[1] A. Abdollahipour, M. Fatehi Marji, A. Yarahmadi Bafghi, J. Gholamnejad, A complete formulation of an indirect boundary element method for poroelastic rocks, Computers and Geotechnics, 74 (2016) 15–25.
[2] H. Haeri, V. Sarfarazi, Z. Zhu, M. Fatehi Marji, A. Masoumi, Investigation of shear behavior of soil-concrete interface, Smart Structures and Systems, 23 (1) (2019) 81–90.
[3] H. Haeri, V. Sarfarazi, P. Ebneabbasi, A. Nazari maram, A. Shahbazian, M. Fatehi Marji, A.R. Mohamadi, XFEM and experimental simulation of failure mechanism of non-persistent joints in mortar under compression, Construction and Building Materials, 236 (2020) 117500.
[4] W.F. Chen, G.Y. Baladi, Soil Plasticity: Theory and Implementation, (1985) Elsevier Science, Amsterdam, Netherlands.
[5] D.M. Potts, L. Zdravković, Finite Element Analysis in Geotechnical Engineering: Theory, Volume 1, (1999) Thomas Telford Ltd, London, United Kingdom.
[6] S.W. Sloan, J.R. Booker, Removal of Singularities in Tresca and Mohr-Coulomb Yield Functions, Communications in Applied Numerical Methods, 2 (2) (1986) 173–179.
[7] M.M. Nujid, Numerical simulation of strip footing on sand for bearing capacity analyses, AIP Conference Proceedings, 2020 (1) (2018) 020004.
[8] I.S. Sandler, Review of the development of Cap Models for geomaterials, Shock and Vibration, 12 (1 SPEC. ISS.) (2005) 67–71.
[9] S. Helwany, Applied Soil Mechanics: With ABAQUS Applications, (2007) John Wiley & Sons.
[10] Hibbitt, Karlsson, Sorensen, ABAQUS/Explicit User’s Manual, Hibbitt, (2000) Karlsson & Sorensen, Inc.
[11] H. Liu, Dynamic analysis of subway structures under blast loading, Geotechnical and Geological Engineering, 27 (6) (2009) 699–711.
[12] K.Z.Z. Lee, N.Y. Chang, H.Y. Ko, Numerical simulation of geosynthetic-reinforced soil walls under seismic shaking, Geotextiles and Geomembranes, 28 (4) (2010) 317–334.
[13] A.T. Alisawi, P.E.F. Collins, K.A. Cashell, Nonlinear numerical simulation of physical shaking table test, using three different soil constitutive models, Soil Dynamics and Earthquake Engineering, 143 (2021) 106617.
[14] V.A. Hernández-Hernández, D.R. Joya-Cárdenas, L.N. Equihua-Anguiano, J.C. Leal-Vaca, J.A. Diosdado-De la Peña, L. Pérez-Moreno, N. Saldaña-Robles, A. Saldaña-Robles, Experimental and numerical analysis of triaxial compression test for a clay soil, Chilean Journal of Agricultural Research, 81 (3) (2021) 357–367.
[15] S. Bhowmick, Finite Element Modeling of Consolidated Undrained Test of Clay, Technical Report, Memorial university (2021).
[16] M. Calvello, R.J. Finno, Selecting parameters to optimize in model calibration by inverse analysis, Computers and Geotechnics, 31 (5) (2004) 411–425.
[17] K. Arulmoli, K. K. Muraleetharan, M. M. Hossain, L. S. Fruth, VELACS (Verification of Liquefaction Analyses by Centrifuge Studies) Laboratory Testing Program: Soil Data Report, Washington, (1992).
[18] R. Popescu, J.H. Prevost, Centrifuge validation of a numerical model for dynamic soil liquefaction, Soil Dynamics and Earthquake Engineering, 12 (2) (1993) 73–90.
[19] M.D. Bolton, The strength and dilatancy of sands, Geotechnique, 36 (1) (1986) 65–78.
[20] T. Schanz, P.A. Vermeer, Angles of friction and dilatancy of sand, Geotechnique, 46 (1) (1996) 145–151.
[21] G. Castro, Redistribution research, Memorandum to Void Redistribution Research Team by GEI Consultants, University of California, Davis, CA, (2001).
[22] R. Kamai, R.W. Boulanger, Simulations of a Centrifuge Test with Lateral Spreading and Void Redistribution Effects, Journal of Geotechnical and Geoenvironmental Engineering, 139 (8) (2013) 1250–1261.
[23] ABAQUS INC., Analysis of Geotechnical Problems with ABAQUS, (2003).
[24] H. Shin, J. B. Kim, S. J. Kim, K. Y. Rhee, A simulation-based determination of cap parameters of the modified Drucker-Prager cap model by considering specimen barreling during conventional triaxial testing, Computational Materials Science, 100 (PA) (2015) 31–38.
