[1]M. Ameri, A.A. Dehghani, A. Ahmadi, Elementary discharge coefficient of a triangular–rectangular sharp- crested side weir in subcritical flow, International Journal of River Basin Management, (2015) 1-8.
[2] J.P. Tullis, N. Amanian, D. Waldron, Design of Labyrinth Spillways, Journal of Hydraulic Engineering, 121(3) (1995) 247-255.
[3] S. Erpicum, F. Laugier, M. Pfister, M. Pirotton, G.M. Cicero, A.J. Schleiss, Labyrinth and Piano Key Weirs II, Taylor & Francis, 2013.
[4] B.P. Tullis, J.C. Young, M.A. Chandler, Head- Discharge Relationships for Submerged Labyrinth Weirs, Journal of Hydraulic Engineering, 133(3) (2007) 248-254.
[5] F.G. Tacail, B. Evans, A. Babb, Case study of a labyrinth weir spillway, Canadian Journal of Civil Engineering, 17(1) (1990) 1-7.
[6] M. Leite Ribeiro, M. Bieri, J.L. Boillat, A.J. Schleiss, G. Singhal, N. Sharma, Discharge Capacity of Piano Key Weirs, Journal of Hydraulic Engineering, 138(2) (2012) 199-203.
[7] R.M. Anderson, B.P. Tullis, Comparison of Piano Key and Rectangular Labyrinth Weir Hydraulics, Journal of Hydraulic Engineering, 138(4) (2012) 358-361.
[8] G. Taylor, The performance of labyrinth weirs, University of Nottingham, 1968.
[9] A.Y. Mohammed, Numerical analysis of flow over side weir, Journal of King Saud University - Engineering Sciences, 27(1) (2015) 37-42.
[10] M. Emin Emiroglu, M. Cihan Aydin, N. Kaya, Discharge Characteristics of a Trapezoidal Labyrinth Side Weir with One and Two Cycles in Subcritical Flow, Journal of Irrigation and Drainage Engineering, 140(5) (2014) 04014007.
[11] S. Bagheri, A.R. Kabiri-Samani, M. Heidarpour, Discharge coefficient of rectangular sharp-crested side weirs, Part I: Traditional weir equation, Flow Measurement and Instrumentation, 35 (2014) 109-115.
[12] H. Haddadi, M. Rahimpour, A discharge coefficient for a trapezoidal broad-crested side weir in subcritical flow, Flow Measurement and Instrumentation, 26(0) (2012) 63-67.
[13] O. Kisi, M. Emin Emiroglu, O. Bilhan, A. Guven, Prediction of lateral outflow over triangular labyrinth side weirs under subcritical conditions using soft computing approaches, Expert Systems with Applications, 39(3) (2012) 3454-3460.
[14] O. Castro-Orgaz, W. Hager, Subcritical Side-Weir Flow at High Lateral Discharge, Journal of Hydraulic Engineering, 138(9) (2012) 777-787.
[15] M.E. Emiroglu, H. Agaccioglu, N. Kaya, Discharging capacity of rectangular side weirs in straight open channels, Flow Measurement and Instrumentation, 22(4) (2011) 319-330.
[16] M. Ghodsian, Supercritical flow over a rectangular side weir, Canadian Journal of Civil Engineering, 30(3) (2003) 596-600.
[17] M. Jalili, S. Borghei, Discussion: Discharge Coefficient of Rectangular Side Weirs, Journal of Irrigation and Drainage Engineering, 122(2) (1996) 132-132.
[18] A. Corhay, S. Erpicum, F. Laugier, M.H.T. Khanh, M. Pfister, Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (Pkw 2017), February 22-24, 2017, Qui Nhon, Vietnam, Taylor & Francis, 2017.
[19] S. Erpicum, F. Laugier, J.L. Boillat, M. Pirotton, B. Reverchon, A. Schleiss, Labyrinth and piano key weirs—PKW 2011, in: Proceedings of the International Conference on Labyrinth and Piano Key Weirs, Balkema Liege, 2011, pp. 9-11.
[20] S. Dehdar-behbahani, A. Parsaie, Numerical modeling of flow pattern in dam spillway’s guide wall. Case study: Balaroud dam, Iran, Alexandria Engineering Journal, 55(1) (2016) 467-473.
[21] A. Parsaie, A.H. Haghiabi, Numerical Modeling of Flow Pattern in Spillway Approach Channel, Jordan Journal of Civil Engineering, 12(1) (2018) 1-9.
[22] Z. Kashkaki, H. Banejad, M. Heydari, Application of ANN in Estimating Discharge Coefficient of Circular Piano Key Spillways, Soft Computing in Civil Engineering, 2(3) (2018) 39-49.
[23] A. Parsaie, H.M. Azamathulla, A.H. Haghiabi, Prediction of discharge coefficient of cylindrical weir– gate using GMDH-PSO, ISH Journal of Hydraulic Engineering, 24(2) (2018) 116-123.
[24] E. Olyaie, H. Banejad, M. Heydari, Estimating Discharge Coefficient of PK-Weir Under Subcritical Conditions Based on High-Accuracy Machine Learning Approaches, Iranian Journal of Science and Technology, Transactions of Civil Engineering, (2018).
