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ABSTRACT: Shape Memory Alloys (SMAs) are advanced metallic materials that exhibit two distinct 
behaviors: the Shape Memory Effect (SME), which enables the recovery of pre-stress through heating 
in the martensitic phase, and the Superelasticity (SE), which allows for reversible strain recovery upon 
unloading in the austenitic phase. The main families of SMAs include Cu-based, Fe-based, and Ni-
Ti alloys. However, the high cost of Ni-Ti limits its widespread use in civil engineering applications. 
This review paper synthesizes and compares previous experimental and numerical studies on the use of 
SMAs as longitudinal or transverse reinforcements in reinforced concrete (RC) columns and cylinders. 
This paper is divided into two main sections that introduce the research using the SE (enhancing self-
centring behavior) and SME (in pre-stressing application) features of SMA in the last decades. The 
results showed that using SMAs in the plastic hinge region of the column was an excellent idea for 
reducing residual deformation and increasing the ductility of the column under seismic loading.  The 
results related to utilizing SME features in the column enhanced its stiffness and lateral strength. In 
contrast, in SE cases, the existence of SMA showed reverse consequences, causing a decrease in the 
column’s stiffness, although its strength occasionally declined. It underscores the need for further 
research toward cost-effective alloys, improved bonding, and the development of design guidelines for 
SMA-reinforced RC structures. 
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1- Introduction
Strengthening reinforced concrete (RC) structures is 

crucial to extend their service life and enhance performance 
under increasing demands, such as seismic loads. Strategies 
generally fall into three categories: repair, which restores 
minor deterioration; rehabilitation, which recovers lost 
capacity; and retrofitting, which significantly enhances 
performance parameters such as ductility, strength, fatigue 
life, and service life [1]. Over the past decades, conventional 
retrofitting methods—including steel plate bonding, concrete 
jacketing, externally bonded fiber-reinforced polymers 
(FRPs), external prestressing, and ultra-high-performance 
concrete (UHPC) laminate—have been widely applied [2-
7]. While effective, these approaches often involve high 
labor demand, specialized tools, corrosion susceptibility, or 
limited long-term efficiency, motivating the search for more 
advanced solutions [8, 9].

The confinement of RC columns plays a crucial role in 
improving ductility, delaying failure, and enhancing load-
bearing capacity under severe loading conditions. FRP wraps 
and steel jackets provide passive confinement, but they 
engage only after lateral expansion occurs, leading to early 
surface damage [10-12]. Several studies have demonstrated 
that active confinement enhances the ductility of concrete 

under compression and delays the onset of concrete damage. 
A good illustration of this is the Gamble et al. [13] work 
that had focused on using pre-stressed strands and tensile 
steel strips for confining full-scale RC circular columns. 
Saaticoglu and Yalcin [14] investigated the seismic behavior 
of full-scale rectangular and circular RC columns confined by 
using external prestressing strands. Furthermore, prestressed 
FRP strips/straps were introduced to confine RC columns 
actively [15, 16]. Applying active confinement by using 
FRP strips or steel strands  has disadvantages such as  the 
need for  special mechanical tools, high time-consuming, 
and labour-intensive to apply sufficient pre-stressing force, 
which are serious concerns regarding the confinement of 
technical practice. These drawbacks have stimulated interest 
in shape memory alloys (SMAs), which can provide active 
confinement without the need for mechanical post-tensioning 
equipment [17]. 

SMAs exhibit two unique behaviors: the shape memory 
effect (SME), which allows recovery of plastic strains upon 
heating, and superelasticity (SE), which enables self-recovery 
of large deformations upon unloading [17-19].  The SMAs 
show other advantages, such as corrosion resistance and an 
easy installation process, especially in pre-stressed cases. 
Therefore, SMAs are an attractive choice to use in existing 
and new structures.
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Although many studies have investigated different 
confinement and strengthening techniques for RC columns, 
systematic reviews of shape memory alloy applications 
remain limited. Previous reviews have generally summarized 
individual studies without providing a critical comparison 
of SE and SME behaviors and their effects on RC column 
behavior, incorporating the most recent findings, comparing 
the performance of different SMA alloys (Ni-Ti, Cu-SMA, 
Fe-SMA), or discussing design guidelines and alloy-specific 
implications. This paper addresses these gaps by consolidating 
the available experimental and numerical research and 
clarifying the practical role of SMAs in retrofitting and 
rehabilitation. The review focuses on RC columns, beginning 
with a discussion of fundamental SMA properties, followed 
by separate examinations of SME-based and SE-based 
applications, along with a synthesis of key challenges, design 
considerations, and directions for future research.

2- Shape Memory Alloy Overview
SMAs, often referred to as smart alloys, were first reported 

by Arne Ölander in 1932 [20]. The term “shape memory” was 
later introduced by Vernon in 1941 [21]. The unique potential 
of these materials was recognized in 1962 when Buehler and 
Wang demonstrated the shape memory effect in a nickel–
titanium alloy, now widely known as Nitinol [22]. Since then, 
SMAs have attracted attention in diverse sectors, including 
aerospace, automotive, biomedical devices, robotics, and 
civil engineering [23-26].

Although copper- and iron-based SMAs such as Cu–Al–
Ni, Cu–Zn–Al, and Fe–Mn–Si are cost-effective and readily 
available, their mechanical instability and inconsistent 
thermal performance often limit their use. In contrast, Ni-
Ti alloys exhibit superior reliability and thermo-mechanical 
behavior, which has made them the dominant SMA for 
engineering applications [27-30].

2- 1- Shape Memory Effect and Superelasticity
SMAs can exist in three phases: austenite, twinned 

martensite, and detwinned martensite, according to Figure 1  
[31]. Transformation between these phases is the foundation 
of their two unique behaviors: the SME and SE. In SME, 
deformation in the martensitic state is recovered upon heating. 
Transformation begins at the austenite start temperature 
(As) and completes at the austenite finish temperature (Af). 
Cooling reverses the process at the martensite start (Ms) 
and finish (Mf) temperatures [32] (see Figure 2). In SE, 
deformation is recovered upon unloading at temperatures 
above Af. This enables large strain recovery without heating, 
which is particularly valuable for seismic applications [33, 
34]. Figure 1 illustrates the basic crystal structures of the 
austenite and martensite phases, while Figure 2 shows the 
thermal hysteresis and transformation cycle of Ni-Ti SMAs 
[31-35].

