[1] B. Wang, W. Li, G.H. Huang, L. Liu, L. Ji, Y. Li, Urban water resources allocation under the uncertainties of water supply and demand: a case study of Urumqi China, Environmental Earth Sciences, 74 (2015) 3543-3557.
[2] M. Nazeri Tahroudi, F. Ahmadi, K. Khalili, Impact of 30 Years Changing of River Flow on Urmia Lake Basin, AUT Journal of Civil Engineering, 2 (2018) 115-122.
[3] A. Nazemi, H.S. Wheater, How can the uncertainty in the natural inflow regime propagate into the assessment systems?, Advances of Water Resources, 63 (2014) 131-142.
[4] L.C. Chang, F.J. Chang, Multi-objective evolutionary algorithm for operating parallel reservoir system, Journal of Hydrology, 377 (2009) 12–20.
[5] C. Dai, Y. Wang, L. Hu, An improved α-dominance strategy for many-objective optimization problems, Soft Computing, 20 (2016)1105–1111.
[6] K.W. Wang, L.C. Chang, F.J. Chang, Multi-tier interactive genetic algorithms for the optimization of long-term reservoir operation, Advances of Water Resources, 34 (2011) 1343–1351.
[7] H. Daellenbach, A. Kluyver, Note on multiple objective dynamic programming, Journal of the Operational Research Society, 31 (1980) 591–594 .
[8] B. Villarreal, M. Karwan, Multicriteria integer programming: a hybrid dynamic programming recursive approach, Mathematical Programming, 21 (1981) 204–223.
[9] B. Talkudar, D. Deb, S. DK, Development of multiobjective stochastic dynamic programming (MOSDP) reservoir operation model, in World Environmental and Water Resources Congress, (2012) 985-997.
[10] A. Serrat-Capdevila, J.B. Valdes, An alternative approach to the operation of multinational reservoir systems: Application to the Amistad and Falcon system (Lower Rio Grande/Rio Bravo), Water Resources Management, 21 (2007) 677–698.
[11] N. Saadouli, C. Edirisinghe, Multi-stage stochastic model for a multipurpose water reservoir with target-priority operation, Water, (2006) 146–151.
[12] J.W. Labadie, Optimal Operation of Multireservoir Systems: State-of-the-Art Review, Journal of Water Resources Planning Management, 130 (2004) 93–111.
[13] P.J van Laarhoven, E.H. Aarts, Simulated Annealing: Theory and Applications, Springer Netherlands, (1987) 7-15.
[14] Z.W. Geem, J.H. Kim, G.V. Loganathan, A New Heuristic Optimization Algorithm: Harmony Search, Simulation, 76 (2001) 60–68.
[15] P.J. Fleming, R.C. Purshouse, R.J. Lygoe, M. Street, S. Sheffield, Many-objective optimization: an engineering design perspective, Lecture Notes in Computer Science, 3410 (2005) 14–32.
[16] S.F. Adra, P.J. Fleming, Diversity management in evolutionary many-objective optimization, IEEE Transactions on Evolutionary Computation, 15 (2011) 183–195.
[17] Z. He, G.G. Yen, J. Zhang, Fuzzy-based pareto optimality for many-objective evolutionary algorithms, IEEE Transactions on Evolutionary Computation, 18 (2014) 269–285.
[18] Y. Zhou, J. Wang, J. Chen, S. Gao, L. Teng, Ensemble of many-objective evolutionary algorithms for many-objective problems, Soft Computing, 21(9) (2015) 2407-2419.
[19] M. Li, S. Yang, X. Liu, Shift-based density estimation for pareto-based algorithms in many-objective optimization, IEEE Transactions on Evolutionary Computation, 18 (2014) 348–365.
[20] X. Ma, Y. Qi, L. Li, F. Liu, L. Jiao, J. Wu, MOEA/D with uniform decomposition measurement for many-objective problems, Soft Computing, 18 (2014) 2541–2564.
[21] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach, IEEE Transactions on Evolutionary Computation, 3 (1999) 257–271.
[22] E. Zitzler, L. Thiele, Multi-objective optimization using evolutionary algorithms- a comparative case study, Parallel Problem Solving from Nature, Springer, Berlin, Heidelberg, (1998) 292–301.
[23] N. Beume, B. Naujoks, M. Emmerich, SMS-EMOA: Multiobjective selection based on dominated hypervolume, European Journal of Operational Research, 181 (2007) 1653–1669.
[24] C. Igel, N. Hansen, S. Roth, Covariance matrix adaptation for multi-objective optimization, Evolutionary Computation, 15 (2007) 1–28.
