deterministic and stochastic models exhibit slightly lower reliability. Estimates derived
from measurements are more realistic than those based on design values. The findings demonstrate
the capability of DBN to incorporate measurement evidence, providing a robust basis for lifetime
reliability assessment and maintenance planning of deteriorating structures also DBN effectively
captures deterioration effects and probabilistic uncertainty over time, offering a computationally and

time-efficient alternative to Monte-Carlo simulations.

1- Introduction
Conventional structural analysis assumes that the

degrading the structure’s lifetime performance [6-8].
Classical reliability methods for structures neglect the long-

parameters of structural models possess a fixed value. In
numerous civil engineering applications, uncertainty in
geometric dimensions, input forces, material specifications,
and other parameters is unavoidable and cannot be
disregarded, as they significantly impact the final performance
of the structure [1, 2]. Given uncertainties, it is preferable
to assess structural safety using probabilistic methods. The
reliability analysis method is a probabilistic framework used
to calculate the structure’s confidence margin, which plays
an essential role in the analysis and design of structures [3].
Structures and infrastructure systems, crucial for
the usability of modern societies, experience a gradual
decline in performance throughout their service lives due
to environmental degradation [4, 5], a process to which
natural disasters, deterioration mechanisms, and harmful
environmental stressors collectively contribute, thereby
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term impacts of environmental factors on the hardness and
strength of concrete and steel, relying on simplifications,
including the assumption of a constant loading rate.

One of the fundamental components of time-dependent
reliability analysis in structures is the deterioration function,
which is related to the structure’s deterioration mechanism
and is associated with uncertainty. Numerous empirical
and analytical models have been suggested to address the
structural resistance deterioration function while accounting
for its uncertainties [9-11]. To facilitate an efficient
examination of the structural time-dependent reliability of
deterioration, numerous studies have been conducted. One
of the initial models presented is the model by Ellingwood
and Mori [9]. This applies to the reliability-based service-
life assessment of aging concrete structures, as studied by
Rodriguez et al. [12] who investigated the extent of diameter
reduction in rebars due to general and localized corrosion.
Additionally, utilizing the variables of corrosion initiation
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time and corrosion propagation, Stewart and Rosowsky
[13] proposed a formula for reducing the diameter of rebars.
Enright and Frangopol [14] investigated the variables
associated with corrosion initiation time and subsequently
modeled the uncertainty stemming from this initiation using
the lognormal distribution function. A process utilizing the
outcrossing approach was presented [15], which facilitated
the application of traditional reliability tools, including the
first-order reliability method and the second-order reliability
method. To forecast the likelihood and severity of cracking
in reinforced concrete structures that are exposed to chloride
ions, Stewart and Mullard [16] implement a spatial time-
dependent reliability analysis. To track the progression of
the corrosion process, models are implemented that predict
the initiation and propagation of corrosion, as well as the
initiation and growth of cracks. Numerous methodologies for
time-dependent reliability were introduced by Melchers and
Beck [17], such as importance sampling and the first-passage
method. An analytical approach that integrates the stochastic
processes of resistance degradation and variable load was
developed by Van Noortwijk et al. [18]. This approach
employs a Poisson process for load and a Gamma process for
resistance. Much of the prior research in reliability primarily
focuses on assessing the time-dependent bending strength
affected by the corrosion of reinforced concrete elements,
as well as investigating the shear resistance resulting from
corrosion phenomena. In the past two decades, Bhargava et
al. [19] and colleagues have conducted extensive research
to estimate time-dependent corrosion models in reinforced
concrete beams under various shear and bending modes.
Classical reliability methods typically utilize only the
statistical indices of parameters and rely on simplifying
assumptions regarding their distribution, thereby increasing
uncertainty. One method for reducing these uncertainties
is to adopt a Bayesian perspective and employ Bayesian
probabilistic networks.

Probabilistic Bayesian networks integrate Bayesian
principles with graph theory. Bayesian networks are a
graphical representation of the probability distribution of
a collection of random variables. This network comprises
nodes that signify random variables. The edges connecting
the nodes represent the relationship between them, as well as
the conditional probability distribution associated with each
node [20]. For each node, a probability table is generated,
which is then used in statistical inference. In the Bayesian
approach, as opposed to the classical method, a comprehensive
distribution is accounted for each parameter. In this case, all
uncertainties can be accounted for in the parameter under
discussion. A significant advantage of the Bayesian method
is its capacity to integrate various types of information based
on their uncertainty [21, 22]. Bayesian networks are typically
constructed utilizing standard probabilistic models. Bayesian
networks allow for the derivation of a collection of random
variables’ posterior distribution based on a given set of
observations. This procedure is referred to as inference. These
networks are highly appropriate for integrating the potential
for deterioration, signifying a reduction of resistance over
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time [23].