Ni-Ti-based SMAs are the most studied, but they face 
challenges such as high cost, limited machinability, and 
degradation of superelasticity at low service temperatures 
[36]. To address these issues, researchers have investigated 
Cu–Al–Mn alloys, which demonstrate stable superelastic 
behavior at wider temperature ranges and are easier to machine 
[37].  More recently, Fe-based SMAs have gained attention 
for their low cost and promising performance in structural 
strengthening. However, their use in RC confinement remains 
relatively limited, highlighting a need for further comparative 
studies.

2- 2- Active Confinement Using SMA
Active confinement in RC columns can be achieved 

through the shape memory effect. When deformed in the 
martensitic phase, SMAs store residual strains. Upon 
heating above Af, the alloy attempts to return to its original 
shape, generating significant recovery stress. If the SMA is 

 
 

Figure 1 The crystal structures and phases of SMAs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The crystal structures and phases of SMAs.
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externally restrained, this stress translates into prestressing 
confinement pressure on the surrounding concrete [38]. 

A practical illustration is the use of SMA spirals around 
the plastic hinge region of RC columns (Figure 3). In this 
method, Ni-Ti–Nb wires are prestrained in the martensitic 
phase, wrapped as spirals, and then heated to activate recovery. 
The wires contract, applying continuous confinement to the 
column. Due to their wide thermal hysteresis, Ni-Ti–Nb alloys 
are particularly suitable for structural confinement in variable 
ambient conditions. For example, Dommer and Andrawes 
[39] reported transformation temperatures of 68sA C=   
and 76fA C=  , with sM and fM below 105 C−  , ensuring 
stability across a broad range of environments. However, 
despite encouraging experimental outcomes, applications 
of SMA-based active confinement in RC columns remain 
limited. Most studies focus on Ni-Ti alloys, with fewer 
investigations into Cu–SMA and Fe–SMA alternatives. 
Comparative evaluations of these alloys in terms of cost, 
durability, and confinement efficiency are still lacking, 
underscoring the need for systematic reviews such as the 
present work.

3- Applications of SMA Materials in Columns
SMAs possess two distinctive characteristics that make 

them highly attractive for structural applications: the SE 
and the SME. SE enables SMAs to undergo large reversible 
strains and recover their original shape upon unloading, while 
SME allows recovery of plastic deformation through heating. 
These unique behaviors have been increasingly exploited in 
reinforced concrete columns to improve seismic performance, 
enhance ductility, and reduce residual deformations.  In the 
following subsections, the applications of SMAs in columns 
are discussed separately, first from the perspective of their 
SE behavior and then with emphasis on their shape memory 
response.

3- 1- Focusing on the Superelastic Effect of SMAs
Several studies have investigated the use of SE-SMAs in 

the plastic hinge region of RC columns to enhance seismic 
resilience. Saiidi and Wang (2006) [40] were among the 
first to examine the seismic response of RC bridge columns 
reinforced with SMA rebars. Their experiments on ¼-scale 
specimens demonstrated that integrating SMA bars in 
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Figure 2 a) Thermal hysteresis of SMAs [83]  b) The phase transformation of Ni-Ti SMA [31-35]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. a) Thermal hysteresis of SMAs [38] b) The phase transformation of Ni-Ti SMA [31-35].

 
 

Figure 3 Applying active confinement by using SMA spirals [39]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Applying active confinement by using SMA spirals [39].
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the plastic hinge zone could nearly eliminate residual 
deformations, with up to 100% recovery of plastic strain. 
The SMA-reinforced column also showed improved column 
ductility and strength and reduced damage when repaired 
with Engineered Cementitious Composites (ECC). In a 
subsequent study, Saiidi et al. (2009) [41] combined Ni-
Ti SMA and ECC to evaluate the performance of bridge 
columns under quasi-static cyclic loading. Results indicated 
that the SMA–ECC column exhibited the least damage and 
the highest ductility among all tested configurations. The 
ratio of residual to maximum displacement in the SMA–
ECC column was approximately one-sixth of that observed 
in conventional RC columns, confirming the excellent re-
centering capacity of SE-SMAs. Extending this concept 
to large-scale bridge systems, Noguez and Saiidi (2012, 
2013) [42, 43] conducted shake-table tests on a quarter-
scale four-span bridge model incorporating SMA and ECC 
in the plastic hinge regions. Compared with conventional 
steel-reinforced and post-tensioned columns, the SMA/ECC 
system significantly reduced permanent displacements and 
surface cracking.  Varela and Saiidi (2014) [44] investigated 
the combined use of Cu–Al–Mn SMA bars and ECC in the 
plastic hinge region of a quarter-scale bridge column tested 
on a shaking table. The inclusion of ECC effectively reduced 
surface cracking and spalling, while the SMA bars improved 
self-centering capability under cyclic loading. Both analytical 
and experimental results confirmed that the SMA–ECC 
system successfully minimized residual deformation and 
maintained functionality even after severe seismic excitation. 
Additionally, they evaluated the plastic hinge length of the 
Cu–Al–Mn SMA column and found it to be approximately 
130 mm, consistent with half the SMA length above the 
footing, providing a useful reference for future design models 
of SMA-reinforced bridge columns. Shrestha and Hao (2014) 
[45] validated a numerical model of SMA-reinforced bridge 
piers using experimental data from shake table tests, followed 