[25] E. Zitzler, S. Künzli, Indicator-based selection in multiobjective search, Parallel Problem Solving from Nature, Springer, Berlin, Heidelberg, (2004) 832–842.
[26] M. Emmerich, N. Beume, B. Naujoks, An EMO algorithm using the hypervolume measure as selection criterion, Evolutionary Multi-Criterion Optimization, (2000) 32–76.
[27] D. Brockhoff, E. Zitzler, Improving hypervolume-based multiobjective evolutionary algorithms by using objective reduction methods, Congress on Evolutionary Computation (CEC), (2007), 2086–2093.
[28] Y. Yuan, H. Xu, B. Wang, B. Zhang, X. Yao, Balancing convergence and diversity in decomposition-based many- objective optimizers, IEEE Transactions on Evolutionary Computation, 20 (2016) 180–198.
[29] Y. Yuan, H. Xu, B. Wang, X. Yao, A new dominance relation-based evolutionary algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 20 (2016) 16–37.
[30] J. Bader, E. Zitzler, HypE : An algorithm for fast optimization, Evolutionary Computation, 19 (2011) 45–76.
[31] S. Yang, M. Li, X. Liu, J. Zheng, A grid-based evolutionary algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 17 (2013) 721–736.
[32] K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using reference-point based non- dominated sorting approach, Part II: handling constraints and extending to an adaptive approach, IEEE Transactions on Evolutionary Computation, 18 (2013) 602–622.
[33] Y. Li, H. Liu, K. Xie, X. Yu, A method for distributing reference points uniformly along the Pareto front of DTLZ test functions in many-objective evolutionary optimization, 5th International Conference on Information Science and Technology (ICIST), (2015) 541–546.
[34] A.B. Ruiz, R. Saborido, M. Luque, A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm, Journal of Global Optimization, 62 (2015) 101– 129.
[35] B. Srdjevic, Linking analytic hierarchy process and social choice methods to support group decision-making in water management, Decision Support Systems, 42 (2007) 2261– 2273.
[36] U. Ebert, H. Welsch, Meaningful environmental indices: A social choice approach, Journal of Environmental Economics and Management, 47(2004) 270–283.
[37] S.M. Ashrafi, A.B. Dariane, Performance evaluation of an improved harmony search algorithm for numerical optimization: Melody Search (MS), Engineering applications of artificial intelligence, 26 (2013) 1301–1321.
[38] K.S. Lee, Z.W. Geem, A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice, Computer Methods in Applied Mechanics and Engineering, 194 (2005) 3902–3933.
[39] M. Mahdavi, M. Fesanghary, E. Damangir, An improved harmony search algorithm for solving optimization problems, Applied Mathematics and Computing, 188 (2007) 1567– 1579.
[40] M. Fesanghary, M. Mahdavi, M. Minary-Jolandan, Y. Alizadeh, Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems, Computer Methods in Applied Mechanics and Engineering, 197 (2008) 3080–3091.
[41] J.C. de Borda, Mathematical derivation of an election system, Isis, 44(1/2) (1781) 42–51.
[42] K.J. Arrow, Social choice and individual values, John Wiley & Sons, Inc. (1951).
[43] A. D’Angelo, A. Eskandari, F. Szidarovszky, Social choice procedures in water resource management, Journal of Environmental Management, 52 (1998) 203-210.
[44] J.N. Mordeson, D.S. Malik, T.D. Clark, Application of Fuzzy Logic to Social Choice Theory, Chapman and Hall/ CRC, (2015).
[45] K.J. Arrow, A.K. Sen, K. Suzumura, Handbook of Social Choice and Welfare, Elsevier (2010).
[46] D. Black, On the rationale of group decision making, Journal of Political Economy, 56 (1948).
[47] K.I. Inada, Majority rule and rationality, Economic Theory, 2 (1970) 27-40.
[48] S. Kant, S. Lee, A social choice approach to sustainable forest management: An analysis of multiple forest values in Northwestern Ontario, For. Policy Econ., 6 (2004) 215–227.
[49] R.U. Goetz, Y. Martinez, J. Rodrigo, Water allocation by social choice rules: The case of sequential rules, Ecological Economics, 65 (2008) 304–314.
[51] A.D. Taylor, Mathematics and politics, Springer-Verlag, New York (1995).
[52] N. Srinivas, K. Deb, Muiltiobjective optimization using nondominated sorting in genetic algorithms, Evolutionary Computation, 2 (1995) 221-248.
[53] K. Deb, S. Pratab, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NGSA-II, IEEE Transactions on Evolutionary Computation, 6 (2002) 182– 197.
[54] J.L. Cohon, D.H. Marks, A review and evaluation of multiobjective programming techniques, Water Resources Research, 11(1975) 208–220.