Bayesian networks have gained attention in engineering
risk analysis in recent years because of their intuitive
characteristics and capacity to manage numerous dependent
random variables [24]. Several researchers have employed
Bayesian networks in modeling temporal functions, including
deterioration [25]. Montes-Iturrizaga et al. [26] employed
a Bayesian network to enhance inspection strategies for
offshore structures vulnerable to multiple failure mechanisms.
Attoh-Okine and Bowers [27] introduced an empirical model
for bridge deterioration utilizing Bayesian networks. Sani et
al. [28] introduced a novel model for the analysis of structural
resistance and loads. A Bayesian network is advantageous in
domains characterized by statistical states. In such instances,
each variable possesses a unique and definitive value. This
assumption is a static issue and is inadequate for numerous
problems. A DBN is an augmented Bayesian network
incorporating a time dimension, utilized for modeling dynamic
systems [29]. DBNs address these limitations by augmenting
traditional BN with temporal dependencies, facilitating the
examination of the evolution and dynamic interaction of
risks over time [30].The term ‘temporal Bayesian network’ is
preferable to ‘dynamic Bayesian network’ because it implies
that the model’s structure remains constant while the temporal
variables fluctuate over time, rather than being fixed and
uniform. A DBN is a directed acyclic graphical model that is
particularly suitable for modeling temporal deterioration and
its accompanying uncertainties, and can be readily combined
with real-time data for state inference and model updating
[31, 32].

This paper employs DBN to model the time-dependent
reliability of a portal frame structure experiencing resistance
deterioration, acknowledging the significant impact of
deterioration on structural strength throughout its lifetime and
the efficacy of DBN in probabilistic analysis and deterioration
modeling. The DBN framework models the probabilistic
evolution of structural resistance over time and updates
reliability based on available inspection or measurement
data. Multiple approaches for modeling the degradation
function have been proposed. In this study, instead of relying
solely on classical models, recently proposed deterioration
models have been employed for the deterioration function to
ensure a consistent and comparable evaluation of structural
degradation. Deterministic, stochastic, and Gamma process
deterioration functions are selected to model the deterioration
process. The main assumptions include: (1) structural loads
are treated as random variables, (2) deterioration parameters
are derived from experimental and literature-based data, and
(3) the Gamma process is characterized by time-dependent
shape and constant scale parameters. The DBN framework
is employed as the core reliability assessment tool, enabling
sequential updating of structural performance through its
posterior inference capability when new evidence becomes
available. To ensure the robustness and accuracy of the
DBN predictions, an independent Monte Carlo simulation
is conducted as an external validation benchmark. The
integration of these modern deterioration models within a
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unified DBN-MCS framework, along with the posterior
updating of structural reliability, represents the principal
novelty of this research and addresses an existing gap
in the literature. Ultimately, deterministic and stochastic
deterioration functions, along with the Gamma process, have
been utilized on a one-bay frame, and the results have been
compared.

2- Models of structural deterioration

The strength and stiffness of structures in service may
be altered as a result of aging, which exceeds the baseline
conditions that were assumed during the structural design
process. The service life of structural components and
systems is influenced by the temporal alterations in material
properties. Certain aging effects are harmless; others may
lead to a deterioration of component or system integrity
over time, potentially increasing the risk of structural
failure. The prediction of deterioration is a crucial phase in
the comprehensive lifetime management of buildings [33].
Figure 1 schematically illustrates the decline in the structure’s
resistance over time. The subsequent text delineates various
perspectives on deterioration models, including deterministic,
stochastic, and Gamma process deterioration functions.

2- 1- Deterministic deterioration model

The initial approach to modeling structural degradation
examined in this research is the structure’s resistance based
on a deterministic deterioration function. The degradation of
structural resistance is typically represented by Equation 1

[9].