by a parametric study on three prototype bridge bents with 
single and multiple piers reinforced with either steel or 
SMA bars in the plastic hinge regions. Incremental dynamic 
analyses demonstrated that SMA reinforcement substantially 
reduced residual displacements while maintaining comparable 
peak drift response to conventional steel-reinforced bents. 
Notably, steel-reinforced piers exhibited a rapid increase in 
residual drift following yielding, whereas SMA-reinforced 
piers displayed a gradual drift accumulation, confirming the 
superior re-centering ability of SMA bars. Nikbakht et al. 
(2015) [46] conducted an analytical investigation on precast 
segmental bridge columns reinforced with superelastic SMA 
bars combined with central post-tensioning (PT) strands 
(Figure 4). Through nonlinear static and time–history 
analyses, they compared self-centering, SMA-reinforced, 
and mild steel (MS)-reinforced columns under different PT 
levels (40% and 70% of the strand tensile stress). The results 
indicated that SMA-reinforced columns achieved greater 
energy dissipation and lower peak lateral displacements 
than self-centering columns without SMA reinforcement. 
Although the SMA columns exhibited lower stiffness and 
strength up to 6% drift, their seismic resilience and re-
centering capacity were superior. Increasing the PT level 
enhanced overall strength and energy dissipation but had 
minimal influence on residual displacement. The influence of 
SMA bar size was also highlighted: larger-diameter SMA bars 
provided greater strength but lower stiffness and equivalent 
viscous damping, whereas smaller-diameter bars (10 mm) 
offered more balanced performance. These results highlight 
the effectiveness of SMA/PT hybrid systems in enhancing the 
seismic response of precast segmental bridge columns. 

Shrestha et al. (2015) [47] carried out an FE model in 
OpenSees software to evaluate the effectiveness of using 
Ni-Ti SMA and Cu-Al-Mn SMA combination with ECC 
materials in the plastic hinge zone of RC columns under 

 

   a                                                                                               b 
Figure 4 a) Detail of precast bridge column segments equipped with SMA or conventional mild steel starter 

bars b) lateral load–deflection behavior [46] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. a) Detail of precast bridge column segments equipped with SMA or conventional mild steel starter bars 
b) lateral load–deflection behavior [46]
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the shaking table, according to Table 1. The results of the 
analytical study showed that the stated method provided 
significant re-centring capabilities and reduced the column 
damage. Figure 5 shows the longitudinal and transverse 
residual drifts of specimens that are limited to 1% drift of all 
scaled near-fault ground motions. Hosseini et al. (2015) [48] 
carried out on using Cu–Al–Mn SMA and ECC materials in 
the plastic hinge zone of columns under seismic loading test 
(Quasi-static reversed cyclic loading). According to Figure 6, 
A new column constructed with a pre-fabricated ECC tube, 
which was reinforced with transverse and longitudinal steel 
rebar in total or partial SMA replacement at the plastic hinge 
zone and filled with conventional concrete, was proposed 
in this experimental study. Utilizing Cu–based SE-SMA 
bars can recover up to 12% inelastic strain. ECC materials 
showed excellent bonding with steel, shear resistance, energy 
absorption, and tensile ductility. Also, exhibited lower crack 
widths and permeability compared to conventional concrete. 
The results showed that although the proposed column 
reduced stiffness, energy absorption, and lateral strength, 
the permanent deformations in columns were also decreased 
remarkably.

Tazarv and Saiidi (2016) [49] used three low-damage 
materials, such as superelastic Ni-Ti SMA, ECC, and UHPC 

for developing a precast column (with HCS acronym) 
according to Figure 7. The precast column showed better 
seismic performance compared with a cast-in-place (CIP) 
column with conventional materials. According to this 
data, the cast-in-place column damage is significantly more 
serious than the precast counterpart; in other words, the HCS 
column occurred just with ECC cover spalling at a 12% 
drift ratio. Moreover, the residual deformation of HCS was 
approximately 80% lower than that of the CIP column. The 
ductility and strength of the HCS column increased due to 
the occurrence of stiffness degradation.  Varelal and Saiidi 
(2016, 2017) [50, 51] proposed an unprecedented idea of 
precast modules designed for disassembly to provide resilient 
bridge columns. The superelastic SMAs and ECC material 
were utilised to access resiliency to minimise permanent drift 
and damage, respectively. That idea caused the rest of the 
column to remain elastic.  Two one-fourth scale columns by 
precast modules in different types of SMA bars (Cu-Al-Mn 
and Ni-Ti were designed. According to Figure 8, The precast 
modules consist of prefabricated concrete-filled fibre–
reinforced polymer tubes and prefabricated ECC plastic 
hinges. At first, each of the specimens was tested under 
simulated earthquakes, and disassembling and reassembling 
of the modules were done after cracking. Then, the specimens 

Table 1. Details of the plastic hinge in columns [47].
Table 1 Details of the plastic hinge in columns [47]. 

 
Bridge type Reinforcement details Plastic hinge zone 

RC bridge 12-10 mm steel bars Conventional concrete 

PT bridge 8-10 mm steel bars with post-tensioning element Conventional concrete 

Rubber bridge 7-10 mm steel bars with post-tensioning element Rubber element 

Ni-Ti bridge 9-13 mm Ni-Ti bars ECC 

Cu-Al-Mn bridge 9-19 mm Cu-Al-Mn bars ECC 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5 Longitudinal and transverse residual deformation of tested specimens 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Longitudinal and transverse residual deformation of tested specimens.
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a                                                                                                     b 

 

Figure 6 a) Details of the proposed column and b) Manufacturing process [48]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. a) Details of the proposed column and b) Manufacturing process [48].

 
Figure 7 Base-column connection detail [49]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Base-column connection detail [49].
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were retested to investigate the effect of recycling column 
components. The results depicted that the reassembled 
specimen showed similar behaviour compared to the first 
specimen, but was more flexible. 

