[1] H.M. Azamathulla, A.H. Haghiabi, A. Parsaie, Prediction of side weir discharge coefficient by support vector machine technique, Water Science and Technology: Water Supply, 16(4) (2016) 1002-1016.
[2] G. De Marchi, Saggio di teoria del funzionamento degli stramazzi laterali, L’Energia elettrica, 11(11) (1934) 849-860.
[3] A. Vatankhah, Water Surface Profiles along a Rectangular Side Weir in a U-Shaped Channel (Analytical Findings), Journal of Hydrologic Engineering, 18(5) (2013) 595-602.
[4] A.R. Vatankhah, Water surface profile along a side weir in a parabolic channel, Flow Measurement and Instrumentation, 32(0) (2013) 90-95.
[5] A. Vatankhah, New Solution Method for Water Surface Profile along a Side Weir in a Circular Channel, Journal of Irrigation and Drainage Engineering, 138(10) (2012) 948-954.
[6] A.H. Haghiabi, A. Parsaie, S. Ememgholizadeh, Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System, Alexandria Engineering Journal, (2017).
[7] A. Parsaie, A.H. Haghiabi, Improving Modelling of Discharge Coefficient of Triangular Labyrinth Lateral Weirs Using SVM, GMDH and MARS Techniques, Irrigation and Drainage, 66(4) (2017) 636-654.
[8] A. Parsaie, A.H. Haghiabi, Support Vector Machine to predict the discharge coefficient of sharp crested w-planform weirs, AUT Journal of Civil Engineering, 1(2) (2017) 195-204.
[9] S. Samiee, M. Heidarpour, S. Bagheri, Flow characteristics of rectangular sharp-crested side weirs in the presence of guide vanes, ISH Journal of Hydraulic Engineering, 22(1) (2016) 109-114.
[10] A.H. Haghiabi, J. Mohammadzadeh-Habili, A. Parsaie, Development of an evaluation method for velocity distribution over cylindrical weirs using doublet concept, Flow Measurement and Instrumentation, (2018).
[11] J. Mohammadzadeh-Habili, M. Heidarpour, A. Haghiabi, Comparison the hydraulic characteristics of finite crest length weir with quarter-circular crested weir, Flow Measurement and Instrumentation, 52(Supplement C) (2016) 77-82.
[12] M. Heidarpour, J.M. Habili, A.H. Haghiabi, Application of potential flow to circular-crested weir, Journal of Hydraulic Research, 46(5) (2008) 699-702.
[13] H. Haddadi, M. Rahimpour, A discharge coefficient for a trapezoidal broad-crested side weir in subcritical flow, Flow Measurement and Instrumentation, 26(0) (2012) 63-67.
[14] S. Borghei, M. Jalili, M. Ghodsian, Discharge Coefficient for Sharp-Crested Side Weir in Subcritical Flow, Journal of Hydraulic Engineering, 125(10) (1999) 1051-1056.
[15] M. Emiroglu, N. Kaya, Discharge Coefficient for Trapezoidal Labyrinth Side Weir in Subcritical Flow, Water Resources Management, 25(3) (2011) 1037-1058.
[16] S. Bagheri, A.R. Kabiri-Samani, M. Heidarpour, Discharge coefficient of rectangular sharp-crested side weirs, Part I: Traditional weir equation, Flow Measurement and Instrumentation, 35(0) (2014) 109-115.
[17] S. Dehdar-behbahani, A. Parsaie, Numerical modeling of flow pattern in dam spillway’s guide wall. Case study: Balaroud dam, Iran, Alexandria Engineering Journal, 55(1) (2016) 467-473.
[18] A. Parsaie, A. Moradinejad, A.H. Haghiabi, Numerical Modeling of Flow Pattern in Spillway Approach Channel, Jordan Journal of Civil Engineering, 12(1) (2018) 1-9.
[19] A. Parsaie, A.H. Haghiabi, Numerical routing of tracer concentrations in rivers with stagnant zones, Water Science and Technology: Water Supply, 17(3) (2017) 825-834.
[20] A. Parsaie, A. Haghiabi, The Effect of Predicting Discharge Coefficient by Neural Network on Increasing the Numerical Modeling Accuracy of Flow Over Side Weir, Water Resources Management, 29(4) (2015) 973-985.