R(t)=R,xG(r) (1)

The stochastic deterioration function is represented
by G(#), the initial resistance is represented by R, and the
structural resistance at time ¢ is denoted by R(f). Elementary
polynomial models, specifically linear, exponential, and
square root functions of time ¢, are used to evaluate the
reliability of G(f), a function that is typically represented by
basic polynomial functions[9, 14, 34-36]. In recent years,
various researchers have proposed a polynomial function to
account for the effects of different deterioration mechanisms
[28, 37].

The parameters of this function are established through
the analysis of physical and chemical processes and are
contingent upon the type of deterioration mechanism, as well
as the type and usage. This research employs a particular
function for deterministic deterioration and examines the
distinct impacts of each failure mechanism on reliability.

g(t)zl—mF =

¢
1—(at +bx/t—+exp(t—D = @
l—at —b\/t_—exp[j—)

Here, m (0) represents the deterministic time-dependent
deterioration ratio, while g(#) denotes a deterministic
deterioration function, with terms chosen based on primary
deterioration mechanisms. This polynomial function
comprises three terms. The first term represents the linear
model, the second term denotes the square root model, and
the third term illustrates the exponential model, respectively.
This formulation incorporates terms that explain the variations

Initial Resistance R,

~d
=

Resistance

Resistance R(t)

Deterioration

>
Time (Year)

Fig. 1. Schematic representation of the resistance deterioration process over time.
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in resistance resulting from various degradation factors. The
linear term denotes additional deterioration mechanisms, such
as fatigue, while the exponential term represents corrosion,
and the square root term represents carbonation.

The deterioration function’s parameters are typically
estimated and can be adjusted through routine inspections
or observations of the structure. Equation (2) estimates the
parameters a, b, and ¢ based on the assumption that each
term is solely influenced by the designated deterioration
mechanism. Fatigue affects a, carbonation affects b, and
corrosion affects c¢. Consequently, the estimation of these
parameters is facilitated by the quantification of the total
deterioration that can be attributed to each mechanism. The
structure’s type, usage, and location determine the fractional
attribution of deterioration among various damaging
mechanisms. The deterioration of steel structures is primarily
influenced by corrosion, while concrete degradation is largely
affected by carbonation. Additionally, coastal structures are
more susceptible to corrosion, whereas bridge decks are more
vulnerable to fatigue.

2- 2- Stochastic deterioration model

In time-dependent reliability analysis, the majority of
structural deterioration models are empirical. The uncertainties
associated with the most common degradation mechanisms
may be substantial, as evidenced by experimental data.
Studies have shown that the approximated mean degradation
function is insufficient for accurately evaluating structural
reliability when the coefficient of variation for the time-
dependent degradation function G(f) exceeds approximately
4%. Consequently, the uncertainty inherent in the
degradation function must be considered [19]. Additionally,
the resistances at two temporal points, R(¢,) and R(%,), do not
exhibit statistical independence or dependence when G(¥) is
characterized as a non-stationary stochastic process. Without
repair, the principles of deterioration physics are violated,
and the derivative of R(f) cannot be positive. As a result, any
model of resistance deterioration must adequately account for
the stochastic dependence inherent in the degradation process
and the variability associated with structural deterioration.
This deterioration modeling method is predicated on the
formula of the deterministic deterioration model. Additionally,
to incorporate uncertainties in the degradation process and
more accurately represent the stochastic nature of structural
deterioration, the stochastic deterioration model proposed by
Li et al. [36] may be utilized for G(¢), as expressed in the
following equation:

de; )e(t; )

1

G(r)=1- 3)

Il M

l

where, d (¢) is the time-dependent mean deterioration
during time points ¢, and ¢,
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4)

&(t) constitutes a sequence of independent random
variables that adhere to Gamma distributions, characterized
by a mean value of one:

g(ti)zGamma[a?(t") ¢ J ®)

& d(n)

¢ is a time-invariant scaling factor. The mean value of
F(#), denoted as m,, can be computed using Equation (2).
Here, F(¢) represents the deterioration ratio of component
resistance, which follows a Gamma distribution with a mean
value of J. ;q (t)dr .

G(t)=1-F(r)
tjq(t)dt
F(t)zGamma OT

(@

(6)

N (b)

Furthermore, Equation (6b) remains applicable, with
the parameter d (t) articulated as per Equation (7), thereby
guaranteeing that resistance diminishes monotonically with
independent increments while correlations remain among
resistances at various temporal points.

d(t;))=m.(t;)-m,(t,_) (7

where, m(.) is the mean value of deterioration as a
function of lifetime, which follows Eq. (2).