Hosseini and Gencturk (2019) [52] assessed the behaviour 
of ECC and Cu-Al-Mn superelastic SMAs in bridge piers 
under seismic loading. According to Figure 9. a and Ref [48], 
five columns with different details, including a reference 
specimen and 5 various specimens’ configurations with ECC 
and SMA rebar, are modelled in a commercial FEM package, 
ATENA [53]. Figure 9.b illustrates the SMA material model 
and the bond model between steel and SMA rebar. The 
behaviour of SMA rebar and ECC materials is simulated 
using a one-dimensional constitutive model and a constitutive 
model for concrete with smeared reinforcement. The FEM 
results are compared with the experimental study [48]. The 
shape of the hysteresis curves, permanent deformation, post-
peak degradation, and lateral strength are investigated.  Xing 
et al. (2020) [54] proposed a new approach for strengthening 
columns by near-surface mounted (NSM) of Ni-Ti SMA bars 
and CFRP jackets for taking advantage of the superelastic 
properties of SMA materials, see Figure 10. Seven specimens 
were considered to investigate the impact of bar ratios and 
types (SMA and CFRP) and the effect of CFRP jacketing, 
then tested under quasi-static reversed cyclic loading with 
constant axial force. The flexural behaviour, ductility, and 
lateral strength of columns strengthened using NSM bars 
were increased without stiffness degradation. Moreover, the 
combination of NSM bars and CFRP jacketing showed better 
lateral performance than other specimens due to providing 

additional confinement at the critical section of the column.
Gholipour and Billah (2022) [55] have modelled the 

scaled column using ultra-high-performance fibre-reinforced 
concrete (UHPFRC) jacket and SMA bars in LS-DYNA 
software according to Figure 11.a and have evaluated under 
lateral impact loads of different velocities. Axial load ratio 
(ALR), impact velocity (Vimp), the thickness of the UHPFRC 
jacket (tU), and SMA bar type were the main considered 
parameters in this numerical paper to assess the column 
performance. The results showed that the lateral strength of 
the specimen was dependent on the ALR value. It was shown 
that the range ALR between 0.1 and 0.15 had a positive 
influence; on the contrary, as the ALR value becomes greater 
than its critical value of 0.125, a negative impact on SMA-
reinforced UHPFRC columns’ lateral strength was detected. 
Furthermore, the UHPFRCC jacket thickness of 60 mm was 
the optimum value based on the performance of the tested 
specimens. Figure 11.b illustrates the failure behaviour of 
specimens with various configurations.

Benshams et al. (2022, 2023) [56, 57] Conducted 
comprehensive numerical investigations on the seismic 
performance of bridge piers reinforced with SMAs in 
combination with high-ductility cementitious materials, 
including HPFRC and ECC, in the plastic hinge region. 
In these studies, Ni-Ti and Cu–Al–Mn SMAs were used 
as longitudinal reinforcements to improve self-centering 
and reduce residual deformations under near-field ground 
motions.

Using incremental dynamic analysis (IDA), multiple pier 
configurations were subjected to 28 and 56 pairs of seismic 

 

Figure 8 The details of the proposed column with precast modules [50]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The details of the proposed column with precast modules [50].
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b 

Figure 9 a) SE material and bond model b) Details of FEM modelling [52]. 

 

 

Fig. 9. a) SE material and bond model b) Details of FEM modelling [52].
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records to evaluate their collapse capacity and fragility. 
The results showed that SMA-reinforced piers exhibited 
significant reductions in residual drift and enhanced seismic 
resilience compared to conventional RC counterparts. 
Furthermore, the combined use of Ni-Ti SMAs and ductile 
concretes (ECC or HPFRC) provided the most favorable 
performance, with up to a 30% increase in median collapse 
capacity and substantial improvements in ductility and energy 
dissipation. These findings highlight the effectiveness of 
SMA–ductile composite systems in improving both strength 
and post-earthquake functionality of bridge columns.

As summarized in Table 2, The collective findings reveal 
consistent trends across both experimental and analytical 
studies investigating the application of SE SMAs in reinforced 
concrete columns. In nearly all cases, SMA-reinforced 
columns exhibited a substantial reduction in residual drift—
often exceeding 90% compared to conventional steel-
reinforced columns—demonstrating the strong recentering 
capability of SE-SMAs. However, this improvement 
typically came at the cost of reduced initial stiffness and 
lateral strength, particularly in columns using Ni-Ti SMAs, 
which have a lower elastic modulus than steel.

A clear distinction can be observed between studies 
using Ni-Ti SMAs and those employing Cu–Al–Mn alloys. 
While Ni-Ti-based systems consistently achieved superior 
recentering and ductility enhancement, Cu–Al–Mn SMAs 
offered a more economical and machinable alternative, though 
with slightly reduced energy dissipation and transformation 
stability under cyclic loading. In hybrid configurations where 

ECC or UHPC was combined with SMA reinforcement (e.g., 
Saiidi & Wang (2006) [40]; Tazarv & Saiidi (2016) [49]), 
The material collaboration significantly mitigated concrete 
cracking and spalling, resulting in improved overall column 
durability. In contrast, SMA-only systems without advanced 
concrete matrices (e.g., Nikbakht et al. (2015) [46]) tended 
to exhibit higher deformation recovery but at the expense of 
stiffness and energy absorption.

From a testing perspective, shake table experiments (e.g., 
Saiidi & Wang (2006) [40]; Varela & Saiidi (2014) [44]) 
provided direct evidence of improved self-centering behavior 
under realistic dynamic excitations, whereas numerical studies 
(e.g., Shrestha et al. (2014) [45]; Hosseini & Gencturk (2019) 
[52]) confirmed these findings under broader parametric 
conditions, including variable reinforcement ratios and ground 
motion records. Despite variations in experimental setups, 
both methodologies converged on similar conclusions—
SMA integration is most effective when applied locally in the 
plastic hinge region, rather than full-length reinforcement, 
balancing both economy and performance.

3- 2- Focus on the Shape Memory Effect Feature
According to studies in the past, SMAs have provided 

remarkable ductility and confinement capability compared to 
FRP and steel rebar in columns. In the case of installation, the 
spirals and longitudinal SMA rebar offer some advantages, 
e.g., considerably decreased labour costs, immediate 
activation of pre-stressing, etc.  Krstulovic and Thiedeman 
(2000) [58]  evaluated high-performance fibre concrete 

  

Figure 10 Proposed approach for strengthening the RC column and the strain gage’s location [54]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Fig. 10. Proposed approach for strengthening the RC column and the strain gage’s location [54].
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a                                                         
 
 

  
b                                      

Figure 11 a) RC column detail by LS-DYNA. b) Failure behaviour (Vimp = 15 m/s.) [55]. 