[25] H. Shin, J.B. Kim, Physical interpretations for cap parameters of the modified Drucker-Prager cap model in relation to the deviator stress curve of a particulate compact in conventional triaxial testing, Powder Technology, 280 (2015) 94–102.
[26] C.S. Desai, H.J. Siriwardane, Constitutive Laws for Engineering Materials, with Emphasis on Geologic Materials, (1984) Prentice-Hall, Inc, New Jersey, United States of America.
[27] S. Dolarevic, A. Ibrahimbegovic, A modified three-surface elasto-plastic cap model and its numerical implementation, Computers and Structures, 85 (7–8) (2007) 419–430.
[28] L. H. Han, J. A. Elliott, A. C. Bentham, A. Mills, G. E. Amidon, B. C. Hancock, A modified Drucker-Prager Cap model for die compaction simulation of pharmaceutical powders, International Journal of Solids and Structures, 45 (10) (2008) 3088–3106.
[29] Dassault Systèmes, Abaqus 6.14 Example problems guide Volume II: other applications and analyses, Abaqus 6.14 Documentation, (2014).
[30] G. Oettl, R.F. Stark, G. Hofstetter, A comparison of elastic-plastic soil models for 2D FE analyses of tunnelling, Computers and Geotechnics, 23 (1–2) (1998) 19–38.
[31] C.R.I. Clayton, M.B. Hababa, N.E. Simons, Dynamic penetration resistance and the prediction of the compressibility of a fine-grained sand—a laboratory study, Geotechnique, 35 (1) (1985) 19–31.
[32] M. J. Lee, S. K. Choi, M. T. Kim, W. Lee, Effect of stress history on CPT and DMT results in sand, Engineering Geology, 117 (3–4) (2011) 259–265.
[33] M. Zhang, Y. Yao, H. Pei, J. Zheng, A new isotropic hardening constitutive model based on reference compression curve, Computers and Geotechnics, 138 (2021) 104337.
[34] J.M. Pestana, A.J. Whittle, Compression model for cohesionless soils, Geotechnique, 45 (4) (1995) 611–631.
[35] B.S. Qubain, V.N. Kaliakin, J.P. Martin, Variable Bulk Modulus Constitutive Model for Sand, Journal of Geotechnical and Geoenvironmental Engineering, 129 (2) (2003) 158–162.
[36] S.S. Park, P.M. Byrne, Stress densification and its evaluation, Canadian Geotechnical Journal, 41 (1) (2004) 181–186.
[37] J. Vallejos, Hydrostatic compression model for sandy soils, Canadian Geotechnical Journal, 45 (8) (2008) 1169–1179.
[38] B. Zeleke, Simulation of Pile Load Test Using Finite Element Method, Master’s thesis, University of Addis Ababa, Department of Civil and Environmental Engineering, (2015).
[39] E. Susila, R.D. Hryciw, Large displacement FEM modelling of the cone penetration test (CPT) in normally consolidated sand, International Journal for Numerical and Analytical Methods in Geomechanics, 27 (7) (2003) 585–602.
[40] S. Alizadeh Sabet, Application of a Cosserat Continuum Model to Non-associated Plasticity, Ph.D. Dissertation, Department of Civil and Structural Engineering, University of Sheffield, (2020).
[41] Dassault Systèmes, Abaqus Version 6.14, (2014).
[42] S.S. Nagula, R.G. Robinson, J.M. Krishnan, Mechanical Characterization of Pavement Granular Materials Using Hardening Soil Model, International Journal of Geomechanics, 18 (12) (2018) 04018157.
[43] M.M. Eslami, D. Pradel, S.J. Brandenberg, Experimental mapping of elastoplastic surfaces for sand using undrained perturbations, Soils and Foundations, 58 (1) (2018) 160–171.
[44] R. Kulasingam, E. J. Malvick, R. W. Boulanger, B. L. Kutter, Strength Loss and Localization at Silt Interlayers in Slopes of Liquefied Sand, Journal of Geotechnical and Geoenvironmental Engineering, 130 (11) (2004) 1192–1202.
[45] R. A. Jaeger, J. T. DeJong, R. W. Boulanger, I. P. Maki, Effects of state parameter, fines content, and overburden stress on CPT resistance in silty sands, 3 Rd International Symposium on Cone Penetration Testing, (2014) Las Vegas, Nevada, USA.
[46] P. Jarast, M. Ghayoomi, Numerical Modeling of Cone Penetration Test in Unsaturated Sand inside a Calibration Chamber, International Journal of Geomechanics, 18 (2) (2018) 04017148.