It should be noted that the formulation of the stochastic
deterioration model is based on the same fundamental
degradation expressions presented in Equation (1) for the
deterministic model. To avoid unnecessary repetition of
identical equations, these relations are not rewritten here.

2- 3- Gamma process modeling of deterioration

A recent approach to modeling structural deterioration
is the Gamma process. The Gamma process is an efficient
mechanism for modeling the gradual and monotonic
deterioration of building components. The Gamma process
model possesses a stochastic characteristic in deterioration
prediction and accounts for the temporal variability in the
structural deterioration progression. The Gamma process
model is characterized by independent, non-negative
increments that follow Gamma distributions, which
have a uniform scale parameter and a shape parameter
that varies over time. Deterioration, characterized by
uncertainty stemming from wear, corrosion, fatigue, and
crack propagation, is non-decreasing and can be effectively
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modeled as a Gamma process [38], providing a suitable
framework for random deterioration over time. The Gamma
process models uncertainty in lifetime and/or deterioration
rate. An appropriate model for the degradation of structural
resistance is the Gamma process, which is distinguished by
its independent non-negative increment properties [1, 39].
Various researchers have applied Gamma processes to data:
Cinlar et al. [40] on concrete creep, Lawless and Crowder
[41] on fatigue crack propagation, Kallen and Noortwijk [42]
on corrosion-induced thinning, and Frangopol et al. [43] on
corroded steel gates. Additionally, Samali et al. [44] employed
the Gamma process to model the deterioration of bridges.

In mathematical terms, the continuous-time stochastic
Gamma process [1] is defined as a random variable that
represents the value of resistance deterioration for all ¢ > 0.
Gamma(x|v(t), u) is the probability density function of the
Gamma distribution with parameters v(¢) and u. Its probability
density function is denoted as /, (x). The shape parameter v(7)
is a non-decreasing, right-continuous, real-valued function of
time. In this stochastic process, the initial deterioration value
is set to zero to ensure a monotonic decline over time. The
increase in deterioration from time ¢, to £, may be independent
of the cumulative deterioration at time ¢, and is a nonnegative
value. The Gamma distribution is characterized by a constant
scale parameter and a time-dependent shape parameter,
and the increment X(++Af) - X(¢) follows this distribution,
specifically Gamma(x|v(t+At) - v(t), u). This distribution is
applied to all increments over the time interval. The mean,
variance, and coefficient of variation of the deterioration X(¢)
are presented below:

) | (3
var(X (t)) Vi, and v, (t)=——
u m
The expectation is governed by a power law [15].
E(X(t))zﬂzat—ﬂ 9

u u

Experimental studies can validate a and f, while the
shape parameter v(¢) is a function of time in this context. The
parameters a and S represent the rate of deterioration and the
predominant deterioration mechanism, respectively.

Conversely, the structural resistance degrades over
time as described by the equation R, =R, (I — a #), where
R, represents the resistance at time #, and o and # denote
the deterioration rate and the predominant deterioration
mechanism, respectively [9]. The shape parameter in the
Gamma distribution within the deterioration model signifies
the form of the structural resistance degradation and
deterioration process. Deterioration models characterized by
£ =1 (linear) for reinforcement corrosion, f = 2 (parabolic)
for sulfate attack, and f = 0.5 (square root) for diffusion-
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controlled aging [9]. A noteworthy exception to the Gamma
process is represented by the probability density function of
X(f) when = 1.

fX(,)(x)=Gamma(x‘at,u) (10)

3- Time-dependent reliability analysis using a dynamic
Bayesian network

A Bayesian network is a probabilistic model that
integrates Bayesian principles with graph theory, represented
as a directed acyclic graph [45]. It comprises a network
architecture featuring nodes, edges, and conditional
probability tables (CPTs). These networks offer a concise
graphical representation of existing parameters and their
interrelationships. The nodes of the network signify random
parameters, while the edges denote the relationships among
them. A CPT is generated for each node, utilized in statistical
inference computations. The output of a Bayesian network is
the joint probability mass function of the network’s random
variables.