 
Fig. 11. a) RC column detail by LS-DYNA. b) Failure behaviour (Vimp = 15 m/s.) [55].
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Table 2. Overview of research on RC columns reinforced with superelastic SMAs (Arranged by 
year of publication). (Continued)Table 2 Overview of research on RC columns reinforced with superelastic SMAs (Arranged by year of 

publication) 
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Table 2. Overview of research on RC columns reinforced with superelastic SMAs (Arranged by 
year of publication). 
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using SMA fibres to actively confine concrete cylinders. 
Andrawes and Shin (2008) [59] strengthened the RC columns 
using SMAs spirals and confined them actively by heating. 
Focusing on the SME property of SMAs induced by heat 
has been used to apply external active confinement. As an 
important positive point, a large amount of active confinement 
pressure is easily applied after heating without specific labour 
and tools, unlike other active confinement approaches. Choi 
et al (2009) [60] proposed a new technique for confining RC 
columns or concrete cylinders by 1mm diameter austenitic, 
Ti-50.3Ni (at% %) and martensitic, Ti-49.7Ni (at% %) SMA 
wires. Martensitic wires became pre-strained by a heating 
jacket, and high confining pressure was produced around the 
cylinder, and the strength and ductility of the specimen were 
increased under axial compressive load. On the other side, 
the austenite SMA wires only enhanced the ductility due to 
the small pre-stress. The comparison of the plane cylinder 
and confined counterpart has been shown in the stress-strain 
curves of Figure 12.

 In another study, Shin and Andraws (2010/11) [61] 

investigated numerically and experimentally the SAMs’ 
spiral ability to enhance the seismic capacity of the RC 
columns. Furthermore, using the SMA active confinement 
technique was studied regarding the rapid strengthening 
of seriously damaged RC columns. Then, the repaired RC 
column tested under quasi-static lateral cyclic loading fully 
recovered its lateral strength, and flexural ductility increased 
[62]. Andrawes et al. (2010) [63] presented the chance of 
seismic strengthening of RC bridge columns using SMA 
spirals. Figure 13.a shows the concrete cylinders with 3 
mm SMA wires (12-loop), which were tested under uniaxial 
compression load. The experimental outcomes discovered 
that a seismic retrofitted innovative technique reduced the 
plastic deformations and increased the effective stiffness and 
strength compared with conventional CFRP confinement, 
according to Figure 13.b. 

Shin and Andrawes (2010) [64] investigated the seismic 
behaviour of bridge RC columns using shape memory 
effect properties of SMA for applying active confinement. 
The impact of active-SMA cylinders is shown according to 
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Figure 14. a before, during, and after testing. The comparison 
between unconfined and active-SMA confinement is 
illustrated in the stress-strain curve of Figure 14.b. According 
to this curve, using SMA for active confinement increased the 
ultimate strain and strength. Actually, the strength of confined 
cylinders utilizing SMA wires was 21% higher than that of 
their unconfined counterparts.

Shin and Andrawes (2011) [62] investigated the quasi-
static lateral cyclic behaviour of the extremely damaged 
RC column repaired rapidly with an active confinement 
SMA approach. Pre-strained SMA spirals were used to 

achieve active confinement. The results of the experimental 
assessment illustrated that the stiffness, ductility, and lateral 
strength were increased by utilizing SMA wires. The repaired 
column was compared with the as-built one according to 
Figure 15. The initial stiffness of the repaired specimen was 
54% higher than another one. 

Choi et al. (2012) [65] evaluated the effect of Ni-Ti-
Nb and Ni-Ti SMA wire jackets in the case of RC column 
strengthening with lap splices under a seismic loading test. 
The SMA wires’ jackets demonstrated the advantages, such as 
no danger of peel-off, easy installation, no need for adhesive, 

 
 

Figure 12 Strain stress curve of the plain and confined cylinder [60] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Strain stress curve of the plain and confined cylinder [60].

 
a                                                                                     b 

 

Figure 13 a) Twelve-loop SMA concrete cylinder b) Force displacement curve of concrete columns [63]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. a) Twelve-loop SMA concrete cylinder b) Force displacement curve of concrete columns [63].
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and strong corrosion protection in comparison with FRP or 
steel counterparts. According to data, using Ni-Ti-Nb wires 
as a strengthening material in RC columns was more adaptive 
than using Ni-Ti wires. Furthermore, Ni-Ti-Nb SMAs 
depicted a better temperature range for civil engineering 
applications. This proposed approach of strengthening RC 
columns increased the ductility without strength degradation. 
In addition, strengthening RC columns with a lap splice 
indicated better performance than without one (Figure 16).

Chen et al. (2014) [66] proposed a new scheme of 
rectangular concrete columns using SMA wires to apply active 
confinement in order to increase the ductility, according to 
Figure 17. a. In this study, the behaviour of thirteen concrete 
elements was inspected under cyclic and monotonic uniaxial 
compression load. The comparison between the confinement 

of concrete columns using SMA wire and GFRP jackets is 
shown in Figure 17.b. The results explain a remarkable 
enhancement in the residual post-peak strength and ultimate 
strain of rectangular concrete elements using SMA wires.

However, the SMA materials were used to strengthen new 
structures, and the application of these materials in the case 
of the rehabilitation of damaged structures is noticeable. A 
worthy example related to using the SMA bar to strengthen 
the RC BCJ is the Jung et al. (2017) [38] paper that tested 
bidirectional dynamic loading using a shaking table. The 
result demonstrated that using Ni-Ti-Nb SMA spirals for the 
active confining of concrete columns improved the flexural 
ductility and strength of the specimen and delayed the 
damage of concrete under seismic loading. Furthermore, the 
residual deformation of specimens decreased.  Deogekar and 
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Figure 14 a) Behaviour of active-SMA cylinders b) the stress–strain curve [64].  