[21] A.H. Haghiabi, H.M. Azamathulla, A. Parsaie, Prediction of head loss on cascade weir using ANN and SVM, ISH Journal of Hydraulic Engineering, (2016) 1-9.
[22] O. Bilhan, M. Emin Emiroglu, O. Kisi, Application of two different neural network techniques to lateral outflow over rectangular side weirs located on a straight channel, Advances in Engineering Software, 41(6) (2010) 831-837.
[23] O. Bilhan, M.E. Emiroglu, O. Kisi, Use of artificial neural networks for prediction of discharge coefficient of triangular labyrinth side weir in curved channels, Advances in Engineering Software, 42(4) (2011) 208-214.
[24] M. Emiroglu, O. Kisi, Prediction of Discharge Coefficient for Trapezoidal Labyrinth Side Weir Using a Neuro-Fuzzy Approach, Water Resources Management, 27(5) (2013) 1473-1488.
[25] I. Ebtehaj, H. Bonakdari, A.H. Zaji, H. Azimi, F. Khoshbin, GMDH-type neural network approach for modeling the discharge coefficient of rectangular sharp-crested side weirs, Engineering Science and Technology, an International Journal, 18(4) (2015) 746-757.
[26] M.E. Emiroglu, H. Agaccioglu, N. Kaya, Discharging capacity of rectangular side weirs in straight open channels, Flow Measurement and Instrumentation, 22(4) (2011) 319-330.
[27] M. Jalili, S. Borghei, Discussion: Discharge Coefficient of Rectangular Side Weirs, Journal of Irrigation and Drainage Engineering, 122(2) (1996) 132-132.
[28] J.H. Friedman, Multivariate adaptive regression splines, The annals of statistics, (1991) 1-67.
[29] M. Samadi, E. Jabbari, H. Azamathulla, M. Mojallal, Estimation of scour depth below free overfall spillways using multivariate adaptive regression splines and artificial neural networks, Engineering Applications of Computational Fluid Mechanics, (ahead-of-print) (2015) 1-10.
[30] V. Sharda, S. Prasher, R. Patel, P. Ojasvi, C. Prakash, Performance of Multivariate Adaptive Regression Splines (MARS) in predicting runoff in mid-Himalayan micro-watersheds with limited data/Performances de régressions par splines multiples et adaptives (MARS) pour la prévision d’écoulement au sein de micro-bassins versants Himalayens d’altitudes intermédiaires avec peu de données, Hydrological sciences journal, 53(6) (2008) 1165-1175.
[31] W. Zhang, A.T.C. Goh, Multivariate adaptive regression splines and neural network models for prediction of pile drivability, Geoscience Frontiers, (0) (2014).
[32] A.H. Haghiabi, Modeling River Mixing Mechanism Using Data Driven Model, Water Resour Manage, (2016) 1-14.
[33] A.H. Haghiabi, Prediction of River Pipeline Scour Depth Using Multivariate Adaptive Regression Splines, Journal of Pipeline Systems Engineering and Practice, (2016) 04016015.
[34] A.H. Haghiabi, Prediction of longitudinal dispersion coefficient using multivariate adaptive regression splines, Journal of Earth System Science, 125(5) (2016) 985-995.
[35] A. Parsaie, A.H. Haghiabi, Mathematical expression of discharge capacity of compound open channels using MARS technique, Journal of Earth System Science, 126(2) (2017) 20.
[36] M. Najafzadeh, A. Etemad-Shahidi, S.Y. Lim, Scour prediction in long contractions using ANFIS and SVM, Ocean Engineering, 111 (2016) 128-135.
[37] M. Najafzadeh, A. Tafarojnoruz, Evaluation of neuro-fuzzy GMDH-based particle swarm optimization to predict longitudinal dispersion coefficient in rivers, Environmental Earth Sciences, 75(2) (2016) 1-12.
[38] M. Najafzadeh, H.M. Azamathulla, Neuro-Fuzzy GMDH to Predict the Scour Pile Groups due to Waves, Journal of Computing in Civil Engineering, 29(5) (2015) 04014068.
[39] K. Roushangar, S. Akhgar, F. Salmasi, J. Shiri, Modeling energy dissipation over stepped spillways using machine learning approaches, Journal of Hydrology, 508 (2014) 254-265.
[40] K. Roushangar, S.M. Alipour, Prediction of overland flow resistance and its components based on flow characteristics using support vector machine, Water Science and Technology: Water Supply, (2017).