DBNs are a distinct category of Bayesian networks
that depict stochastic processes. They comprise a series of
slices, each representing a basic Bayesian network at time
t, containing one or more Bayesian network nodes [46]. The
quantization of these links is represented by P(X,,0) for nodes
in the initial slice and P(X,¢+1] X,¢) for subsequent nodes,
and the slices are interconnected by directed links from nodes
in slice 7 to nodes in slice #+1. DBNs model systems that
undergo dynamic changes or evolve over time. They allow
users to manage the system and forecast future variable values
(prediction). They also enable evaluation of unobserved
variables from the past (smoothing), and assessment of
unobserved variables at the present moment (filtering). In
this context, the posterior distribution of the state at time
t is computed by utilizing all available evidence up to that
point. DBN can be regarded as a generalization of Markov
process models, which have frequently been employed to
simulate deterioration [23, 47, 48]. The model is further
enhanced to accommodate broader scenarios involving
resistance deterioration [23]. The DBN model comprises
three components (Figure 2). One of the primary advantages
of the defined model is that, when information is accessible,
it can enhance the reliability of the updating process.

The initial component, the reliability model, comprises
two elements: time-invariant model parameters, which remain
constant, and time-variant model parameters, which change
over time steps f = 0, It comprises the structural state £, at
time z, random variables (x Xy ...,xt), and structural resistance
R, defined by the following mathematical expressions:

P(E, =0)= Ifx (X )f, (. )dXdr, (11)

where Q, :{LS (X,rt)so} and LS (Xr) is the limit
state function.
The deterioration model at time step ¢ and the preceding
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Reliability
Model

Deterioration

Model

Observation

Model

Fig. 2. Structural time-dependent reliability analysis using the general DBN model.

time step #—1 are defined in the second part. This section
defines  various  deterioration models, specifically
deterministic, stochastic, and Gamma process deterioration
functions. Deterioration is represented as {R,...R, R},
where R _, is solely dependent on R. The change Ax between
R, and R, adheres to deterioration models. The mathematical
parameters of the model are provided by:

f(RHI‘RO’Rl’""Rt):f} (RI+I‘RI) (12)
where

Rt+1 :Rt —Ax (@) (13)
and

Ax ~Gamma(x|v(t +1)—v(t),u)

for Gamma process model

Ax ~R

P ® (13

for Deterministic approach

Ax ~RyxF (1)

for Stochastic approach

In the final section, the observation model at any given
time step can include data on the condition of a model
parameter or its deterioration, which can be obtained from
inspections, monitoring systems, environmental parameter
recordings, or other pertinent measurements related to the
model parameters. Indirect and error-prone, resistance
measurements can be expressed as:
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M, =R +& £~N(uo?) (14)

M, represents the measurement of R, with the error
corresponding to a normal distribution.

The measurement uncertainty is modeled using
a Gaussian distribution, which is a widely accepted
assumption in structural reliability and health monitoring
applications. This probabilistic representation accounts for
potential deviations between the true structural state and
the measured values due to factors such as sensor noise,
environmental variability, and modeling simplifications.
The inclusion of measurement uncertainty plays a significant
role in the updating process of the DBN. During Bayesian
inference, the posterior probability of the structural state
is obtained by combining the prior probability (predicted
from the deterioration model) with the likelihood function
derived from observations. As a result, higher measurement
uncertainty leads to a broader posterior distribution and
reduced confidence in the updated reliability, whereas lower
measurement uncertainty results in a sharper posterior
distribution and higher reliability accuracy.

To enhance the clarity of the proposed framework,
the overall computational procedure adopted in this study
is summarized in Figure 3. The flowchart integrates all
methodological components, including the formulation of
deterioration models, evaluation of time-variant structural
resistance, discretization of state variables, construction of
the DBN, sequential posterior updating using observational
evidence, and the statistical validation of DBN-based
reliability estimates through Monte Carlo simulation. This
schematic representation provides a unified view of how
deterministic, probabilistic, and Gamma process deterioration
models are embedded within the DBN framework and
subsequently compared under consistent conditions.
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Fig. 3. Comprehensive flowchart of the proposed methodology, illustrating deterioration modeling, build
DBN and inference, posterior updating, and Monte Carlo—based validation.