 

 

 

 

 

 

 

 

Fig. 14. a) Behaviour of active-SMA cylinders b) the stress–strain curve [64]. 
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Andrawes (2018) [67] studied the effect of glass FRP tubes 
and SME wires on concrete confinement. At the primary step, 
they made high-strength concrete (HSC) and normal-strength 
concrete (NSC) cylinders and confined them with the hybrid 
technique of FRP and thermally pre-stressed 1.9 mm Ni-Ti 
SME to apply active confinement, as shown in Figure 18. a 
For the numerical part of the work, they used the schematic of 
the column according to Figure 18.b and considered pushover 
analysis; for the experimental part, they applied uniaxial 
cyclic loading. According to the results, the strength of FRP 
hybrid confinement was reported to be 93.9% higher than that 

of passive confinement. Moreover, the ultimate drift of the 
concrete-filled fibre tube bridge column by SMA spirals in 
the plastic hinge region was increased by 154%, according to 
numerical results. 

Abdelrahman and El-Hacha (2020) [68, 69] investigated 
the use of Ni-Ti SMA spirals for active confinement and 
CFRP sheets for passive confinement of RC columns. 
Their findings revealed that incorporating SMA spirals led 
to a substantial improvement in column performance. In 
particular, RC columns actively confined with SMA spirals 
exhibited marked increases in both strength and ductility 

 
a                                                                                  b 

 

Figure 15 Force-displacement curve of as-built and repaired column a) hysterics b) backbone curve [62]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Force-displacement curve of as-built and repaired column a) hysterics b) backbone curve [62].

 
a                                                                            b 

 

Figure 16 The column’s failure modes with lap splice: a) without SMA wire, b) retrofitting by SMA spiral 
wires [65]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. The column’s failure modes with lap splice: a) without SMA wire, b) retrofitting by SMA spiral wires [65].
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Figure 18 a) RC column confined using FRP tube and SMA wires b) the failure modes of the tested cylinders 
[68]. 

 

 

 

 

 

 

Fig. 18. a) RC column confined using FRP tube and SMA wires b) the failure modes of the tested cylinders [68].
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Figure 17 a) Scheme of rectangular concrete columns using SMA wires b) Stress-strain curve of FRP and 
SMA [66] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. a) Scheme of rectangular concrete columns using SMA wires b) Stress-strain curve of FRP and SMA [66].
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compared with unconfined specimens subjected to different 
load eccentricities. (Figure 19).

Suhail et al. (2020) [70] tested the concrete columns 
actively confined by heat-activated pre-stressing (HAP) of 
SMA (Figure 20) and compared with passively confined 
using SMA wires without HAP, basalt fibre-reinforced 
polymer (BFRP), and carbon fiber-reinforced polymer 
(CFRP) jackets counterparts. In this study, the advantages 
and disadvantages of SMA active confinement, including 
heating and structural parameters such as damage, ductility, 
and strength of specimens, were evaluated. According to the 
results, the performance of active confinement was found 
to be better than that of a passive type, such as using CFRP 
and BFRP. Furthermore, the ductility and residual strength 
of specimens utilizing SMAs were remarkably higher than 
another one. 

A review of relevant studies indicates that the active 
confinement provided by the SME of SMAs is effective 
in enhancing the drift capacity and energy dissipation of 
deficient RC columns. The active confinement pressures 
applied in previous research ranged from 0.4 to 2.0 MPa, with 
a pressure of 1.2 MPa being sufficient to increase a column’s 
energy dissipation capacity by up to four times. Additionally, 
active confinement by SMA spirals significantly reduces 
residual deformations in columns, as it delays damage 
transfer to the reinforcing rebar by actively confining the 
concrete core. Notably, all existing studies have utilized 
Ni-Ti-Nb SMA spirals for active confinement. Therefore, 
exploring the potential of Fe and Cu-based SMAs for the 
active confinement of RC columns represents an intriguing 
research opportunity for future studies.

As summarized in Table 3 Studies focusing on the shape 
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Figure 19 a) The load-displacement curve and b) failure mode of RC columns confined with SMA and CFRP 
[68]. 

 

 

 

 

 

 

 

 

Fig. 19. a) The load-displacement curve and b) failure mode of RC columns confined with SMA and CFRP [68].
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memory effect (SME) of SMAs consistently highlight 
their effectiveness in providing active confinement and 
enhancing the post-yield performance of RC columns. 
Unlike SE applications, where the material re-centers under 
mechanical unloading, SME-based systems rely on thermally 
activated recovery stress, allowing the SMAs to generate 
significant confining pressure once heated. This makes them 
particularly useful for both rapid strengthening and post-
damage rehabilitation of RC columns. A key comparative 
observation across studies is that Ni-Ti–Nb SMAs outperform 
conventional Ni-Ti in terms of temperature stability and 
recovery stress retention. For instance, Choi et al. (2012) [65] 
and Shin & Andrawes (2011) [62, 63] demonstrated that Ni-
Ti–Nb spirals maintained their prestressing capacity over a 
wider thermal range, which is crucial for field applications 
where temperature fluctuations occur. The use of Ni-Ti–Nb 
wires also avoided the brittleness and limited transformation 
range observed in pure Ni-Ti systems. Comparing different 
confinement configurations, studies show that SMA spirals 
or wire jackets applied externally (e.g., Shin & Andrawes, 
(2010) [61] ; Choi et al. (2012) [65]; Abdelrahman & El-
Hacha (2021) [68]) produced uniform confinement pressure 
and substantially increased strength and ductility, while 
hybrid systems combining SMA and FRP (Deogekar & 
Andrawes (2018) [67]; Suhail et al. (2020) [70]) achieved 
even higher strength and drift capacity by merging active and 
passive confinement mechanisms. In particular, Suhail et al. 
(2020) [71] reported that SMA-active confinement improved 
residual strength and ductility more effectively than CFRP 
or BFRP jackets, confirming the superior adaptability of 
SME-based systems. In terms of quantitative outcomes, 
the active confinement pressures generated by SMA spirals 
ranged from 0.4 to 2.0 MPa, which, according to Andrawes 
et al. (2010) [63] and subsequent studies, can increase the 
energy dissipation capacity by up to fourfold compared with 
unconfined or passively confined specimens. Moreover, 

columns confined with SME-SMAs exhibited strength gains 
of 20–90% and ductility enhancements exceeding 50%, 
depending on the SMA type and activation level. However, 
these benefits often came at the expense of increased 
complexity in installation and the need for controlled heating 
systems to activate the shape memory effect.