[25] A.H. Haghiabi, A. Parsaie, S. Ememgholizadeh, Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System, Alexandria Engineering Journal, (2017).
[26] M.C. Aydin, CFD simulation of free-surface flow over triangular labyrinth side weir, Advances in Engineering Software, 45(1) (2012) 159-166.
[27] M.C. Aydin, M.E. Emiroglu, Determination of capacity of labyrinth side weir by CFD, Flow Measurement and Instrumentation, 29(0) (2013) 1-8.
[28] G.K. Robertson, Labyrinth weir hydraulics: Validation of CFD modelling, Stellenbosch: Stellenbosch University, 2014.
[29] B.M. Crookston, B. Tullis, Labyrinth weirs, Hydraulic Structures, (2010) 59.
[30] O. Bilhan, M. Emin Emiroglu, O. Kisi, Application of two different neural network techniques to lateral outflow over rectangular side weirs located on a straight channel, Advances in Engineering Software, 41(6) (2010) 831-837.
[31] I. Ebtehaj, H. Bonakdari, A.H. Zaji, H. Azimi, A. Sharifi, Gene expression programming to predict the discharge coefficient in rectangular side weirs, Applied Soft Computing, 35 (2015) 618-628.
[32] M.E. Emiroglu, O. Bilhan, O. Kisi, Neural networks for estimation of discharge capacity of triangular labyrinth side-weir located on a straight channel, Expert Systems with Applications, 38(1) (2011) 867- 874.
[33] M. Najafzadeh, A. Etemad-Shahidi, S.Y. Lim, Scour prediction in long contractions using ANFIS and SVM, Ocean Engineering, 111 (2016) 128-135.
[34] A. Parsaie, H.M. Azamathulla, A.H. Haghiabi, Physical and numerical modeling of performance of detention dams, Journal of Hydrology, (2017).
[35] A. Parsaie, A.H. Haghiabi, M. Saneie, H. Torabi, Applications of soft computing techniques for prediction of energy dissipation on stepped spillways, Neural Computing and Applications, (2016) 1-17.
[36] A.H. Haghiabi, H.M. Azamathulla, A. Parsaie, Prediction of head loss on cascade weir using ANN and SVM, ISH Journal of Hydraulic Engineering, (2016) 1-9.
[37] A.H. Zaji, H. Bonakdari, Performance evaluation of two different neural network and particle swarm optimization methods for prediction of discharge capacity of modified triangular side weirs, Flow Measurement and Instrumentation, 40 (2014) 149- 156.
[38] K. Roushangar, M.T. Alami, J. Shiri, M.M. Asl, Determining discharge coefficient of labyrinth and arced labyrinth weirs using support vector machine, Hydrology Research, 49(3) (2018) 924-938.
[39] H.M. Azamathulla, A.H. Haghiabi, A. Parsaie, Prediction of side weir discharge coefficient by support vector machine technique, Water Science and Technology: Water Supply, 16(4) (2016) 1002-1016.
[40] J. Mohammadzadeh-Habili, M. Heidarpour, S. Samiee, Study of Energy Dissipation and Downstream Flow Regime of Labyrinth Weirs, Iranian Journal of Science and Technology, Transactions of Civil Engineering, 42(2) (2018) 111-119.
[41] K. Gupta, S. Kumar, Z. Ahmad, FLOW CHARACTERISTICS OF SHARP-CRESTED W-PLANFORM WEIRS, World Applied Sciences Journal, 32(7) (2014) 1311-1317.
[42] M. Ghodsian, Stage–discharge relationship for a triangular labyrinth spillway, Proceedings of the ICE- Water Management, 162(3) (2009) 173-178.
[43] S. Kumar, Z. Ahmad, T. Mansoor, A new approach to improve the discharging capacity of sharp-crested triangular plan form weirs, Flow Measurement and Instrumentation, 22(3) (2011) 175-180.
[44] A. Haghiabi, Estimation of scour downstream of a ski-jump bucket using the multivariate adaptive regression splines, Scientia Iranica. Transaction A, Civil Engineering, 24(4) (2017) 1789-1801.
[45] A.H. Haghiabi, Prediction of longitudinal dispersion coefficient using multivariate adaptive regression splines, Journal of Earth System Science, 125(5) (2016) 985-995.
[46] A.H. Haghiabi, Modeling River Mixing Mechanism Using Data Driven Model, Water Resources Management, 31(3) (2017) 811-824.
[47] A. Parsaie, A.H. Haghiabi, M. Saneie, H. Torabi, Prediction of energy dissipation on the stepped spillway using the multivariate adaptive regression splines, ISH Journal of Hydraulic Engineering, 22(3) (2016) 281-292.
[48] A.G. Ivakhnenko, Polynomial theory of complex systems, IEEE transactions on Systems, Man, and Cybernetics, 1(4) (1971) 364-378.
[49] M.F. Brameier, W. Banzhaf, Linear Genetic Programming, Springer US, 2007.
[50] R. Noori, B. Ghiasi, H. Sheikhian, J.F. Adamowski, Estimation of the Dispersion Coefficient in Natural Rivers Using a Granular Computing Model, J. Hydraul. Eng., (2017) 04017001.