4- The Impact of Different Deterioration Processes

Figure 4 illustrates the portal frame structure [49], which
is subject to concentrated forces in both the horizontal and
vertical directions. The frame structure comprises five
nodes and four elements. This figure illustrates the material
properties of the elements.

The corrosion of steel reinforcement and the creep of
concrete result in a decrease in the plastic moment capacities
(M, M,, and M)). In an effort to avoid complexity, it is
assumed that only M, is deteriorating, while the applied
loads (P, and P,) and moment capacities of M, and M, are
considered statistically independent random variables. The
parameters of the probabilistic distributions are delineated
in Table 1. Deterioration processes are represented using
deterministic, stochastic, and Gamma process deterioration
functions as outlined in Section 2. In the Gamma process,
the shape parameter v(¢) is defined as o.f, while the scale
parameter u is chosen. The parameter values are presented
in Table 1.

The limit state is exclusively defined for moment capacity
in this example. A component failure event occurs when the
bending moment at a hinge attains its moment capacity. Given
that a hinge may develop on either side of an element, a total
of eight hinge locations are identified, labeled 1 through 8
in Figure 4. Prior research has utilized a plastic mechanism
to determine the failure modes of these frame structures [50,
517
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The plastic mechanisms method applies to simple
structures, whereas identifying all failure modes in larger
structures poses challenges. A systematic approach
appropriate for such building frames is the Branch and Bound
method [52]. This study identifies two predominant modes:
the beam failure mode and the lateral failure mode of the
frame structure, as illustrated in Figure 5. These two principal
failure mechanisms have been employed in modeling the
failure of elements within a DBN. Subsequently, the relevant
limit state functions can be derived directly through plastic
analysis or the virtual work theorem.

The DBN formulated for structural time-variant reliability
in the context of deterioration is illustrated in Figure 6.
Equivalent variables defined in finite domains are used to
replace all random variables defined in continuous domains.
Discretization is extensively employed for managing
continuous random variables in Bayesian networks, as
it represents the most straightforward method for exact
inference [54]. Through the partition of its domain £ into
a finite collection of intervals w, = 1,...,m, a discretization
of the continuous variable X is obtained. This discretization
occurs sequentially, with one variable addressed at a time
and hierarchically within the Bayesian network, whereby
parent variables are discretized prior to their children.
Consequently, DBN comprises solely discrete variables. The
network structure can be modeled with nodes, edges, CPTs,
and connectivity via direct links between slices to determine
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Table 1. Statistical parameters and distribution types of random variables.

Rapdom Distribution Mean Coefﬁcignt of  References
variables variation
P1 Gumbel 20 kN 0.30 [52]
P2 Gamma 40 kN 0.30 [52]
Ml Lognormal 75 kKN.m 0.05 [52]
M2 Lognormal 75 kKN.m 0.05 [52]
M3 Lognormal 101 kKN.m 0.05 [52]
o Deterministic 0.5 - [53]
u Deterministic 0.5 - [53]
& Deterministic 0.01 - [37]
€ (kN.m) Normal 0 0.15 [53]
P,

0 7

& I=4.77%10(~%) = =

by = fl|=| ™ .

o A Elastic modulus (GPa): 210

o o . J Cross section area (m?): 4 = 1073
3 ol *  Moment of inertia (m*): I

— e 5

Fig. 4. A portal frame structure with 5 nodes and four members subjected to horizontal and vertical
concentrated forces.

(@) (b)

Fig. 5. Failure mechanisms of the five dominant failure modes identified by the branch and bound
method: (a) beam mode and (b) combined mode..
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Fig. 6. Dynamic Bayesian network for time-dependent reliability.

the frame’s reliability over time. The degradation process for
R, is modeled using the three previously discussed methods.
To make inferences in DBNS, three distinct types of CPTs
need to be computed. The CPTs’ calculations are based on the
mathematical parameters of the three models.

P(Rz+1 =7 |Rt):FRk (rk+ R:+1)_F1ek (rk7|Rt+1) (15)

P(E, =0R, =r,)= ij (X)fy, (r)axdr, (6
$<0

P(Mt :mk|Rt):FMk (mI:r Rt)_FMA (mk_|Rt) 17

where 7,” and r," denote the lower and upper limits of
the interval w,_and f,(r,) represents the probability density
function of uniform distribution on the interval {LS < 0| r,
<r,< r}. Equation (16) can be evaluated using structural
reliability techniques, including the first-order and second-
order reliability methods.