4- Design Guidelines for SMA-Reinforced Columns
The development of design guidelines is critical for 

enabling the practical application of SMAs in reinforced 
concrete columns. While experimental evidence on SMA-
based systems is substantial, engineering guidance remains 
limited. The following recommendations synthesize available 
research and provide practical design considerations for both 
SE- and SME-based applications.

4- 1- General Design Recommendations
Saiidi et al. [71, 72] proposed preliminary design 

guidelines for superelastic Ni-Ti SMA-reinforced ECC 
piers and FRP-confined concrete piers in bridges. AASHTO 
recommends that such low-damage columns—with 
substantially reduced residual drift—can be considered 
for seismic design categories C and D. The suggested 
design method is displacement-based, differing from the 
conventional force-based method for reinforced concrete 
columns, with a recommended damping ratio of 3.2% instead 
of the conventional 5.0%. To address the low damping, it is 
suggested that the displacement demand be increased by 20% 
compared to conventional columns. The recommended SMA 
reinforcement levels range from 1% to 4%, with a maximum 
ratio of design axial load of 0.15 [73].  Furthermore, Billah 
and Alam [74, 75] proposed a seismic design approach based 
on the performance of reinforced concrete columns of a 
bridge utilizing SE Ni-Ti SMA. According to their method, 
serviceability necessities are satisfied when the residual 
drift is under 0.25%, whereas a residual drift exceeding 1% 

 
 

Figure 20 Manufacturing concrete cylinders actively confined by SMA wires [70].  

 

 

 

 

 

Fig. 20. Manufacturing concrete cylinders actively confined by SMA wires [70]. 
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Table 3. Summary of research on RC columns reinforced with SME SMAs (organized by year of publication).Table 3 Summary of research on RC columns reinforced with SME SMAs (organized by year of publication) 
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indicates a collapse damage state for the SE SMA-reinforced 
RC columns in bridges.

4- 2- Plastic Hinge Length and Displacement Parameters
A key parameter in displacement-based design is the 

plastic hinge length (Lp), which represents the region of 
the column experiencing substantial inelastic behavior 
under extreme loading. In conventional RC columns, the 
plastic hinge is often assumed to have a constant curvature 
distribution to simplify force and displacement calculations. 
Analytical derivation of Lp is complex because it depends on 
several variables, including member size, height, longitudinal 
reinforcement ratio, yield strength, and concrete compressive 
strength. 

Billah and Alam [74] proposed a practical expression for 
calculating the plastic hinge length of SMA-reinforced RC 
bridge piers under combined axial and reverse cyclic loading:
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Where d is the diameter of the circular column (mm), 
L is the column length (mm), Ag  is gross cross-sectional 
area, P/(

´
A cg f ) is the axial load ratio, y SMAf −  is the yield 

strength of SMA bars (MPa), 
´

cf  is the concrete compressive 
strength (MPa),  lρ and sρ  are the longitudinal and transverse 
reinforcement ratios, respectively (expressed as decimal; e.g., 
1% = 0.01). The proposed equation is valid only within the 
following calibrated ranges (Eq. (2) to (6)):
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These conditions must be satisfied to ensure the accurate 
prediction of pL  for SMA-reinforced RC piers. Outside 
these limits, the model may not reliably represent the spread 
of plasticity.

5- Discussion:
Columns serve as the primary vertical load-bearing 

elements in RC buildings and bridges. The failure of a single 
column can lead to the progressive collapse of the entire 
structure. To prevent such failures, deficient RC columns 
often require strengthening to enhance their flexural capacity 
or improve their confinement to withstand lateral forces. 
SMAs offer a promising solution for reinforcing RC columns 
due to their superelasticity and shape memory effect. SE-
SMAs can impart self-centering capabilities to RC columns, 
while the SME can be used to prestress columns, presenting 
an alternative to conventional prestressing methods that often 
pose practical challenges. SE-SMAs are typically integrated 
as internal reinforcements within the plastic hinge regions 
of columns to achieve self-centering behavior. Additionally, 
SMAs can be incorporated in the form of embedded or 
external spirals and wire jackets to enhance the confinement 
of RC columns. Specifically, the recovery stress produced by 
the SME of SMAs can be harnessed for active confinement, 
resulting in improved ductility and energy dissipation 
capacity, which surpasses the passive confinement offered by 
traditional steel spirals.  The reinforcement of RC columns 
using the SME can significantly enhance stiffness and crack 
resistance, while also reducing deflection under extreme 
loads. Additionally, employing these SMAs can decrease 
residual displacements during cyclic loading, which is 
particularly beneficial for imparting self-centering behavior 
to existing RC columns. For this application, activated 
SMAs can be used as embedded or near-surface mounted 
reinforcements in existing RC columns. Consequently, SMA-
equipped structural components can partially recover their 
deformations under extreme loads, thereby reducing the 
need for extensive repair. However, selecting the optimal 
prestressing level is critical, as excessive prestressing force 
can diminish the ductility of the structural components.