This study proposes that, to estimate the parameters a,
b, and ¢ for the deterministic and stochastic deterioration
models, the remaining resistance at the conclusion of the
40th year is 80% of the initial resistance, indicating 20%
deterioration. The mechanisms of carbonation, corrosion,
and fatigue contribute to the deterioration of the structure at
rates of 10%, 45%, and 45%, respectively. These assumptions
are more accurate for steel structures [37]. This assumption
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aligns with the findings of Li et al. [36], allowing us to
compare our findings with those of the prior study. This
research endeavors to evaluate the probability of failure for
deterministic, stochastic, and Gamma process deterioration
functions, recognizing that the reduction in structural strength
will vary depending on the type of structure and its location.

In deterministic deterioration, it is posited that g(40)=
(4
1-a.40-b~40 -exp(%). The three unknown parameters can

thus be determined by equating the total decrease fraction to
the individual terms. The values of a, b, and ¢ are 0.09/40,
0.02//40 , and In(0.09)x40, respectively.

Figure 7 illustrates the outcomes of a time-dependent
reliability analysis employing a deterministic deterioration
model through the DBN model and the Monte-Carlo
simulation method. The results of the DBN exhibit a
maximum discrepancy of 3% compared to the Monte-Carlo
results, with standard deviation(STDV) and root mean-square
deviation (RMSD) values of 0.0211 and 0.023, respectively,
thereby confirming the accuracy of the proposed DBN
model. The stochastic deterioration model was computed
using the stochastic deterioration function, incorporating the
uncertainty of the deterioration process, with the deterioration
ratio F(¢) characterized by a Gamma process.

Figure 8 illustrates various time-dependent resistance
functions derived from the combined and individual effects
of degradation functions obtained through three probabilistic
resistance degradation models: linear, square root, and
exponential. These functions facilitate calculations of time-
dependent reliability and joint probability. To investigate the
influence of the degradation function on a stochastic model,
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the values of G(¢) are determined from independent Gamma
distribution functions. The sample functions presented in
Figure 8 illustrate the values of structural degradation for the
statistically independent process. Figure 8 illustrates that the
assumption of stochastic independence allows for strength
reversals without any external influences.

In the stochastic method for determining failure
probability in resistance degradation models over 40 years,
the values of G(t) are represented using various Gamma
distribution functions, whereas in the deterministic method,
the degradation function corresponds to the mean values of
these different Gamma distribution functions.

Figure 9 illustrates the significance of quantitatively
assessing the parameters that characterize the time-dependent
increase in the deterioration of structural resistance due
to aging, evaluated both in combination and separately,
utilizing linear, square root, and exponential models within
the deterministic and stochastic deterioration functions,
respectively. Figure 9(a) presents results indicating the
probability of failure under a deterministic approach, wherein
uncertainties are disregarded; consequently, the value of
G(t) is numerically equivalent to the mean values of various
Gamma distribution functions. The results of the stochastic
deterioration function utilize samples of the deterioration
function to compute the reliability index and, consequently,
the probability of failure, as illustrated in Figure 9(b). This
calculation incorporates probabilities and uncertainties
derived from the Gamma distribution functions presented in
Figure 8 for G(t).

For deterministic and stochastic deterioration functions,
the square root model’s failure probability is at its highest
for up to 40 years, while the exponential model’s failure
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probability rises quickly. Ellingwood and Mori [9] and Li et al.
[36] have also reported these observations. The configuration
of the deterioration functions exerts a more significant impact
as G(40) diminishes. The failure probability is highly sensitive
to minor variations in strength when the residual strength at
time t is low; this sensitivity compounds over time.

In the Gamma process, the linear shape parameter is
defined as v(f)=a.t, and the scale parameter is denoted as
u. The parameter values are presented in Table 1. Figure 10
illustrates the comparison of results from the time-dependent
reliability analysis using the Gamma process, alongside
deterministic and stochastic deterioration models derived
from DBN, with respect to the reliability index over a 40-
year period.