6- Challenges of Using SMA in RC
Before the widespread adoption of SMAs in RC columns, 

several challenges must be addressed. One critical aspect is 
ensuring that the activation temperature for SMAs does not 
damage the concrete’s cementitious matrix, as microcracks 
can form above 200°C and compressive strength decreases 
significantly between 300°C and 800°C [76]. Additionally, 
embedding SMA rebars in shotcrete can cause shrinkage-
induced cracks, reducing the technique’s effectiveness [77]. 
The smooth surfaces of SMAs also lead to poor bonding 
with concrete compared to ribbed steel bars, resulting in 
larger crack widths [78-81]. Techniques like using end 
hooks, roughening the surface, or sandblasting can improve 
bond strength, but more research is needed to investigate 
SMA bond characteristics, especially for post-installed 
SMA rebars in retrofit applications [54]. The corrosion 
resistance of SMAs varies with their composition; Fe-SMAs 
with higher chromium content exhibit better performance, 
while Ni-Ti SMAs show satisfactory resistance. However, 
Ni-Ti-Nb SMAs have higher corrosion potential, and the 
corrosion characteristics of superelastic Cu-Al-Mn SMAs 
need further investigation [82-84]. Recovery stress relaxation 
over time also requires a detailed study, including whether 
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multi-step heating to activation temperature results in lower 
stress relaxation. For instance, Fe-SMA rebars exhibited 
a stress relaxation of 10% after being subjected to 2000 
hours (approximately 83 days) of testing [85]. The relatively 
low elastic modulus of Ni-Ti SMAs compared to steel 
can compromise structural stiffness, but solutions include 
partially replacing steel with SMA rebars or using advanced 
materials with high elastic modulus in critical regions. Fe-
SMAs show a significant reduction in elastic modulus 
upon activation, necessitating further exploration [23, 86]. 
Additionally, activated SMAs exhibit reduced prestressing 
force under increasing cyclic loading, and further research is 
needed to assess the effectiveness of prestressing under cyclic 
strains, especially during earthquake-induced excitations 
[87, 88]. Despite these challenges, significant opportunities 
exist for the future application of SMAs in RC structures. 
Combining SMAs with materials like ultra-high-performance 
concrete can enhance performance, and developing new 
SMA compositions that provide high recovery stresses 
at lower activation temperatures can improve feasibility. 
Improved manufacturing techniques, such as large-
scale commercial production of ribbed SMA rebars, can 
enhance bonding with concrete [23]. Expanded research 
on the corrosion characteristics, stress relaxation, and bond 
behavior of SMAs, particularly for new compositions and 
under various loading conditions, is essential. Exploring 
the potential of Fe-SMAs for prestressing RC columns can 
lead to innovative strengthening solutions, and creating 
detailed design guidelines for SMA-reinforced columns 

will facilitate broader adoption and implementation in 
construction practices. Table 4 summarizes these challenges 
and highlights their corresponding implications for SMA–RC 
column applications.

7- Conclusions and Remarks
SMAs have attracted significant attention for the 

strengthening and retrofitting of RC columns due to their two 
distinct characteristics: the SE and the SME.

The SE property allows RC columns to recover large 
inelastic deformations upon unloading, providing self-
centering capability and substantially reducing residual drifts 
under seismic loading. In contrast, the SME property enables 
active confinement and prestressing through thermally 
induced recovery stresses, offering a simple and durable 
alternative to conventional prestressing systems.  Although 
SMAs have been known for decades, their widespread use in 
civil engineering applications remains limited.

This review comprehensively synthesized experimental 
and analytical studies on SMA-based RC column retrofitting 
and confinement. A comparative analysis indicates that:

Findings consistently show that SMA wires and spirals, 
which apply active confinement through SME, lead to 
improved strength, ductility, and stiffness due to their ability 
to generate recovery stress and control residual strains. 
Conversely, superelastic SMA reinforcements—whether 
in longitudinal configurations—demonstrate significant 
deformation recovery and ductility enhancement under 
cyclic and seismic loading, though sometimes accompanied 

Table 4. Summary of main challenges associated with the use of SMAs in RC columns.Table 4 Summary of main challenges associated with the use of SMAs in RC columns 

Category Main Issue Implication / Required Research 

Activation 
temperature 

Heating above 200 °C may damage the 
cementitious matrix. 

Develop low-activation SMAs (Fe, Cu-based) 
compatible with concrete. 

Bond behavior 
Smooth SMA surfaces lead to weak interfacial 

adhesion and larger crack widths. 
Employ surface treatments (sandblasting, ribbing) 

and study post-installed SMA bonds. 

Corrosion resistance 
Durability depends on alloy type; limited data for 

Cu–Al–Mn and Ni-Ti-Nb. 
Investigate corrosion under realistic exposure and 

cyclic wet–dry environments. 

Stress relaxation 
Recovery stress may decrease over time (≈10% 

over 2000 h). 
Assess relaxation under multi-cycle activation and 

sustained loading. 

Elastic modulus 
Lower modulus reduces stiffness and load 

capacity. 
Adopt hybrid (SMA + steel) systems or UHPC/ECC 

matrices. 

Cyclic loading Prestress decreases under repeated seismic strains. Evaluate prestress retention and fatigue degradation. 

Manufacturing 
High cost and lack of ribbed SMA bars limit large-

scale application. 
Develop industrial ribbed SMA rebars with 

improved bond and lower cost. 
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by stiffness degradation or minor strength reduction at large 
drifts.

Overall, SE-based and SME-based approaches offer 
complementary benefits: SME confinement primarily 
improves strength and ductility, whereas SE reinforcement 
enhances self-centering and energy dissipation capacity. 
Nevertheless, challenges remain regarding the high cost of 
Ni-Ti alloys, limited applications in full-scale members, and 
the absence of unified design frameworks.

Based on the review, the authors identify key limitations 
in current studies and propose several recommendations for 
future research:
•	 Investigate the influence of active confinement on 

rectangular RC columns, which better represent real 
structural configurations.

•	 Explore new activation methods for SMA spirals to 
achieve more effective and uniform confinement pressure.

•	 Develop hybrid systems or design approaches that can 
mitigate strength and stiffness degradation while utilizing 
superelastic properties.

•	 Additionally, future efforts should focus on optimizing 
SMA alloy compositions (e.g., Cu–Al–Mn or Fe-SMA 
as cost-efficient alternatives to Ni-Ti), integrating SMA 
with advanced materials such as ECC or UHPC, and 
formulating standardized analytical and design guidelines 
to facilitate their practical application in seismic 
retrofitting of RC structures.
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