The results derived from the DBN are unobserved,
as indicated in Section 3. Utilizing DBNs allows for the
derivation of the posterior distribution of a collection of
random variables based on a set of observations. In this article,
the filtering model is employed to account for observations,
representing the primary advantage of this tool. Figure 10’s
first line displays the results obtained by DBN regarding the
reliability index over a 40-year period, excluding evidence.
The resistance measurements of R, over 40 years are based
on a deterministic deterioration function. Upon evaluating the
evidence and adhering to the precise inference for dynamic
Bayesian networks, the results depicted in Figure 10 and
Table 2 indicate that the structural posterior reliability indices
of filtering based on the Gamma process are inferior to
those obtained without evidence, due to the selected Gamma
process’s overestimation of actual resistance deterioration,
particularly after the seventh year.

The findings of deterministic and stochastic deterioration
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Table 2. Reliability index of the frame with evidence (Gamma process), without evidence (Gamma process),
and deterministic and stochastic degradation models for different years.

Years
Models
1 10 20 30 40 STDV ~ RMSD
Stochastic approach 2.24 2.05 1.93 1.74 2.00 0.0563  0.0591
Deterministic approach 2.25 2.11 2.05 1.99 2.08 0.0455 0.0477
Gamma approach without evidence 2.22 2.05 1.94 1.77 2.00 0.0329  0.0641
Gamma approach with evidence 2.26 2.05 1.97 1.90 2.01 - -
2.3
22
=
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Fig. 9. Dependence of cumulative failure probability on combination and separate effect of three resistance
degradation models (Linear, Exponential, and Square-root): (a) Deterministic degradation function and (b)
Probabilistic degradation function.

models indicate that these approaches align more closely
with evidence-based filtering, and until the 30th year, their
reliability indices are nearly identical; thereafter, both
stochastic and deterministic models exhibit a decline in value.

5- Conclusion

This study addressed the problem of time-dependent
reliability assessment in a structure with resistance
deterioration, where material degradation and load
uncertainties reduce structural safety over time. The
importance of this topic lies in its direct impact on lifetime
performance, maintenance planning, and cost efficiency of
infrastructure systems. The DBN approach was employed
to model and infer the reliability evolution of a deteriorating
structure, offering a probabilistic framework that integrates
uncertainty and evidence updating. The study considered
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three deterioration models: deterministic and stochastic
degradation models, as well as the Gamma process, with
loads being treated as random variables. Their impact on
the reliability index of a one-span frame with resistance
deterioration was compared over a 40-year service life with
the aid of DBN modeling in MATLAB software.

The adopted methodology provided a systematic and
flexible framework capable of incorporating inspection data
and updating structural reliability dynamically. The results of
the frame structure reliability index show the importance of
examining deterioration models, and that the correct selection
of deterioration models is vital in the design of structures,
which is very important from an economic point of view,
and that deterioration over time significantly reduces the
reliability index of structures. The use of DBN allows for the
explicit modeling of dependencies among parameters and
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enables posterior reliability estimation when new evidence
becomes available. While the MCS was used as a reference
for validation, the DBN demonstrated high computational
and time efficiency and accuracy, with only minor deviations.

The proposed DBN framework effectively captures
time-varying deterioration mechanisms and provides
accurate reliability predictions under different degradation
models. The deterministic and stochastic models showed
closer alignment with the evidence-based filtering approach
compared to the Gamma process without evidence, especially
during early service life. The Gamma process tended to
overestimate deterioration after the seventh year, leading to
lower posterior reliability indices. Quantitative comparison
of deterioration functions demonstrated that the square-root
model results in the highest failure probability, followed
by the exponential and linear models. The DBN approach
achieved less than 3% deviation from the MCS results,
confirming its validity for structural reliability analysis.
From an economic and maintenance perspective, the findings
emphasize the importance of selecting suitable deterioration
models for planning inspection intervals and maintenance
strategies, ensuring cost-effective service life management.
The study’s novelty lies in integrating deterministic,
stochastic, and Gamma deterioration processes into a unified
DBN framework that can incorporate evidence updating,
providing a realistic and adaptive reliability assessment tool.

While the current study focused on the general
deterioration behavior of structural systems, it is important
to note that the same modeling framework can be directly
extended to real-world structures, such as bridges exposed
to corrosive environments, by appropriately calibrating the
deterioration parameters. This extension will be considered
in future research to evaluate the influence of corrosion on
reliability and maintenance planning. Also, integrate sensor-
based inspection data for real-time updating. Additionally,
linking the DBN model with optimization-based maintenance
scheduling can provide more direct economic decision
support.
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